Skip to main content

Simple Organic Acids as Plant Biostimulants

  • Chapter
  • First Online:
Biostimulants: Exploring Sources and Applications

Part of the book series: Plant Life and Environment Dynamics ((PLED))

Abstract

Organic acids are the building blocks of plant metabolism. However, their role in plant metabolism has remained mostly unknown while their regulating role is becoming more evident. Interest in these chemicals is shaping in many disciplines in the agriculture sector, which is supported by ecological awareness and the search for more sustainable tools in agriculture that are more easily available. We have tried to review the related literature in this field to create a more solid picture of the knowledge that we have available today. In fact, the role of organic acids is far more diverse than we thought before; many organic acids help plants to accommodate different biotic and abiotic stresses and the others exert some levels of regulation effects that could be considered on par with known plant growth regulators. Whether we are in search of improvement in postharvest life, the bioactive content, absorption of minerals by roots, tolerance to biotic or abiotic stresses, or even to increase the yields of secondary metabolism, we can find a tool in the diverse toolbox of the organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

DPPH:

2,2-diphenyl-1-picrylhydrazyl free radical reaction test

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GST:

Glutathione-S-transferase

IAA:

indole acetic acid

MDA:

Malon dialdehyde

NADP-ME:

NADP–malic enzyme

PAL:

Phenylalanine ammonia-lyase

POD:

Peroxidase

SOD:

Superoxide dismutase

TSS:

Total soluble solids

References

  • Abadía J et al (2002) Organic acids and Fe deficiency: a review. Plant Soil 241(1):75–86

    Article  Google Scholar 

  • Abdulla AA (2013) Effect of foliar spray of citric acid on growth and green yield of broad bean (Vicia faba L.) grown in southern Iraq. J Basrah Res Sci 39(1B):1–12

    Google Scholar 

  • Aderholt M, Vogelien DL, Koether M, Greipsson S (2017) Phytoextraction of contaminated urban soils by Panicum virgatum L. enhanced with application of a plant growth regulator (BAP) and citric acid. Chemosphere 175:85–96

    Article  CAS  PubMed  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F et al (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22(15):11679–11689

    Article  CAS  Google Scholar 

  • Agrawal B et al (2012) Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta 236(2):477–489

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HI (2020) Improving snap bean yield and quality through organic fertilizer additives and citric acid spraying under newly reclaimed land conditions. J Plant Prod 11(2):113–118

    Google Scholar 

  • Akhtar S et al (2018) Foliar applications of FeSO4 alone and in combination with citric acid can reduce iron deficiency induced chlorosis in two Pakistani Peanut (Arachis hypogaea L.) varieties. Appl Ecol Environ Res 16(3):2873–2884

    Article  Google Scholar 

  • Al-Aa’reji JMA, Perot JSK (2017) Effect of foliar application of citric and gibberellic acid (GA3) on growth and fruiting of apricot trees “Prunus armeniaca L.” cv. Royal. J Kirkuk Univ Agric Sci 8(4):64–78

    Google Scholar 

  • Ali AH, Uwakiem MK, Sayed HMM (2016) Effect of vine load and spraying citric acid on fruiting of superior grapevines grown under Minia region conditions-Egypt. Assiut J Agric Sci 47(6–2):484–503

    Google Scholar 

  • Ali J et al (2018) Phytoextraction of Cr by maize (Zea mays L.): the role of plant growth promoting endophyte and citric acid under polluted soil. Arch Environ Prot 44:73–82

    CAS  Google Scholar 

  • Ali EA et al (2020) Study the response of five canola cultivars to foliar spraying by some antioxidants. J Plant Prod 11(5):509–514

    Google Scholar 

  • Allahveran A et al (2018) Foliar application of ascorbic and citric acids enhanced ‘Red Spur’apple fruit quality, bioactive compounds and antioxidant activity. Physiol Mol Biol Plants 24(3):433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Fernández A et al (2004) Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil 263(1):5–15

    Article  Google Scholar 

  • Aly MA et al (2019) Enhancement quality and storability of “Anna” apple fruits by some pre-harvest foliar applications. Middle East J Agric Res 8(1):66–81

    Google Scholar 

  • Al-Zubaidi BAQ, Makki BE-D, Al-Rubaie F (2020) Effect of citric acid on some morphological characteristics and the content of major nutrient of chamomile (Matricaria chamomilla L.) at increasing concentrations of kinetin. Plant Arch 20(1):592–596

    Google Scholar 

  • Ameri A, Kazemi M (2013) Application of exogenous salicylic acid and malic acid in salinity condition. Angewandten Biol Forschung 1(1):20

    Google Scholar 

  • Amir W et al (2020) Accumulation potential and tolerance response of Typha latifolia L. under citric acid assisted phytoextraction of lead and mercury. Chemosphere 257:127247

    Article  CAS  PubMed  Google Scholar 

  • Amri E, Shahsavar AR (2009) Comparative efficacy of citric acid and Fe (II) sulfate in the prevention of chlorosis in Orange trees (Citrus sinensis L. cv “Darabi”). J Biol Environ Sci 3(8):61–65

    Google Scholar 

  • An Y et al (2014) Effects of foliar application of organic acids on alleviation of aluminum toxicity in alfalfa. J Plant Nutr Soil Sci 177(3):421–430

    Article  CAS  Google Scholar 

  • Arcand MM, Schneider KD (2006) Plant-and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. An Acad Bras Ciênc 78(4):791–807

    Article  CAS  PubMed  Google Scholar 

  • Asadi-Kavan Z et al (2020) Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). J Plant Interact 15(1):166–179

    Article  CAS  Google Scholar 

  • Ashtari M, Hadavi E, Hekmati J (2013) Application of various levels of malic acid and salicylic acid as pulse treatment on durability of ‘utopia’ cut rose. Acta Hortic 1012:413–418. https://doi.org/10.17660/ActaHortic.2013.1012.52

    Article  Google Scholar 

  • Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bais HP et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian A, Rangaswami G (1969) Studies on the influence of foliar nutrient sprays on the root exudation pattern in four crop plants. Plant Soil 30(2):210–220

    Article  CAS  Google Scholar 

  • Basra AS, Malik CP (1985) Non-photosynthetic fixation of carbon dioxide and possible biological roles in higher plants. Biol Rev 60(3):357–400

    Article  CAS  Google Scholar 

  • Båth B, Otabbong E (2013) Availability of phosphorus in greenhouse cropping systems with tomatoes—influence of soil and citric acid. Acta Agric Scand B Soil Plant Sci 63(6):483–488. https://doi.org/10.1080/09064710.2013.804115

    Article  CAS  Google Scholar 

  • Begri F, Hadavi E, Nabigol A (2014) Positive interaction of ethanol with malic acid in postharvest physiology of cut spray carnation “White Natila”. J Hortic Res 22(2). https://doi.org/10.2478/johr-2014-0018

  • Benzing DH, Givnish TJ, Bermudes D (1985) Absorptive trichomes in Brocchinia reducta (Bromeliaceae) and their evolutionary and systematic significance. Syst Bot 10:81–91

    Article  Google Scholar 

  • Bradley DB, Sieling DH (1953) Effect of organic anions and sugars on phosphate precipitation by iron and aluminum as influenced by pH. Soil Sci 76(3):175–180

    Article  CAS  Google Scholar 

  • Camp SD, Jolley VD, Brown JC (1987) Comparative evaluation of factors involved in Fe stress response in tomato and soybean. J Plant Nutr 10(4):423–442

    Article  CAS  Google Scholar 

  • Cantino EC, Goldstein A (1967) Citrate-induced citrate production and light-induced growth of Blastocladiella emersonii. Microbiology 46(3):347–354

    CAS  Google Scholar 

  • Casati P et al (1999) Malate metabolism by NADP-malic enzyme in plant defense. Photosynth Res 61(2):99–105

    Article  CAS  Google Scholar 

  • Cessna SG et al (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Science 12(11):2191

    CAS  Google Scholar 

  • Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL et al (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6):807–811

    Article  CAS  PubMed  Google Scholar 

  • Chen T et al (2009) Employment of organic acids to enhance astaxanthin formation in heterotrophic Chlorella zofingiensis. J Food Process Preserv 33(2):271–284

    Article  CAS  Google Scholar 

  • Danaee E (2015) Influence of malic acid in extension of vase life of cut Eustoma grandiflorum flowers. Thai J Agric Sci 48(2):55–57

    Google Scholar 

  • Darandeh N, Hadavi E (2012) Effect of pre-harvest foliar application of citric acid and malic acid on chlorophyll content and post-harvest vase life of Lilium cv. Brunello. Front Plant Sci 2:106. https://doi.org/10.3389/fpls.2011.00106

    Article  PubMed  PubMed Central  Google Scholar 

  • Day DA, Hanson JB (1977) Pyruvate and malate transport and oxidation in corn mitochondria. Plant Physiol 59(4):630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirci N et al (2016) Investigation of the malic acid concentration on extremophilic red microalga Galdieria sulphuraria. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18(52):101–107

    Google Scholar 

  • Ding ZS et al (2007) Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiol Plant 130(1):112–121

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108(3):183–200

    Article  Google Scholar 

  • do Nascimento CWA, Hesterberg D, Tappero R (2020) Effects of exogenous citric acid on the concentration and spatial distribution of Ni, Zn, Co, Cr, Mn and Fe in leaves of Noccaea caerulescens grown on a serpentine soil. J Hazard Mater 398:122992. https://doi.org/10.1016/j.jhazmat.2020.122992

    Article  CAS  Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122(2):190–199

    Article  CAS  Google Scholar 

  • Duan C, Wu S, Sang Y, Bahetibieke W, Ru J, Song J, Cui X (2019) Exogenous succinic acid mediates responses of Larix olgensis A. Henry to cadmium stress. Int J Phytorem 21(8):742–751. https://doi.org/10.1080/15226514.2018.1556593

    Article  CAS  Google Scholar 

  • Ebrahim A et al (2019) Response of Canola (Brassica napus cv. Global.) to foliar spraying with ascorbic and citric acids. Zagazig J Agric Res 46(6):2287–2295

    Article  Google Scholar 

  • Eidyan B, Hadavi E, Moalemi N (2014) Pre-harvest foliar application of iron sulfate and citric acid combined with urea fertigation affects growth and vase life of tuberose (Polianthes tuberosa L.) “por-par”. Hortic Environ Biotechnol 55, 9(1):–13. https://doi.org/10.1007/s13580-014-0061-2

  • El-Fawy MM (2018) Inhibitory effect of certain chemical food preservatives against Cercospora leaf spot disease of sugar beet. J Plant Protect Pathol 9(5):315–320

    Article  Google Scholar 

  • El-Shabrawi HM et al (2015) Humic and oxalic acid stimulates grain yield and induces accumulation of plastidial carbohydrate metabolism enzymes in wheat grown under sandy soil conditions. Agric Sci 6(1):175

    Google Scholar 

  • El-Shanhorey NA, Barakat AA (2020) Effect of lead and cadmium in irrigation water and foliar applied malic acid on vegetative growth, flowering and chemical composition of salvia splendens plants (A) effect of lead. Sci J Flower Ornam Plants 7(3):321–335

    Article  Google Scholar 

  • El-Shanhorey NA, El-Sayed SG (2017) The use of Senecio cineraria plants sprayed with citric acid for cadmium pollution phytoremediation. Alex Sci Exch J 38:343–355

    Google Scholar 

  • El-Shanhorey NA, Emam ONK (2020) Response of lantana camara plants to foliar applied citric acid for decreasing the harmful effect of heavy metals pollution in the irrigation water (B) effect of Nickel. Sci J Flower Ornam Plants 7(2):77–92

    Article  Google Scholar 

  • El-Shanhorey N, Saker G (2018) Effect of nickel in the irrigation water and foliar applied malic acid on vegetative growth, flowering and chemical composition of Salvia splendens plant. Alex J Agric Sci 63(6):327–337

    Google Scholar 

  • El-Shanhorey NA, Shehata AM, Soffar RA (2015) Effect of pre-harvest foliar application of citric acid, malic acid and tryptophan on the growth, flowering and post-harvest vase life of tuberose plants. I-Effect of pre-harvest treatments on vegetative growth and flowering. Bull Faculty Agric 66(2/3):171–179

    Google Scholar 

  • El-Tohamy WA et al (2013) Drought tolerance and water status of bean plants (Phaseolus vulgaris L.) as affected by citric acid application. J Appl Bot Food Qual 86(1):212–216. https://doi.org/10.5073/JABFQ.2013.086.029

    Article  CAS  Google Scholar 

  • El-Yazal MAS (2019) The application of citric acid in combination with some micronutrients increases the growth, productivity and a few chemical constituents of maize (Zea Mays) plants. Int Lett Nat Sci 76:86–97

    Google Scholar 

  • EL-Zefzafy MM et al (2016) Influence of foliar application with amino acids and citric acid on physiological and phytochemical responses of Artemisia abrotanum produced by in vitro culture. Biosci Biotechnol Res 9:702–711

    Article  Google Scholar 

  • Faraz A et al (2020) Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 39(2):641–655

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH et al (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    Article  CAS  PubMed  Google Scholar 

  • Farshid F, Hadavi E, Hekmati J (2013) Glutamin and malic acid increased the vase life of cut rose flowers (“Avalanch”). Acta Hortic 1012

    Google Scholar 

  • Fäth J et al (2019) Citric acid extraction—An underestimated method in forest nutrition? J Plant Nutr Soil Sci 182(5):691–693

    Article  CAS  Google Scholar 

  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28(1–2):36–68

    Article  CAS  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92(2):213–217

    Article  CAS  PubMed  Google Scholar 

  • Gao X, et al (2009) Effect of treatment of postharvest malic acid on resistance and reactive oxygen species metabolism of pear inoculated with P. expansum. Sci Technol Food Indus, 7

    Google Scholar 

  • Génard M, et al (2001) Modeling the apricot sugar contents in relation to fruit growth. In: XII international symposium on apricot culture and decline 701, pp 517–522. https://doi.org/10.17660/ActaHortic.2006.701.89

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernähr Bodenkd 157(4):289–294

    Article  CAS  Google Scholar 

  • Ghazijahani N, Hadavi E, Jeong BR (2014) Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). Front Plant Sci 5(October):573. https://doi.org/10.3389/fpls.2014.00573

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghazijahani N et al (2017) Regulating the rooting process of rose softwood cuttings by foliar citric and malic acid spray on stock plants. Folia Horticult 29(2):155–159

    Article  Google Scholar 

  • Ghazijahani N et al (2018) Foliar application of citric and malic acid to stock plants of rose alters the rooting of stem cuttings. Chem Biol Technol Agric 5(1):11. https://doi.org/10.1186/s40538-018-0123-2

    Article  CAS  Google Scholar 

  • Gheshlaghi EA, Tafazoli EA (2005) Effect of FeSO4 and citric acid spray on fruit characteristics of tomato (Lycopersicon esculentum mill.) cv. Urbana. J Agric Sci Nat Resour 11(4):71–79

    Google Scholar 

  • Ghourab MHH (2000) Physiological response of cotton plant to foliar application with citrine and citric acid. Egypt J Agric Res 78(4):1685–1699

    Google Scholar 

  • Guo H et al (2017) Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Ecotoxicol Environ Saf 141:119–128. https://doi.org/10.1016/j.ecoenv.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  • Hale MG, Moore LD (1980) Factors affecting root exudation II: 1970–1978. Adv Agron 31:93–124

    Article  Google Scholar 

  • Hamidi E et al (2014) Studying the effects of mycorrhiza, root juice and citric acid on Mentha piperita yield and root generating. Int J Biosci 5(8):194–199

    Article  CAS  Google Scholar 

  • Hassan M, Dagari M, Babayo A (2016) Effect of citric acid on cadmium ion uptake and stress response of hydroponically grown jute mallow (Corchorus olitorius). J Environ Anal Toxicol 6:375

    Google Scholar 

  • Hassenberg K et al (2018) Effects of acetic acid vapour on the microbial status of ‘Merchant’and ‘Oktavia’ sweet cherries (Prunus avium L.). Food Control 90:422–428

    Article  CAS  Google Scholar 

  • Heller A, Witt-Geiges T (2013) Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis. PLoS One 8(8):e72292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidayah AN, Yahya S, Sopandie D (2020) The tolerance of oil palm (Elaeis guineensis) seedlings to Al stress is enhanced by citric acid and natural peat water. Biodivers J Biol Divers, 21(10)

    Google Scholar 

  • Hu L et al (2016) Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum). Front Plant Sci 7:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H et al (2013) Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv.“Brazil”) fruit during storage. Sci Horticult 160:208–212

    Article  CAS  Google Scholar 

  • Huang H et al (2016) Enhanced chilling tolerance of banana fruit treated with malic acid prior to low-temperature storage. Postharvest Biol Technol 111:209–213

    Article  CAS  Google Scholar 

  • Hussein MM et al (2020) Nutrient content and growth responses of sugar beet plants grown under salinity condition to citric acid and algal extract. Egypt J Agron 42(2):209–224

    Google Scholar 

  • Jaafari N, Hadavi E (2012) Growth and essential oil yield of Basil (ocimum basilicum L.) as affected by foliar spray of citric acid and salicylic acid. Zeitschrift fur Arznei- und Gewurzpflanzen, 17(2)

    Google Scholar 

  • Jaafari N et al (2015) Manipulating essential oil composition of dill (Anethum graveolens L.) by using preharvest foliar sprays of citric acid and malic acid. J Essential Oil Bear Plants 18:556–560

    Article  CAS  Google Scholar 

  • Jafari N, Hadavi E (2012) Growth and essential oil yield of dill (Anethum graveolens) as affected by foliar sprays of citric acid and malic acid. Acta Horticult 955(955):287–290

    Article  Google Scholar 

  • Jalali BL (1976) Biochemical nature of root exudates in relation to root rot of wheat—III. Carbohydrate shifts in response to foliar treatments. Soil Biol Biochem 8(2):127–129

    Article  CAS  Google Scholar 

  • Jalali BL, Suryanarayana D (1970) Biochemical nature of root exudates in relation to root rot of wheat. 1. Amino acid shifts in response to foliar treatments. Z Pflanzenkrankh Pflanzenpathol Pflanzenschutz Sonderh 77(8):438–442

    CAS  Google Scholar 

  • Jamshidi M, Hadavi E, Naderi R (2014) Combination of salicylic acid, malic acid and urea enhances the vase life of cut gerbera flowers on par with selected treatments. Int J Postharvest Technol Innov 4(2–4):235–250. https://doi.org/10.1504/IJPTI.2014.068739

    Article  Google Scholar 

  • Jang SJ, Kuk YI (2018) Effects of malic acid on paraquat and environmental stresses in maize. Res Crops, 19(4)

    Google Scholar 

  • Jayaraj J et al (2010) Oxalic acid-induced resistance to Rhizoctonia solani in rice is associated with induction of phenolics, peroxidase and pathogenesis-related proteins. J Plant Interact 5(2):147–157. https://doi.org/10.1080/17429140903291012

    Article  CAS  Google Scholar 

  • Jin X et al (2016) Malic acid and oxalic acid spraying enhances phytic acid degradation and total antioxidant capacity of mung bean sprouts. Int J Food Sci Technol 51:370–380

    Article  CAS  Google Scholar 

  • Kandel YR et al (2019) Effect of seed treatment and foliar crop protection products on sudden death syndrome and yield of soybean. Plant Dis 103(7):1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Avtar S, Maninder K (2010) Seed yield of Berseem as influenced by succinic acid application at various stages. Indian J Ecol 37(1):30–32

    Google Scholar 

  • Kant K et al (2013) Effect of exogenous application of salicylic acid and oxalic acid on post harvest shelf-life of tomato (Solanum lycopersicon L.). Indian J Plant Physiol 18(1):15–21

    Article  Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotoxicol Environ Saf 145:466–475

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Yadav P, Thukral AK, Sharma A, Bhardwaj R, Alyemeni MN et al (2018) Castasterone and citric acid supplementation alleviates cadmium toxicity by modifying antioxidants and organic acids in Brassica juncea. J Plant Growth Regul 37(1):286–299

    Article  CAS  Google Scholar 

  • Kazemi M, Hadavi E, Hekmati J (2011) Role of salicylic acid in decreases of membrane senescence in cut carnation flowers. Am J Plant Physiol 6(2):106–112. https://doi.org/10.3923/ajpp.2011.106.112

    Article  CAS  Google Scholar 

  • Kazemi M, Hadavi E, Hekmati J (2012) Effect of salicylic acid, malic acid, citric acid and sucrose on antioxidant activity, membrane stability and ACC-oxidase activity in relation to vase life of carnation cut flowers. J Plant Sci 7(2):78–84. https://doi.org/10.3923/jps.2012.78.84

    Article  Google Scholar 

  • Khair KU et al (2020) Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environ Sci Pollut Res 27:27010–27022

    Article  CAS  Google Scholar 

  • Khatun MR et al (2019) Insight into citric acid-induced chromium detoxification in rice (Oryza sativa. L). Int J Phytoremed 21(12):1234–1240. https://doi.org/10.1080/15226514.2019.1619162

    Article  Google Scholar 

  • Kim J-Y et al (2010) Effect of combined treatment of ultraviolet-C with aqueous chlorine dioxide or fumaric acid on the postharvest quality of strawberry fruit. J Korean Soc Food Sci Nutr 39(1):138–145

    Article  CAS  Google Scholar 

  • Kim J-M et al (2017) Acetate-mediated novel survival strategy against drought in plants. Nat Plants 3(7):1–7

    Article  CAS  Google Scholar 

  • Kok D, Bal E (2019) Changes on bioactive compounds and electrochemical characteristics of cv. Horoz Karası table grape (V. vinifera L.) induced by various doses of preharvest applications of benzoic acid, citric acid and oxalic acid at berry setting and verasion periods. Erwerbs-Obstbau 61(1):17–24

    Article  Google Scholar 

  • Kundu A et al (2021) Differential responses of rice (Oryza sativa L.) to foliar fertilization of organic potassium salts. J Plant Nutr 44:1330–1348. https://doi.org/10.1080/01904167.2020.1862193

    Article  CAS  Google Scholar 

  • Li Y et al (2008) Oxalic acid-induced H_2O_2 production and resistance to Downy Mildew in cucumber seedlings. Acta Botan Boreali-Occiden Sin, 6

    Google Scholar 

  • Liu WT, Chu CL, Zhou T (2002) Thymol and acetic acid vapors reduce postharvest brown rot of apricots and plums. Hortscience 37(1):151–156

    Article  CAS  Google Scholar 

  • Liu X et al (2017) MAPK-mediated auxin signal transduction pathways regulate the malic acid secretion under aluminum stress in wheat (Triticum aestivum L.). Sci Rep 7(1):1–12

    CAS  Google Scholar 

  • Lopez-Bucio J et al (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Tian S, Yang X, Peng H, Li T (2013) Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. J Zhejiang Univ Sci B 14(2):106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma E et al (2007) Effect of soaking seeds with succinic acid on leaf photosynthetic rate and water use efficiency of maize during the late growth stage. J Maize Sci, 1

    Google Scholar 

  • Mahdavian K (2021) Effect of citric acid on antioxidant activity of red bean (Phaseolus calcaratus L.) under Cr+6 stress. S Afr J Bot 139:83–91. https://doi.org/10.1016/j.sajb.2021.02.002

    Article  CAS  Google Scholar 

  • Mahnam S, Hadavi E (2010) Pre-harvest citric acid improved color development in Vitis vinifera L. cv. Yaghooti grape berries. In: 28th international horticultural congress. Lisbon, p 737

    Google Scholar 

  • Maleki V et al (2013) Physiological responses of sweet Basil (Ocimum basilicum L.) to triple inoculation with Azotobacter, Azospirillum, glomus intraradices and foliar application of citric acid. Ann Biol Res 4(1):62–71

    CAS  Google Scholar 

  • Malenčić DJ et al (2004) Antioxidant systems in sunflower as affected by oxalic acid. Biol Plant 48(2):243–247

    Article  Google Scholar 

  • Mallhi ZI et al (2019) Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in castor beans. Plants 8:525. https://doi.org/10.3390/plants8110525

    Article  CAS  PubMed Central  Google Scholar 

  • Mandour MA, Metwaly HA, Ali AM (2019) Effect of foliar spray with amino acids, citric acid, some calcium compounds and mono-potassium phosphate on productivity, storability and controlling gray mould of strawberry fruits under sandy soil conditions. Zagazig J Agric Res 46(4):985–997

    Article  Google Scholar 

  • Mansour AEM et al (2008) The beneficial of using citric acid with some nutrients for improving productivity of Le-Conte pear trees. Res J Agric Biol Sci 4(3):245–250

    CAS  Google Scholar 

  • Maqbool A et al (2018) Management of tannery wastewater for improving growth attributes and reducing chromium uptake in spinach through citric acid application. Environ Sci Pollut Res 25(11):10848–10856

    Article  CAS  Google Scholar 

  • Marron N et al (2003) Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, “Dor” and “Luisa_Avanzo”. Tree Physiol 23(18):1225–1235. https://doi.org/10.1093/treephys/23.18.1225

    Article  PubMed  Google Scholar 

  • Martinez-Espla A et al (2014) Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). J Agric Food Chem 62(15):3432–3437

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Esplá A et al (2017) Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage. Food Chem 230:343–349. https://doi.org/10.1016/j.foodchem.2017.03.051

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Esplá A et al (2019) ‘Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. J Sci Food Agric 99(1):235–243

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pacheco MM et al (2011) Effect of citric acid on the proteolytic activity of Zea mays L. Ciência e Agrotecnologia 35(5):908–915

    Article  CAS  Google Scholar 

  • McCluskey J, Herdman L, Skene KR (2004) Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albus. Physiol Plant 121(4):586–594

    Article  CAS  Google Scholar 

  • Meers E, Tack F (2004) The potential of foliar treatments for enhanced phytoextraction of heavy metals from contaminated soil. Remed J: J Environ Cleanup Costs Tech Techni 14(4):111–123

    Article  Google Scholar 

  • Mekawi EM, Khafagi EY, Abdel-Rahman FA (2019) Effect of pre-harvest application with some organic acids and plant oils on antioxidant properties and resistance to Botrytis cinerea in pepper fruits. Sci Hortic 257:108736. https://doi.org/10.1016/j.scienta.2019.108736

    Article  CAS  Google Scholar 

  • Miri SM, Ahmadi S, Moradi P (2015) Influence of salicylic acid and citric acid on the growth, biochemical characteristics and essential oil content of thyme (Thymus vulgaris L.). J Med Plants Byprod 2:141–146

    Google Scholar 

  • Mirzajani Z, Hadavi E, Kashi A (2015) Changes in the essential oil content and selected traits of sweet basil (Ocimum basilicum L.) as induced by foliar sprays of citric acid and salicylic acid. Ind Crop Prod 76:269–274. https://doi.org/10.1016/j.indcrop.2015.06.052

    Article  CAS  Google Scholar 

  • Mohamed N (2020) Effect of antioxidants in promoting plant growth under climate change conditions. Res Crops 21(2):424–434

    Google Scholar 

  • Mohamed YI, El-Berry IM (2019) Alleviation of drought stress on rainfed fig (Ficus carica, L.) trees in Egypt using the foliar application of ascorbic and citric acids. In: 6th international symposium on fig in Rovinj Croatia

    Google Scholar 

  • Mollapur Y, Miri SM, Hadavi E (2016) Comparison of foliar fertilizers and growth regulators on pre-harvest drop and fruit quality of “Thompson Navel” orange. Open Agric 1(1):112–117. https://doi.org/10.1515/opag-2016-0015

    Article  Google Scholar 

  • Mugge A (1985) Effect of succinic acid on the vegetative propagation of tulips. Experimental Work of the Institute of Pomology and Floriculture. Ser. B-Ornamental Plants

    Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186(1):565–574

    Article  CAS  PubMed  Google Scholar 

  • Nowar ME, Vvedenskiy V (2020) Role of ascobin as an antioxidant in enhancing plants growth. In: Материалы международной научной конференции молодых учёных и специалистов, посвящённой 160-летию ВА Михельсона, pp 29–32

    Google Scholar 

  • Noyes RD, Hancock JG (1981) Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiol Plant Pathol 18(2):123–132. https://doi.org/10.1016/S0048-4059(81)80033-1

    Article  CAS  Google Scholar 

  • Ochoa-Velasco CE, Guerrero-Beltrán JÁ (2014) Postharvest quality of peeled prickly pear fruit treated with acetic acid and chitosan. Postharvest Biol Technol 92:139–145

    Article  CAS  Google Scholar 

  • Ohwaki Y, Sugahara K (1997) Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil 189(1):49–55

    Article  CAS  Google Scholar 

  • Osmond CB, Laties GG (1969) Compartmentation of malate in relation to ion absorption in beet. Plant Physiol 44(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace B et al (2020) Combined effect of dipping in oxalic or in citric acid and low O2 modified atmosphere, to preserve the quality of fresh-cut lettuce during storage. Foods 9(8):988. https://doi.org/10.3390/foods9080988

    Article  CAS  PubMed Central  Google Scholar 

  • Patel Z et al (2017) Effect of foliar application of chemicals on growth and yield of garlic (Allium sativum L.) var. GG-4. Int J Chem Stud 5(4):1035–1037

    CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196(4):788–795

    Article  CAS  Google Scholar 

  • Peng X, Zhang J, Li M (2000) Reduction of ferric oxalate by cucumber leaves. Acta Phytophysiol Sin 27(6):505–508

    Google Scholar 

  • Pourhadi M et al (2018) Phytochemical and growth responses of Mentha piperita to foliar application of biostimulants under greenhouse and field conditions. Herba Polonica 64(2):1–12

    Article  Google Scholar 

  • Rabotti G, De Nisi P, Zocchi G (1995) Metabolic implications in the biochemical responses to iron deficiency in cucumber (Cucumis sativus L.) roots. Plant Physiol 107(4):1195–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radmanesh E et al (2015) Shoot growth, gamma-Terpinene and essential oil content of Satureja hortensis L. in response to foliar application of FeSO4 and citric acid. فصلنامه علمی پژوهشی گیاهان دارویی, 53(1):45–57

    Google Scholar 

  • Rafati Alashti M et al (2020) Citric acid and hydrogen sulfide reduce silver nanoparticles damage in green bean plants. J Plant Mol Breed 7:101–114

    Google Scholar 

  • Rahman MM et al (2019) Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Rahman M et al (2020) Acetic acid improves drought acclimation in soybean: an integrative response of photosynthesis, osmoregulation, mineral uptake and antioxidant defense. Physiol Plant

    Google Scholar 

  • Razavi F, Hajilou J (2016) Enhancement of postharvest nutritional quality and antioxidant capacity of peach fruits by preharvest oxalic acid treatment. Sci Horticult 200:95–101

    Article  CAS  Google Scholar 

  • Razavi F et al (2017) Effect of postharvest oxalic acid treatment on ethylene production, quality parameters, and antioxidant potential of peach fruit during cold storage. Iran J Plant Physiol 7(2):2027–2036

    Google Scholar 

  • Razzaq K et al (2015) Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT Food Sci Technol 63(1):152–160

    Article  CAS  Google Scholar 

  • Rekha K et al (2018) ‘Plant-growth-promoting rhizobacteria Bacillus subtilis RR4 isolated from rice rhizosphere induces malic acid biosynthesis in rice roots. Can J Microbiol 64(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Rezk MKM (2005) Response of white Banaty grapevines to fertilization with organic and biofertilizers as well as spraying with ascobin. Ph.D. Thesis, Faculty of Agriculture, Minia University, Egypt

    Google Scholar 

  • Rombolà AD et al (2001) Effect of foliar-applied Fe sources, organic acids and sorbitol on the re-greening of kiwifruit leaves affected by lime-induced iron chlorosis. International Symposium on Foliar Nutrition of Perennial Fruit Plants, pp 349–355

    Google Scholar 

  • Rudrappa T et al (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52(1):527–560

    Article  CAS  Google Scholar 

  • Saboory A, Hadavi E, Imani A (2014) Foliar sprays based on malic acid, citric acid and potassium sulfate improve several qualitative and quantitative traits of pistachio nuts. Acta Hortic:137–142. https://doi.org/10.17660/ActaHortic.2016.1109.22

  • Sabzi A, Hadavi E, Hekmati J (2012) Effect of different levels of malic acid and salicylic acid in preservative solution on the quality and vase life of cut rose flowers cultivars (utopia). Int J Agrisci 2(5):403–407

    CAS  Google Scholar 

  • Sadak MS, Orabi SA (2015) Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. Int J Chem Tech Res 8(1):111–123

    Google Scholar 

  • Salahi B, Hadavi E, Samar SM (2017) Foliar iron sulphate-organic acids sprays improve the performance of oriental plane tree in calcareous soil better than soil treatments. Urban Forestry Urban Green, 21. https://doi.org/10.1016/j.ufug.2016.12.001

  • Sayyari M et al (2010) Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2 C. J Agric Food Chem 58(11):6804–6808

    Article  CAS  PubMed  Google Scholar 

  • Shendy MZ, Goma HA, Nashed ME (2016) Response of barley to nitrogen fertilization, foliar application of micronutrients mixture and citric acid under calcareous soil. Bull Faculty Agric 67(1):31–42

    Google Scholar 

  • Sholberg PL, Gaunce AP (1995) Fumigation of fruit with acetic acid to prevent postharvest decay. Hortscience 30(6):1271–1275

    Article  CAS  Google Scholar 

  • Sholberg PL, Gaunce AP (1996) Fumigation of stonefruit with acetic acid to control postharvest decay. Crop Protect 15(8):681–686

    Article  CAS  Google Scholar 

  • Singh AL, Dayal D (1992) Foliar application of iron for recovering groundnut plants from lime-induced iron deficiency chlorosis and accompanying losses in yields. J Plant Nutr 15(9):1421–1433

    Article  CAS  Google Scholar 

  • Soltaniband V (2020) Effects of biostimulants on soil microbiota, plant development, crop productivity and fruit quality of protected strawberries

    Google Scholar 

  • Song J, Markewitz D, Wu S, Sang Y, Duan C, Cui X (2018a) Exogenous oxalic acid and citric acid improve lead (Pb) tolerance of Larix olgensis A. Henry Seed Forest 9(9):510

    Google Scholar 

  • Song J, Zhang H, Duan C, Cui X (2018b) Exogenous application of succinic acid enhances tolerance of Larix olgensis seedling to lead stress. J For Res 29(6):1497–1505

    Article  CAS  Google Scholar 

  • Struthers PH, Sieling DH (1950) Effect of organic anions on phosphate precipitation by iron and aluminum as influenced by pH. Soil Sci 69(3):205–214

    Article  CAS  Google Scholar 

  • Sun, Y.-L. and Hong, S.-K. (2010) ‘Effects of citric acid as an important component of the responses to saline and alkaline stress in the halophyte Leymus chinensis (Trin.)’, Plant growth regulation. Springer Netherlands, 64(2), pp. 129–139. doi: https://doi.org/10.1007/s10725-010-9547-9

    Chapter  Google Scholar 

  • Sun G et al (2019) The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea. World J Microbiol Biotechnol 35(2):36

    Article  PubMed  CAS  Google Scholar 

  • Tagliavini M et al (1995) Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Iron nutrition in soils and plants. Springer, pp 191–195

    Google Scholar 

  • Tagliavini M et al (2000) Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J Plant Nutr 23(11–12):2007–2022

    Article  CAS  Google Scholar 

  • Talebi M, Hadavi E, Jaafari N (2014) Foliar sprays of citric acid and malic acid modify growth, flowering, and root to shoot ratio of gazania (Gazania rigens l.): a comparative analysis by ANOVA and structural equations modeling. Adv Agric 2014. https://doi.org/10.1155/2014/147278

  • Tiffin LO (1966) Iron translocation I. Plant culture, exudate sampling, iron-citrate analysis. Plant Physiol 41(3):510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting IP (1981) Towards a model for malate accumulation in plant tissues. Plant Sci Lett 21(3):215–221

    Article  CAS  Google Scholar 

  • Toal E, Jones P (1999) Induction of systemic resistance to Sclerotinia sclerotiorum by oxalic acid in oilseed rape. Plant Pathol 48(6):759–767

    Article  Google Scholar 

  • Touraine B, Muller B, Grignon C (1992) Effect of phloem-translocated malate on NO3− uptake by roots of intact soybean plants. Plant Physiol 99(3):1118–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu JC (1989) Oxalic acid induced cytological alterations differ in beans tolerant or susceptible to white mould. New Phytol 112(4):519–525

    Article  CAS  PubMed  Google Scholar 

  • Tyler G, Ström L (1995) Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Ann Bot 75(1):75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. Rhizosphere 2:1–21

    Google Scholar 

  • Valero D et al (2011) Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. J Agric Food Chem 59(10):5483–5489

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2009) Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant Cell Physiol 50(2):230–242

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2020) Enhancement of rhizosphere citric acid and decrease of NO 3−/NH 4+ ratio by root interactions facilitate N fixation and transfer. Plant Soil 447(1):169–182

    Article  CAS  Google Scholar 

  • Wen X et al (2009) Inhibition of preharvest malic acid treatment on skin browning of pear fruit (cv. Pingguo). J Gansu Agric Univ, 5

    Google Scholar 

  • Wu F et al (2011) Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Res Int 44(5):1299–1305

    Article  CAS  Google Scholar 

  • Xu F, Zhu K, Jing Y (2008) Effects of applying malic acid in different time on nonvolatile organic acid in cured leaf. Southwest China J Agric Sci 21(1):66–70

    Google Scholar 

  • Xue W et al (2021) Citric acid inhibits Cd uptake by improving the preferential transport of Mn and triggering the defense response of amino acids in grains. Ecotoxicol Environ Saf 211:111921. https://doi.org/10.1016/j.ecoenv.2021.111921

    Article  CAS  PubMed  Google Scholar 

  • Xufeng GZZMH, Jie P (1993) Study on mechanism of foliar-applied organic acids in lowering ammonia poisoning in vegetable crops. Acta Agric Shanghai 1:12

    Google Scholar 

  • Yadav RL, Dhaka RS, Fageria MS (2000) Effect of GA3, NAA and succinic acid on growth and yield of cabbage cv. golden acre. Haryana J Hortic Sci 29(3/4):269–270

    Google Scholar 

  • Yang C et al (2019) Citric acid treatment reduces decay and maintains the postharvest quality of peach (Prunus persica L.) fruit. Food Sci Nutr 7(11):3635–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh TY, Lin CF, Chuang CC, Pan CT (2012) The effect of varying soil organic levels on phytoextraction of Cu and Zn uptake, enhanced by chelator EDTA, DTPA, EDDS and Citric Acid. J Environ Anal Toxicol 2(2):5. https://doi.org/10.4172/2161-0525.1000142

    Article  Google Scholar 

  • Yoshida M, Cowgill SE, Wightman JA (1995) Mechanism of resistance to Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea: role of oxalic acid m leaf exudate as an antibiotic factor. J Econ Entomol 88(6):1783–1786. https://doi.org/10.1093/jee/88.6.1783

    Article  CAS  Google Scholar 

  • Yoshihara T et al (1980) Oxalic acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae, Homoptera). Entomol Exp Appl 27(2):149–155

    Article  CAS  Google Scholar 

  • Zamani S et al (2011) Effect of some chemical treatments on keeping quality and vase life of chrysanthemum cut flowers. World Appl Sci J 12(11):1962–1966

    CAS  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chem 96(4):519–523

    Article  CAS  Google Scholar 

  • Zheng X, Tian S, Gidley MJ et al (2007a) Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biol Technol 45(2):281–284

    Article  CAS  Google Scholar 

  • Zheng X, Tian S, Meng X et al (2007b) Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chem 104(1):156–162

    Article  CAS  Google Scholar 

  • Zhu K et al (2007) Effect of appling malic acid on nitrogen metabolism of flue-cured tobacco. Plant Nutr Fertil Sci 4:24

    Google Scholar 

  • Zhu Y et al (2016) Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chem 190:537–543

    Article  CAS  PubMed  Google Scholar 

  • Zhuk IV et al (2014) The induction of Triticum aestivum L. tolerance to Septoria tritici by oxalic acid. Mod Phytomorphol 6:105–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Hadavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadavi, E., Ghazijahani, N. (2022). Simple Organic Acids as Plant Biostimulants. In: Ramawat, N., Bhardwaj, V. (eds) Biostimulants: Exploring Sources and Applications. Plant Life and Environment Dynamics. Springer, Singapore. https://doi.org/10.1007/978-981-16-7080-0_4

Download citation

Publish with us

Policies and ethics