Skip to main content
Log in

Calcium carbonate scale formation and control

  • Published:
Re/Views in Environmental Science & Bio/Technology Aims and scope Submit manuscript

Abstract

This paper focuses on the complex problem of calcium carbonate scale formation on heated surfaces and the possibilities of controlling or reducing this problem. The development of scale is a multistage process and is affected by a number of factors, these include supersaturation, pH, temperature and flow velocity. Calcium carbonate deposition can be ameliorated by chemical, physical or biological methods with various level of effectiveness. These controls can be divided into three main categories: those that affect solubility, those that alter the growth mechanism of crystals, and those that change the potential of a surface to foul. One of the most effective methods of controlling crystallization fouling is the addition of chemical inhibitors to potentially scaling waters. There are a number of alternative non-chemical treatment options available, amongst these are the use of magnetic, electronic and electrolytic treatment devices. Scale formation is affected by the physical nature of the material on which it is forming, therefore it is possible to choose material to reduce scale formation. Each of these scale controlling methods has their advantages and a number of factors have to be considered before choosing the right option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N Andritsos AJ Karabelas (1999) ArticleTitleThe influence of particulates on CaCO 3scale formation J. Heat Transf. 121 225–227

    Google Scholar 

  • JS Baker SJ Judd (1996) ArticleTitleMagnetic amelioration of scale formation Water Res. 30 IssueID2 247–260

    Google Scholar 

  • B Bansal H Müller-Steinhagen (1993) ArticleTitleCrystallisation fouling in plate heat exchangers J. Heat Transf. 115 584–591

    Google Scholar 

  • V Belova (1972) ArticleTitleMagnetic treatment of water Sov. Sci. Rev. Sci. Develop. USSR 3 150–156

    Google Scholar 

  • D Chapman (1992) Water Quality Assessments. A Guide to the Use of Biota, Sediments & Water in Environmental Monitoring Chapman Hall UK

    Google Scholar 

  • TY Chen S-H Chan (2000) ArticleTitleNovel biological inhibitors of fouling and scale formation on heat transfer surfaces through genetic engineering Microscale Therm. Eng. 4 103–108

    Google Scholar 

  • YI Cho B-G Choi (1999) ArticleTitleValidation of an electronic anti-fouling technology in a single-tube heat exchanger Int. J. Heat Mass Tran. 42 1491–1499

    Google Scholar 

  • YI Cho CF Fan B-G Choi (1998) ArticleTitleUse of electronic anti-fouling technology with filtration to prevent fouling in a heat exchanger Int. J. Heat Mass Tran. 41 2961–2966

    Google Scholar 

  • PP Coetzee M Yacoby S Howall (1996) ArticleTitleThe role of zinc in magnetic and other physical water treatment methods for the prevention of scale Water SA 22 IssueID4 319–326

    Google Scholar 

  • RG Compton CA Brown (1994) ArticleTitleThe inhibition of calcite dissolution/precipitation: Mg2+ cations J. Colloid. Interf. Sci. 165 445–449

    Google Scholar 

  • RG Compton CA Brown (1995) ArticleTitleThe inhibition of calcite dissolution/ precipitation: 1,2-dicarboxylic acids J. Colloid. Interf. Sci. 170 586–590

    Google Scholar 

  • Dawson DM (1990) A non-chemical water treatment system. Corros. Prevent. Contr. June: 61–64

  • JD Doyle K Oldring J Churchley SA Parsons (2002) ArticleTitleStruvite formation and the fouling propensity of different materials Water Res. 36 3971–3978

    Google Scholar 

  • FT Ellingsen H Kristiansen (1979) ArticleTitleDoes magnetic treatment influence precipitation of calcium carbonate from supersaturated solutions Vatten 35 309–315

    Google Scholar 

  • Epstein N (1983) Fouling in heat exchangers. In: Taborek J & Hewitt G (Eds) Heat Exchanger Theory and Practice. McGraw-Hill

  • M Förster W Augustin M Bohnet (1999) ArticleTitleInfluence of the adhesion force crystal/ heat exchanger surface on fouling mitigation Chem. Eng. Process. 38 449–461

    Google Scholar 

  • CN Fredd HS Fogler (1998) ArticleTitleThe influence of chelating agents on the kinetics of calcite dissolution J. Colloid. Interf. Sci. 204 187–197

    Google Scholar 

  • C Garcia G Courbin F Ropital C Fiaud (2001) ArticleTitleStudy of the scale inhibition by HEDP in a channel flow cell using a quartz crystal microbalance Electrochim. Acta 46 973–985

    Google Scholar 

  • A Glasner D Weiss (1990) ArticleTitleThe crystallization of calcite from aqueous solutions and the role of zinc and magnesium ions - IPrecipitation of calcite in the presence of Zn2+ions J. Inorg. Nucl. Chem. 42 655–663

    Google Scholar 

  • J Glater JL York KS Cambell (1980) Scale formation and prevention KS Spiegler ADK Laird (Eds) Principles of Desalination: Part B Academic Press New York 627–648

    Google Scholar 

  • NF Gray (1994) Drinking Water Quality - Problems and Solutions John Wiley and Sons UK

    Google Scholar 

  • Gruber CE & Carda DD (1981) Performance analysis of permanent magnet type water treatment devices. WSA Research Report: Final Report (July 1981), Water Quality Association

  • Harris A & Marshall A (1981) The evaluation of scale control additives. Proceedings of Symposium on Progress in the Prevention of Fouling in Industrial Plant. April 1981 (pp 174–199). Nottingham

  • RE Herzog Q Shi JN Patil JL Katz (1989) ArticleTitleMagnetic water treatment: The effect of iron on calcium carbonate nucleation and growth Langmuir 5 861–867

    Google Scholar 

  • JL Katz MR Reick RE Herzog KI Parsiegla (1993) ArticleTitleCalcite growth inhibition by iron Langmuir 9 1423–1430

    Google Scholar 

  • S Keysar R Semiat D Hasson Y Yahalom (1994) ArticleTitleEffect of surface roughness on the morphology of calcite crystallizing on mild steel J. Colloid. Interf. Sci. 162 311–319

    Google Scholar 

  • Knudsen J (1991) Conquer cooling-water fouling. Chem. Eng. Prog. 42–48

  • S Krause (1993) ArticleTitleFouling of heat transfer surfaces by crystallization sedimentation Int. Chem. Eng. 33 355–401

    Google Scholar 

  • J Lédion C Braham F Hui (2002) ArticleTitleAnti-scaling properties of copper J. Water Supply Res. Technol–Aqua 51 IssueID7 389–398

    Google Scholar 

  • P Malkaj E Dalas (2002) ArticleTitleEffect of metallocene dichorides on the crystal growth of calcium carbonate J. Cryst. Growth 242 405–411

    Google Scholar 

  • J MacAdam SA Parsons (2004) ArticleTitleCalcium carbonate scale control, effect of material and inhibitors Water Sci. Technol. 49 IssueID2 153–159

    Google Scholar 

  • F Manoli E Dalas (2000a) ArticleTitleSpontaneous precipitation of calcium carbonate in the presence of chondroitin sulfate J. Cryst. Growth 217 416–421

    Google Scholar 

  • F Manoli E Dalas (2000b) ArticleTitleSpontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol J. Cryst. Growth 218 359–364

    Google Scholar 

  • F Manoli E Dalas (2002) ArticleTitleThe effect of sodium alginate on the crystal growth of calcium carbonate J. Mater. Sci.: Mater. Med. 13 155–158

    Google Scholar 

  • F Manoli J Kanakis P Malkaj E Dalas (2002) ArticleTitleThe effect of aminoacids on the crystal growth of calcium carbonate J. Cryst. Growth 236 363–370

    Google Scholar 

  • FC Meldrum ST Hyde (2001) ArticleTitleMorphological influence of magnesium and organic additives on the precipitation of calcite J. Cryst. Growth 231 544–558

    Google Scholar 

  • HJ Meyer (1984) ArticleTitleThe influence of impurities on the growth rate of calcite J. Cryst. Growth 66 639–646

    Google Scholar 

  • AP Morizot A Neville (2002) ArticleTitleInsight into electrodeposition of an inhibitor film and its inhibitive effects on calcium carbonate deposition J. Colloid. Interf. Sci. 245 40–49

    Google Scholar 

  • H Müller-Steinhagen (2000) Heat Exchanger Fouling. Mitigation and Cleaning Technologies Institution of Chemical Engineers UK

    Google Scholar 

  • H Müller-Steinhagen Q Zhao (1997) ArticleTitleInvestigation of low fouling surface alloys made by ion implantation technology Chem. Eng. Sci. 52 IssueID19 3321–3332

    Google Scholar 

  • ATC Murillo AM Dominguez (2002) ArticleTitlePrecipitation control of calcium carbonate by humic matter, in cooling water systems Ing. Hidraul. Mex. 17 IssueID3 65–78

    Google Scholar 

  • GH Nancollas K Sawada (1982) ArticleTitleFormation of scales of calcium carbonate polymorphs: the influence of magnesium ion and inhibitors J. Petrol. Technol. 34 645–652

    Google Scholar 

  • A Neville AP Morizot (2000) ArticleTitleA combined bulk chemistry/electrochemical approach to study the precipitation, deposition and inhibition of CaCO3 Chem. Eng. Sci. 55 4737–4743

    Google Scholar 

  • KI Parsiegla JL Katz (1999) ArticleTitleCalcite growth inhibition by copper(II) I Effect of supersaturation. J. Cryst. Growth 200 IssueID1–2 213–226

    Google Scholar 

  • B Pernot H Euvrard F Remy P Simon (1999) ArticleTitleInfluence of Zn(II) on the crystallisation of calcium carbonate application to scaling mechanisms J. Water SRT–Aqua 48 IssueID1 16–23

    Google Scholar 

  • B Pernot H Euvrard P Simon (1998) ArticleTitleEffect of iron and manganese on the scaling potentiality of water J. Water SRT–Aqua 47 IssueID1 21–29

    Google Scholar 

  • LJ Plant WA House (2002) ArticleTitlePrecipitation of calcite in the presence of inorganic phosphate Colloid Surface A: Physicochem. Eng. Asp. 203 143–153

    Google Scholar 

  • K Ravichandran Narayanan TSN Sankara (2002) ArticleTitleEffective screening of scaling inhibitors for cooling water systems–development of an accelerated electrochemical method Corros. Rev. 20 IssueID1–2 105–113

    Google Scholar 

  • MM Reddy AR Hoch (2001) ArticleTitleCalcite crystal growth rate inhibition by polycarboxylic acids J. Colloid. Interf. Sci. 235 365–370

    Google Scholar 

  • MM Reddy KK Wang (1980) ArticleTitleCrystallization of calcium carbonate in the presence of metal ions J. Cryst. Growth 50 470–480

    Google Scholar 

  • Roques H (Ed) (1996) Conditioning using scale inhibitors. In: Chemical Water Treatment Principles + Practis (pp 229–270), VCH Pub Inc

  • CY Tai W-C Chien (2002) ArticleTitleEffects of operating variables on the induction period of CaCl2–Na2CO3 system J. Cryst. Growth 237–239 2142–2147

    Google Scholar 

  • S Takasaki KI Parsiegla JL Katz (1994) ArticleTitleCalcite growth and the inhibitory effect of iron(III) J. Cryst. Growth 143 261–268

    Google Scholar 

  • B Thonon S Grangeorge C Jallut (1999) ArticleTitleEffect of geometry and flow conditions on particulate fouling in plate heat exchangers Heat Transf. Eng. 20 IssueID3 12–24

    Google Scholar 

  • Vermeiren T (1958) Magnetic treatment of liquids for scale and corrosion prevention. Corros. Technol. July: 215–219

  • DL Verraest JA Peters Bekkum H van Rosmalen GM van (1996) ArticleTitleCarboxymethyl inulin: A new inhibitor for calcium carbonate precipitation J. Am. Oil Chem. Soc. 73 IssueID1 55–62

    Google Scholar 

  • N Wada K Yamashita T Umegaki (1995) ArticleTitleEffects of divalent cations upon nucleation, growth and transformation of calcium carbonate polymorphs under conditions of double diffusion J. Cryst. Growth 148 297–304

    Google Scholar 

  • N Wada K Yamashite T Umegaki (1998) ArticleTitleEffects of silver, aluminum, and chrome ions on the polymorphic formation of calcium carbonate under conditions of double diffusion J. Colloid. Interf. Sci. 201 1–6

    Google Scholar 

  • Y Wang AJ Babchin LT Chernyi RS Chow RP Sawatzky (1997) ArticleTitleRapid onset of calcium carbonate crystallization under the influence of a magnetic field Water Res. 31 IssueID2 346–350

    Google Scholar 

  • AG Xyla J Mikroyannidis PG Koutoukos (1992) ArticleTitleThe inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds J. Colloid. Interf. Sci. 153 IssueID2 537–551

    Google Scholar 

  • Q Yang J Ding Z Shen (2000) ArticleTitleInvestigation on fouling behaviors of low energy surface and fouling fractal characteristics Chem. Eng. Sci. 55 797–805

    Google Scholar 

  • Q Yang Y Liu A Gu J Ding Z Shen (2001) ArticleTitleInvestigation of calcium carbonate scaling inhibition and scale morphology by AFM J. Colloid. Interf. Sci. 240 608–621

    Google Scholar 

  • Q Yang Y Liu A Gu J Ding Z Shen (2002) ArticleTitleInvestigation of induction period and morphology of CaCO3 fouling on heated surface Chem. Eng. Sci. 57 921–931

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon A. Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacAdam, J., Parsons, S.A. Calcium carbonate scale formation and control. Rev Environ Sci Biotechnol 3, 159–169 (2004). https://doi.org/10.1007/s11157-004-3849-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-004-3849-1

Keywords

Navigation