Skip to main content

Guaranteed Cost Strategy for Hierarchical Game in Financial Systems: LMIs-Constrained Method

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Automation Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 801))

  • 1260 Accesses

Abstract

This paper deals with the hierarchical game for a financial market system. Firstly, the differential game is utilized to balance the control performance and disturbance. Managers and investors pursue their own interests which are partly conflicting with others. Subsequently, the noncooperative game is applied to multiperson noncooperative decision making problem of financial market. Based on the optimal solution of the differential game, the guaranteed cost strategy is designed by a linear matrix inequality (LMI)-constrained method. Finally, a numerical example is provided to verify the validity and advantages of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leitner, Y.: Financial networks: contagion, commitment, and private sector bailouts. J. Financ. 60, 2925–2953 (2005). https://doi.org/10.1111/j.1540-6261.2005.00821.x

    Article  Google Scholar 

  2. Elliott, M., Golub, B., Jackson, M.: Financial networks and contagion. Am. Econ. Rev. 104, 3115–3153 (2014). https://doi.org/10.1257/aer.104.10.3115

    Article  Google Scholar 

  3. Melvin, M., Melvin, B.: The global transmission of volatility in the foreign exchange market. Rev. Econ. Stat. 85, 670–679 (2003). https://doi.org/10.2307/3211705

    Article  Google Scholar 

  4. Ma, J., Chen, Y.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system. Appl. Math. Mech. 22, 1240–1251 (2001). https://doi.org/10.1023/A:1016313804297

    Article  MathSciNet  MATH  Google Scholar 

  5. Mohammadi, L., Alfi, A.: Guaranteed cost control in delayed teleoperation systems under actuator saturation. Iran. J. Sci. Technol. Trans. Electr. Eng. 43(4), 827–835 (2019). https://doi.org/10.1007/s40998-019-00206-6

    Article  Google Scholar 

  6. Li, Y., Johansson, R., Liu, K., Yin, Y.: Guaranteed cost control design for delayed teleoperation systems. J. Franklin Inst. 352, 5085–5105 (2015). https://doi.org/10.1016/j.jfranklin.2015.08.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Zia, F., Elbouchikhi, E., Benbouzid, M.: Microgrids energy management systems: a critical review on methods, solutions, and prospects. Appl. Energy 222, 1033–1055 (2018). https://doi.org/10.1016/j.apenergy.2018.04.103

    Article  Google Scholar 

  8. Wu, C., Chen, B., Zhang, W.: Multiobjective investment policy for nonlinear stochastic financial system: fuzzy approach. IEEE Trans. Fuzzy Syst. 25, 460–474 (2016). https://doi.org/10.1109/TFUZZ.2016.2574926

    Article  Google Scholar 

  9. Choi, Y., Douady, R.: Financial crisis dynamics: attempt to define a market instability indicator. Quantit. Financ. 12, 1351–1365 (2012). https://doi.org/10.2139/ssrn.1688169

    Article  MathSciNet  MATH  Google Scholar 

  10. Stein, E., Stein, J.: Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991). https://doi.org/10.1093/rfs/4.4.727

    Article  MATH  Google Scholar 

  11. Rizvi, S., Lin, Z.: Output feedback Q-learning for discrete-time linear zero-sum games with application to the \(H_\infty \) control. Automatica 95, 213–221 (2018). https://doi.org/10.1016/j.automatica.2018.05.027

    Article  MATH  Google Scholar 

  12. Xu, X., Zeng, Z., Xu, J., Zhang, M.: Fuzzy dynamical system scenario simulation-based cross-border financial contagion analysis: a perspective from international capital flows. IEEE Trans. Fuzzy Syst. 25, 439–459 (2017). https://doi.org/10.1109/TFUZZ.2016.2574928

    Article  Google Scholar 

  13. Zhang, J., Li, S.: Quanto European option pricing with ambiguous return rate and volatilities. IEEE Trans. Fuzzy Syst. 25, 417–424 (2011). https://doi.org/10.1109/TFUZZ.2016.2598358

    Article  Google Scholar 

  14. Hiramatsu, T.: A differential games approach for analysis of spacecraft post-docking operations. Tour. Econ. 313–325 (2012). https://doi.org/10.1257/aer.104.10.3115

  15. Kojima, A., Fujita, M., Uchida, K., Shimemura, E.: Linear quadratic differential game and \(H_\infty \) control: a direct approach based on completing the square. Trans. Soc. Instr. Control Eng. 28, 570–577 (1992). https://doi.org/10.9746/sicetr1965.28.570

    Article  Google Scholar 

  16. Zhong, X., He, H., Ding, W., Zhen, N.: Model-free adaptive control for unknown nonlinear zero-sum differential game. IEEE Trans. Cybern. 48, 1633–1646 (2017). https://doi.org/10.1109/TCYB.2017.2712617

    Article  Google Scholar 

  17. Jiao, Q., Modaresb, H., Xu, S., Lewis, F., Vamvoudakis, K.: Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control. Automatica 69, 24–34 (2016). https://doi.org/10.1016/j.automatica.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, W., Xiong, Z., Niyato, D., Wang, P., Han, Z.: A hierarchical game with strategy evolution for mobile sponsored content and service markets. IEEE Trans. Commun. 67, 472–488 (2019). https://doi.org/10.1109/TCOMM.2018.2869820

    Article  Google Scholar 

  19. Chen, B., Yu, W., Young, C., Yan, Z.: Noncooperative game strategy in cyber-financial systems with Wiener and Poisson random fluctuations: LMIs-constrained MOEA approach. IEEE Trans. Cybern. 48, 3323–3336 (2018). https://doi.org/10.1109/TCYB.2018.2869018

    Article  Google Scholar 

  20. Dong, X., Li, X., Liu, Z., Li, Q.: Non-cooperative game of multi-agent countermeasure systems based on cognitive hierarchy theory. J. Phys. Conf. (2018). https://doi.org/10.1088/1742-6596/1069/1/012015

  21. Ghosh, P., Roy, N., Das, S., Basu, K.: A pricing strategy for job allocation in mobile grids using a non-cooperative bargaining theory framework. J. Parallel Distrib. Comput. 65, 1366–1383 (2005). https://doi.org/10.1016/j.jpdc.2005.05.013

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, M., Yuan, Y. (2022). Guaranteed Cost Strategy for Hierarchical Game in Financial Systems: LMIs-Constrained Method. In: Deng, Z. (eds) Proceedings of 2021 Chinese Intelligent Automation Conference. Lecture Notes in Electrical Engineering, vol 801. Springer, Singapore. https://doi.org/10.1007/978-981-16-6372-7_37

Download citation

Publish with us

Policies and ethics