Skip to main content

Role of Environment Stress Leaf Senescence and Crop Productivity

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Senescence is known to be an ending event of leaf development that is represented by the formative age and impacted by the various environmental stress conditions. Leaf senescence is a factor that limits the shelf life of foliar vegetables starting most quickly in the outer, physiologically older leaves. Its adverse effects limited not only on crops productivity during harvesting but also on vegetable crops and ornamental plants after harvest decreases the quality of the crops during storage, transportation, and on the shelves; several nutrients in senescing leaves are degraded. Postharvest storage is an important aspect of plant senescence, and controlling the time of ripening and improving the shelf life of postharvest vegetables could be accomplished by regulating the key genes of senescence. Substantial development in the physiological and molecular understanding of senescence has made it probable to develop strategies to manipulate senescence for agricultural improvement to prolong the storing and shelf-life of several leafy vegetables and ornamental plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Albacete AA, Martínez-Andújar C, Pérez-Alfocea F (2014) Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnol Adv 32:12–30

    Article  CAS  PubMed  Google Scholar 

  • Ansari MI, Chen SCG (2011) Leaf senescence-an overview. Int J Recent Trend Sci Technol 1:110–114

    Google Scholar 

  • Ansari MI, Hasan S, Jalil SU (2014) Leaf senescence and GABA shunt. Bioinformation 10:730–732

    Article  Google Scholar 

  • Ansari MI, Lee RH, Chen SC-G (2005) A novel senescence-associated gene encoding g-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123:1–8

    Article  CAS  Google Scholar 

  • Balibrea Lara ME, Gonzalez Garcia MC, Fatima T, Ehness R, Lee TK, Proels R et al (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balzadeh S, Riano-Pachon DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bray AB, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchanan-Wollaston V, Earl E, Harrison E, Mathas S, Navabpour T, Page D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Dangl J, Dietrich R, Thomas H (2000) Senescence and programmed cell death. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1044–1100

    Google Scholar 

  • Datta SK (2004) Rice biotechnology: a need for developing countries. Ag Bio Forum 7:31–35

    Google Scholar 

  • Décima Oneto C, Otegui ME, Baroli I, Beznec A, Faccio P, Bossio E, Blumwald E, Lewi D (2016) Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress- and maturation-induced promoter. J Biotechnol 220:66–77

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa RJ, Dhindsa PP, Thorpe TA (1981) Leaf senescence: correlated with increased level of membrane permeability and lipid peroxidation and decreased level of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  • Ehness R, Roitsch T (1997) Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins. Plant J 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Ferrante A, Donald A, Hunter DA, Hackett WP (2002) Thidiazuron—a potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol Technol 25:333–338

    Article  CAS  Google Scholar 

  • Fischer AM (2012) The complex regulation of senescence. Crit Rev Plant Sci 31:124–147

    Article  CAS  Google Scholar 

  • Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiol 149:1982–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu JD, Yan YF, Kim MY, Lee SH, Lee BW (2011) Population-specific quantitative trait loci mapping for functional stay-green trait in rice (Oryza sativa L.). Genome 54:235–243

    Article  CAS  PubMed  Google Scholar 

  • Gan S (2003) Mitotic and postmitotic senescence in plants. Sci Aging Knowledge Environ 38:Re7

    Google Scholar 

  • Gan S, Amasin RM (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol 113:313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol Biol 82:623–633

    Article  CAS  PubMed  Google Scholar 

  • Gepstein S, Thimann KV (1980) Changes in the abscisic acid content of oat leaves during senescence. Proc Natl Acad Sci U S A 77:2050–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Article  CAS  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  • Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. C R Biol 333:382–391

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Gan SS (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65:3901–3913

    Article  PubMed  Google Scholar 

  • Hafsi M, Mechmeche W, Bouamama L, Djekoune A, Zaharieva M, Monneveux P (2000) Flag leaf senescence, as evaluated by numerical image analysis, and its relationship with yield under drought in durum wheat. J Agron Crop Sci 185:275–280

    Article  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Havé M, Marmagne A, Chardon F, Masclaux-Daubresse C (2016) Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot 68:2513. https://doi.org/10.1093/jxb/erw365

    Article  CAS  Google Scholar 

  • He Y, Gan SA (2002) Gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649

    Article  CAS  PubMed  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L). Proc Natl Acad Sci U S A 92:3254–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Wang T-W, Hudak KA, Schade F, Froese CD, Thompson JE (2000) An ethylene-induced cDNA encoding a lipase expressed at the onset of senescence. Proc Natl Acad Sci U S A 97:8717–8722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortensteiner S (1998) NCC malonyltransferase catalyses the final step in chlorophyll breakdown in rape (Brassica napus). Phytochemistry 49:953–956

    Article  CAS  PubMed  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Ishida H, Makino A, Mae T (1999) Fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase by reactive oxygen species occurs near Gly-329. J Biol Chem 274:5222–5226

    Article  CAS  PubMed  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plan Theory 4:393–411

    Google Scholar 

  • Jalil SU, Ahmad I, Ansari MI (2017) Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana. Curr Plant Biol 9-10:11–22

    Article  Google Scholar 

  • Jalil SU, Ansari MI (2019) Role of phytohormones in recuperating salt stress. In: Salt stress, microbes, and plant interaction: mechanism and molecular approaches. Springer, Singapore, pp 91–104

    Chapter  Google Scholar 

  • Jalil SU, Ansari MI (2020a) Stress implication and crop productivity. In: Plant ecophysiology and adaptation under climate change: mechanism and prespectives. Springer, Singapore, pp 73–86

    Google Scholar 

  • Jalil SU, Ansari MI (2020b) Isoprenoids in plant protection against abiotic stress. In: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley, London, pp 424–436

    Chapter  Google Scholar 

  • Jalil SU, Khan MIR, Ansari MI (2019) Role of GABA transaminase in the regulation of development and senescence in Arabidopsis thaliana. Curr Plant Biol 19:100119

    Article  Google Scholar 

  • Jansson S, Thomas H (2008) Senescence: developmental program or timetable? New Phytol 179:575–579

    Article  PubMed  Google Scholar 

  • Jing H, Schippers JHM, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  CAS  PubMed  Google Scholar 

  • Jing H, Sturre MJG, Hille J, Dijkwel PP (2002) Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J 32:51–63

    Article  CAS  PubMed  Google Scholar 

  • Jing HC, Hille J, Dijkwel RR (2003) Ageing in plants: conserved strategies and novel pathways. Plant Biol 5:455–464

    Article  Google Scholar 

  • John I, Drake R, Farrell A, Cooper W, Lee P, Horton P, Grierson D (1995) Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis. Plant J 7:483–490

    Article  CAS  Google Scholar 

  • Jukanti AK, Heidlebaugh NM, Parrott DL, Fischer IA, McInnerney K, Fischer AM (2008) Comparative transcriptome profiling of nearisogenic barley (Hordeum vulgare) lines differing in the allelic state of a major grain protein content locus identifies genes with possible roles in leaf senescence and nitrogen reallocation. New Phytol 177:333–349

    Article  CAS  PubMed  Google Scholar 

  • Keech O (2011) The conserved mobility of mitochondria during leaf senescence reflects differential regulation of the cytoskeletal components in Arabidopsis thaliana. Plant Signal Behav 6:147–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keech O, Pesquet E, Ahad A, Askne A, Nordvall DAG, Vodnala SM et al (2007) The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves. Plant Cell Environ 30:1523–1534

    Article  CAS  PubMed  Google Scholar 

  • Keech O, Pesquet E, Gutierrez L, Ahad A, Bellini C, Smith SM et al (2010) Leaf senescence is accompanied by an early disruption of the microtubule network in Arabidopsis thaliana. Plant Physiol 110:163402

    Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) G-aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Kleber-Janke T, Knrpinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field condition. Planta 203:332–340

    Article  CAS  PubMed  Google Scholar 

  • Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2005) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    CAS  PubMed  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IC, Hong SW, Whang SS, Lim PO, Nam HG, Koo JC (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  CAS  PubMed  Google Scholar 

  • Leopold AC (1961) Senescence in plant development. Science 134:1727–1732

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Bettany AJ, Donnison I, Griffiths CM, Thomas H, Scott IM (2000) Characterization of a cysteine protease cDNA from Lolium multiflorum leaves and its expression during senescence and cytokinin treatment. Biochim Biophys Acta 1492:233–236

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhou Y, Zhou G, Ye R, Zhao L, Li X, Lin Y (2008) Identification of early senescence-associated genes in rice flag leaves. Plant Mol Biol 67:37–55

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29

    Article  CAS  PubMed  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang B (2010) Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. J Am Soc Hortic Sci 135:230–239

    Article  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124:93–103

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Miller, P.R., McBride, J.R. (eds)., 1999. Oxidant air pollution impacts in the Montane Forests of Southern California, Springer, New York 397–416

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  PubMed  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechnol 8(8):200–207

    Article  CAS  PubMed  Google Scholar 

  • Nooden LD (1988) In: Nooden LD, Leopold SC (eds) Whole plant senescence. In senescence and aging in plants. Academic Press, San Diego, pp 391–439

    Google Scholar 

  • Noodén LD, Penney JP (2001) Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J Exp Bot 52:2151–2159

    Article  PubMed  Google Scholar 

  • Oh SA, Lee SY, Chung KK, Lee CH, Nam HG (1997) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754

    Article  Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC et al (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9:747–758

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source: sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. Funct Plant Biol 37:592–603

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans Roy Soc London 360:2021–2035

    Article  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163:1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651

    Article  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just Jasmonate–salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    Article  CAS  PubMed  Google Scholar 

  • Rousseaux MC, Hall AJ, Sanchez RA (1996) Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower. Physiol Plant 96:217–224

    Article  CAS  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448

    Article  CAS  PubMed  Google Scholar 

  • Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    Article  CAS  PubMed  Google Scholar 

  • Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathway(s) of chlorophyll: what has gene cloning revealed? Trends Plant Sci 5:426–431

    Article  CAS  PubMed  Google Scholar 

  • Thomas H, Donnison I (2000) Back from the brink: plant senescence and its reversibility. In: Bryant JA, Hughes SG, Garland JM (eds) Programmed cell death in animals and plants. Bios, Oxford, pp 149–162

    Google Scholar 

  • Thompson JE, Legge RE, Barber RF (1987) Role of free radicals in senescence and wounding. New Phytol 105:313–344

    Article  Google Scholar 

  • Toscano S, Trivellini A, Ferrante A, Romano D (2018) Physiological mechanisms for delaying the leaf yellowing of potted geranium plants. Sci Hortic 242:146–154

    Article  CAS  Google Scholar 

  • Van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Doorn WG, Woltering E (2004) Senescence and programmed cell death: substance or semantics? J Exp Bot 55:2147–2153

    Article  PubMed  Google Scholar 

  • Vicentini F, Hortensteiner S, Schellenberg M, Thomas H, Matile P (1995) Chlorophyll breakdown in senescent leaves: identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. New Phytol 129:247–252

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127:876–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Tian J, Gianfagna T, Huang B (2009) Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul 57:281–291

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

  • Zacarias L, Reid MS (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol Plant 80:549–554

    Article  CAS  Google Scholar 

  • Zavaleta-Mancera HA, Thomas BJ, Thomas H, Scott IM (1999) Regreening of senescent Nicotiana leaves: II Redifferentiation of plastids. J Exp Bot 50:1683–1689

    CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jalil, S.U., Ansari, S.A., Ansari, M.I. (2022). Role of Environment Stress Leaf Senescence and Crop Productivity. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_2

Download citation

Publish with us

Policies and ethics