Skip to main content

Improvement of Hard Water Characteristics and Scale Formation Under the Effect of Pulsating Electromagnetic Field

  • Conference paper
  • First Online:
Advances in Construction Materials and Sustainable Environment

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 196))

  • 1001 Accesses

Abstract

Scale deposition in water pipe due to hard water circulation often leads to various technical and economical problems. The conventional chemical treatment methods use hazardous chemical which affects human health as well as water chemistry. This study shows the effect of physical water treatment methods like pulsating electromagnetic field on water characteristics and scale reduction under different turbulent flow conditions and pipe materials. The scale removal rate was analyzed by the formation of aragonite crystal in water pipes in place of calcite crystals after electromagnetic treatment. The morphology of aragonite and calcite crystals was analyzed by field emission scanning electron microscope on different pipe materials. The water flow rate was maintained at 3, 5, and 7 L/min. After electromagnetic treatment, the result shows that the scale removal rate increases from pipe wall and reduces the total dissolved solids, electrical conductivity, hardness, and alkalinity of water. These water characteristics are further decreasing on increasing the flow rate from 3 to 7 L/min. The reduction rate of these water characteristics was higher for the first 15 h of circulation time than the remaining 15 h. On investigating the effect of electromagnetic treatment on pipe material, it was obtained that the polyvinyl chloride pipe is much effective than the galvanized iron and copper pipes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hui, F., & Lédion, J. (2002). Evaluation methods for the scaling power of water. Journal Europeen D Hydrologie, 33(1), 55–74.

    Google Scholar 

  2. Gabrielli, C., Jaouhari, R., Maurin, G., & Keddam, M. (2001). Magnetic water treatment for scale prevention. Water Research, 35(13), 3249–3259.

    Article  Google Scholar 

  3. Lin, L., Jiang, W., Xu, X., & Xu, P. (2020). A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation. npj Clean Water, 3(1), 1–19.

    Google Scholar 

  4. Alimi, F., Tlili, M., Amor, M. B., Gabrielli, C., & Maurin, G. (2007). Influence of magnetic field on calcium carbonate precipitation. Desalination, 206(1–3), 163–168.

    Article  Google Scholar 

  5. Joshy, N., & Meera, V. (2020). Scale control on pipe materials: A review. In Green Buildings and Sustainable Engineering (pp. 421–429). Springer.

    Google Scholar 

  6. Georgiou, D., Bendos, D., Kalis, M., & Koutis, C. (2018). Removal and/or prevention of limescale in plumbing tubes by a radio-frequency alternating electric field inductance device. Journal of Water Process Engineering, 22, 34–40.

    Article  Google Scholar 

  7. Čolić, M., Chien, A., & Morse, D. (1998). Synergistic application of chemical and electromagnetic water treatment in corrosion and scale prevention. Croatica Chemica Acta, 71(4), 905–916.

    Google Scholar 

  8. Han, Y., Zhang, C., Zhu, L., Gao, Q., Wu, L., Zhang, Q., & Zhao, R. (2019). Effect of alternating electromagnetic field and ultrasonic on CaCO3 scale inhibitive performance of EDTMPS. Journal of the Taiwan Institute of Chemical Engineers, 99, 104–112.

    Article  Google Scholar 

  9. Li, J., Liu, J., Yang, T., & Xiao, C. (2007). Quantitative study of the effect of electromagnetic field on scale deposition on nanofiltration membranes via UTDR. Water Research, 41(20), 4595–4610.

    Article  Google Scholar 

  10. Piyadasa, C., Ridgway, H. F., Yeager, T. R., Stewart, M. B., Pelekani, C., Gray, S. R., & Orbell, J. D. (2017). The application of electromagnetic fields to the control of the scaling and biofouling of reverse osmosis membranes-A review. Desalination, 418, 19–34.

    Article  Google Scholar 

  11. Simonič, M., & Urbancl, D. (2017). Alternating magnetic field influence on scaling in pump diffusers. Journal of Cleaner Production, 156, 445–450.

    Article  Google Scholar 

  12. Alimi, F., Tlili, M. M., Amor, M. B., Maurin, G., & Gabrielli, C. (2009). Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material. Chemical Engineering and Processing: Process Intensification, 48(8), 1327–1332.

    Article  Google Scholar 

  13. Shahryari, A., & Pakshir, M. (2008). Influence of a modulated electromagnetic field on fouling in a double-pipe heat exchanger. Journal of materials processing technology, 203(1–3), 389–395.

    Article  Google Scholar 

  14. Latva, M., Inkinen, J., Rämö, J., Kaunisto, T., Mäkinen, R., Ahonen, M., Matilainen, J., & Pehkonen, S. (2016). Studies on the magnetic water treatment in new pilot scale drinking water system and in old existing real-life water system. Journal of Water Process Engineering, 9, 215–224.

    Article  Google Scholar 

  15. Mghaiouini, R., Elaoud, A., Garmim, T., Belghiti, M. E., Valette, E., Faure, C. H., et al. (2020). The electromagnetic memory of water at kinetic condition. International Journal of Current Engineering and Technology, 10.

    Google Scholar 

  16. Khater, Z., & Ibraheim, M. (2016). Some ecological studies on the impact of magnetic field on the tap water. Egyptian Journal of Aquatic Biology and Fisheries, 20(2), 51–60.

    Article  Google Scholar 

  17. Bali, M., & Gueddari, M. (2018). The effect of magnetic treatment on the physico-chemical and microbiological characteristics of hard waters. Separation Science and Technology, 53(9), 1405–1411.

    Article  Google Scholar 

  18. Al-Helal, A., Soames, A., Gubner, R., Iglauer, S., & Barifcani, A. (2018). Influence of magnetic fields on calcium carbonate scaling in aqueous solutions at 150° C and 1 bar. Journal of Colloid and Interface Science, 509, 472–484.

    Article  Google Scholar 

  19. Amor, H. B., Elaoud, A., Salah, N. B., & Elmoueddeb, K. (2017). Effect of magnetic treatment on surface tension and water evaporation. International Journal of Advance Industrial Engineering, 5, 119–124.

    Google Scholar 

  20. Xiao, Y., Seo, Y., Lin, Y., Li, L., Muhammad, T., Ma, C., & Li, Y. (2020). Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems. Water Research, 173, 115562.

    Google Scholar 

  21. Othman, A., Sohaili, J., & Supian, N. S. (2019). A review: Methodologies review of magnetic water treatment as green approach of water pipeline system. Pertanika Journal of Science and Technology, 27(1).

    Google Scholar 

  22. Tai, C. Y., Chang, M. C., Shieh, R. J., & Chen, T. G. (2008). Magnetic effects on crystal growth rate of calcite in a constant-composition environment. Journal of Crystal Growth, 310(15), 3690–3697.

    Article  Google Scholar 

  23. Lipus, L. C., Ačko, B., & Hamler, A. (2011). Electromagnets for high-flow water processing. Chemical Engineering and Processing: Process Intensification, 50(9), 952–958.

    Article  Google Scholar 

  24. Chang, M. C., & Tai, C. Y. (2010). Effect of the magnetic field on the growth rate of aragonite and the precipitation of CaCO3. Chemical Engineering Journal, 164(1), 1–9.

    Article  Google Scholar 

  25. MacAdam, J., & Parsons, S. A. (2004). Calcium carbonate scale formation and control. Reviews in Environmental Science and Bio/Technology, 3(2), 159–169.

    Article  Google Scholar 

  26. Doyle, J. D., Oldring, K., Churchley, J., & Parsons, S. A. (2002). Struvite formation and the fouling propensity of different materials. Water Research, 36(16), 3971–3978.

    Article  Google Scholar 

  27. Busch, K. W., Gopalakrishnan, S., Busch, M. A., & Tombácz, E. (1996). Magnetohydrodynamic aggregation of cholesterol and polystyrene latex suspensions. Journal of Colloid and Interface Science, 183(2), 528–538.

    Article  Google Scholar 

  28. Johan, S., Fadil, O., & Zularisham, A. (2004). Effect of magnetic fields on suspended particles in sewage. Malaysian Journal of Science, 23, 141–148.

    Google Scholar 

  29. Zhang, P., Cheng, S., & Guo, B. (2009). Effect of rotating-electromagnetic field on scaling in hard water. In 2009 International Conference on Energy and Environment Technology (Vol. 1, pp. 614–617). IEEE.

    Google Scholar 

  30. El-Kashef, E., El-Shamy, A. M., Abdo, A., Gad, E. A., & Gado, A. A. (2019). Effect of magnetic treatment of potable water in looped and dead end water networks. Egyptian Journal of Chemistry, 62(8), 1467–1481.

    Google Scholar 

  31. Szcześ, A., Chibowski, E., Hołysz, L., & Rafalski, P. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification, 50(1), 124–127.

    Article  Google Scholar 

  32. Saksono, N., Yuliusman, Y., Bismo, S., Soemantojo, R., & Manaf, A. (2010). Effects of pH on calcium carbonate precipitation under magnetic field. Makara Journal of Technology, 13(2), 79–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrit Anand Dosar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dosar, A.A., Srivastava, V. (2022). Improvement of Hard Water Characteristics and Scale Formation Under the Effect of Pulsating Electromagnetic Field. In: Gupta, A.K., Shukla, S.K., Azamathulla, H. (eds) Advances in Construction Materials and Sustainable Environment. Lecture Notes in Civil Engineering, vol 196. Springer, Singapore. https://doi.org/10.1007/978-981-16-6557-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6557-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6556-1

  • Online ISBN: 978-981-16-6557-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics