Skip to main content

Salicylic Acid: Metabolism, Regulation, and Functions in Crop Abiotic Stress Tolerance

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Salicylic acid (SA), a plant phenolic derivative, is distributed in a wide range of species. It is a product of shikimic acid and phenylpropanoid metabolism of plants. SA synthesize in plants through different regulatory pathways depending on the requirement of the plant cell via these pathways. It has direct involvement in various plant phenomenon including growth, flower initiation, and ions uptake. In physiological processes, it has role in stomatal movement, ethylene biosynthesis, and leaf abscission. SA also enhances chlorophyll and carotenoid pigments level and photosynthetic rate and alters some important enzyme activities. Earlier, it was considered that SA plays a key role during biotic stress in plants; however, now it is well recognized that SA is also associated with various abiotic stress responses. Moreover, recently SA is also known to mediate interaction between plant and beneficial microbes. Therefore, the present chapter gives coverage to all the abovementioned aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszadeh B, Layeghhaghighi M, Azimi R, Hadi N (2020) Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Ind Crop Prod 144:111893

    Article  Google Scholar 

  • Abd El-Mageed TA, Semida WM, Mohamed GF, Rady MM (2016) Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological–anatomical responses, and yield of squash plants under saline soil. S Afr J Bot 106:8–16

    Article  CAS  Google Scholar 

  • Abdelaal KA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy ES, Abu-Elsaoud A, Hafez YM (2020) Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability 12(5):1736

    Article  CAS  Google Scholar 

  • Agami RA, Mohamed GF (2013) Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Saf 94:164–171

    Article  CAS  PubMed  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by upregulating the antioxidant defense and glyoxalase system. Aus J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Azooz MM (2009) Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int J Agric Biol 11(4):343–350

    CAS  Google Scholar 

  • Babaei S, Niknam V, Behmanesh M (2020) Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems 3:1–10

    Google Scholar 

  • Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, Hirai MY, Saito K, Pare PW, Shi H (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 33(8):1383–1392

    CAS  PubMed  Google Scholar 

  • Belkadhi A, De Haro A, Obregon S, Chaïbi W, Djebali W (2015) Positive effects of salicylic acid pretreatment on the composition of flax plastidial membrane lipids under cadmium stress. Environ Sci Pollut Res 22(2):1457–1467

    Article  CAS  Google Scholar 

  • Bisht N, Tiwari S, Singh PC, Niranjan A, Chauhan PS (2019) A multifaceted rhizobacterium Paenibacillus lentimorbus alleviates nutrient deficiency-induced stress in Cicer arietinum L. Microbiol Res 223:110–119

    Article  PubMed  Google Scholar 

  • Brito C, Dinis LT, Meijón M, Ferreira H, Pinto G, Moutinho-Pereira J, Correia C (2018) Salicylic acid modulates olive tree physiological and growth responses to drought and rewatering events in a dose dependent manner. J Plant Physiol 230:21–32

    Article  CAS  PubMed  Google Scholar 

  • Buchner A (1828) Ueber das Rigatellische Fiebermittel und über eine in der Weidenrinde entdeckte alcaloidische Substanz. Repertorium für die Pharmacie 29:405–420

    Google Scholar 

  • Chauhan PS, Lata C, Tiwari S et al (2019) Transcriptional alterations reveal Bacillus amyloliquefaciens- rice cooperation under salt stress. Sci Rep 9:11912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen HY, Li X (2017) Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J 89(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhao X, Wu JE, He Y, Yang H (2020) Metabolic analysis of salicylic acid-induced chilling tolerance of banana using NMR. Food Res Int 128:108796

    Article  CAS  PubMed  Google Scholar 

  • Damalas CA (2019) Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci Hortic 246:360–365

    Article  CAS  Google Scholar 

  • Dean JV, Delaney SP (2008) Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol Plant 132:417–425

    Article  CAS  PubMed  Google Scholar 

  • Dempsey DM, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 2011:9

    Google Scholar 

  • El Tayeb MA, Ahmed NL (2010) Response of wheat cultivars to drought and salicylic acid. Amer Eur J Agronom 3:1–7

    Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AM, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol 8:716

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Katony TM, El-Bastawisy ZM, El-Ghareeb SS (2019) Timing of salicylic acid application affects the response of maize (Zea mays L.) hybrids to salinity stress. Heliyon 5(4):e01547

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraz A, Faizan M, Sami F, Siddiqui H, Hayat S (2020) Supplementation of salicylic acid and citric acid for alleviation of cadmium toxicity to Brassica juncea. J Plant Growth Regul 39(2):641–655

    Article  CAS  Google Scholar 

  • Farhadi N, Ghassemi-Golezani K (2020) Physiological changes of Mentha pulegium in response to exogenous salicylic acid under salinity. Sci Hortic 267:109325

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Alaee T, Tavasolee A (2019) Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere 9:69–71

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee DJ, Cheema SA, Aziz T (2010a) Drought stress: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agronom Crop Sci 196(5):336–345

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Lee D-J, Cheema SA, Aziz T (2010b) DROUGHT STRESS: comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    Article  CAS  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 23:45–55

    Google Scholar 

  • Gao Y, Gao S, Xiong C, Yu G, Chang J, Ye Z, Yang C (2015) Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato. Plant Physiol Biochem 96:141–153

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi N, Normohammadi S, Javadi T (2015) Morpho-physiological responses of strawberry (Fragaria× ananassa) to exogenous salicylic acid application under drought stress. J Agric Sci Technol 17:167–178

    Google Scholar 

  • Günal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294(33):12293–12312

    Article  PubMed  PubMed Central  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis 56:57–63

    Google Scholar 

  • He Q, Zhao S, Ma Q, Zhang Y, Huang L, Li G, Hao L (2014) Endogenous salicylic acid levels and signaling positively regulate Arabidopsis response to polyethylene glycol-simulated drought stress. J Plant Growth Regul 33(4):871–880

    Article  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13(6):264–272

    Article  CAS  PubMed  Google Scholar 

  • Henry E, Yadeta KA, Coaker G (2013) Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New Phytol 199(4):908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61(6):1041–1052

    Article  CAS  PubMed  Google Scholar 

  • Hoang HL, de Guzman CC, Cadiz NM, Hoang TT, Tran DH, Rehman H (2020) Salicylic acid and calcium signaling induce physiological and phytochemical changes to improve salinity tolerance in red amaranth (Amaranthus tricolor L.). J Soil Sci Plant Nutr 22:1–1

    Google Scholar 

  • Horváth E, Csiszár J, Gallé Á, Poór P, Szepesi Á, Tari I (2015) Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. J Plant Physiol 83:54–63

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104. https://doi.org/10.22438/jeb/40/1/MRN-808

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Sec 7:44. https://doi.org/10.1186/s40066-018-0194-0

    Article  Google Scholar 

  • Ilyas N, Gull R, Mazhar R, Saeed M, Kanwal S, Shabir S, Bibi F (2017) Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun Soil Sci Plant Anal 48(22):2715–2723

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing C, Cheng ZH, Li LP, Sun ZY, Pan XB (2007) Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J Environ Sci 19(1):44–49

    Article  Google Scholar 

  • Kabiri R, Nasibi F, Farahbakhsh H (2014) Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protec Sci 50(1):43–51

    Article  Google Scholar 

  • Kamran M, Parveen A, Ahmar S et al (2020) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21(1):148

    Article  CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Goyal M (2019) Salicylic acid priming enhances low temperature stress tolerance in Egyptian clover (Trifolium alexandrinum L.) by influencing antioxidant system. Indian J Exp Biol 57:507–515

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol Biochem 147:10–20

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251(5):1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khanna P, Kaur K, Gupta AK (2016) Salicylic acid induces differential antioxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386–393

    PubMed  Google Scholar 

  • Kim Y, Mun BG, Khan AL, Waqas M, Kim HH, Shahzad R, Imran M, Yun BW, Lee IJ (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One 13(3):e0192650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klessig DF, Choi HW, Dempsey DM (2018) Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interac 31(9):871–888

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Verma P, Singh K, Dixit N, Pathak H, Viswanathan C, Rai RD (2015) Salicylic acid alleviates the heat stress-induced oxidative damage of starch biosynthesis pathway by modulating the expression of heat-stable genes and proteins in wheat (Triticum aestivum). Acta Physiol Plant 37:1–12

    Article  CAS  Google Scholar 

  • Kumara GDK, Xia Y, Zhu Z, Basnayake BMVS, Beneragama CK (2010) Effects of exogenous salicylic acid on antioxidative enzyme activities and physiological characteristics in gerbera (Gerbera jamesonii L.) grown under NaCl stress. Agri Life Sci 36:591–601

    CAS  Google Scholar 

  • Lan T, You JF, Kong L, Yu M, Liu M, Yang Z (2016) The interaction of salicylic acid and Ca2+ alleviates aluminum toxicity in soybean (Glycine max L.). Plant Physiol Biochem 98:146–154

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Zhang Q, Park SH, Islam MT, Kim TH (2019) Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hort Environ Biotechnol 60(1):31–40

    Article  CAS  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J (2019) Foliar application of salicylic acid alleviate the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf 172:317–325

    Article  CAS  PubMed  Google Scholar 

  • Lotfi R, Ghassemi-Golezani K, Pessarakli M (2020) Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatal Agric Biotechnol 26:101635

    Article  Google Scholar 

  • Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci 10:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra MK, Srivastava M, Singh G, Tiwari S, Niranjan A, Kumari N, Misra P (2017) Overexpression of Withania somnifera SGTL1 gene resists the interaction of fungus Alternaria brassicicola in Arabidopsis thaliana. Physiol Mol Plant Pathol 97:11–19

    Article  CAS  Google Scholar 

  • Mishra SK, Khan MH, Misra S, Dixit VK, Gupta S, Tiwari S, Gupta SC, Chauhan PS (2020) Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress. Plant Physiol Biochem 150:1–4

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AR, Tarpley L (2011) Effects of night temperature, spikelet position and salicylic acid on yield and yield-related parameters of rice (Oryza sativa L.) plants. J Agronom Crop Sci 197:40–49

    Article  CAS  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murphy AM, Zhou T, Carr JP (2020) An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. Curr Opin Virol 42:8–17

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Sadiq Y, Jahan A, Nabi A, Aftab T, Khan MM (2020) Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicol Environ Saf 202:110851

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Sayeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mung bean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10(3):e1003751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007a) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282(13):10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007b) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318(5847):113–116

    Article  CAS  PubMed  Google Scholar 

  • Piria R (1838) Sur la composition de la salicine et quelques-unes de ses réactions. Comptes Rendus de l'Académie des Sciences, Paris 6:338

    Google Scholar 

  • Pirnajmedin F, Majidi MM, Taleb H, Maibody SA, Saeidi G (2020) Amelioration of high temperature stress by exogenously applied salicylic acid: genotype-specific response of physiological traits. Agron J 112:1573–1579

    Article  CAS  Google Scholar 

  • Rao SR, Qayyum A, Razzaq A, Ahmad M, Mahmood I, Sher A (2012) Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. J Animal Plant Sci 22:768–772

    CAS  Google Scholar 

  • Semida WM, Abd El-Mageed TA, Mohamed SE, El-Sawah NA (2017) Combined effect of deficit irrigation and foliar-applied salicylic acid on physiological responses, yield, and water-use efficiency of onion plants in saline calcareous soil. Archiv Agron Soil Sci 63(9):1227–1239

    Article  CAS  Google Scholar 

  • Shaki F, Maboud HE, Niknam V (2018) Growth enhancement and salt tolerance of safflower (Carthamus tinctorius L.), by salicylic acid. Curr Plant Biol 13:16–22

    Article  Google Scholar 

  • Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28

    Article  CAS  Google Scholar 

  • Sharma M, Gupta SK, Majumder B, Maurya VK, Deeba F, Alam A, Pandey V (2017) Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress. J Proteomics 163:28–51

    Article  CAS  PubMed  Google Scholar 

  • Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2019) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 256(1):79–99

    Article  CAS  PubMed  Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci 6:340

    Google Scholar 

  • Singh PK, Gautam S (2013) Role of salicylic acid on physiological and biochemical mechanism of salinity stress tolerance in plants. Acta Physiol Plant 35(8):2345–2353

    Article  CAS  Google Scholar 

  • Singh SK, Singh PK (2016) Effect of seed priming of tomato with salicylic acid on growth, flowering, yield and fruit quality under high temperature stress conditions. Int J Adv Res 4:723–727

    CAS  Google Scholar 

  • Sinha P, Shukla AK, Sharma YK (2015) Amelioration of heavy-metal toxicity in cauliflower by application of salicylic acid. Commun Soil Sci Plant Anal 46:1309–1319

    Article  CAS  Google Scholar 

  • Sohag AA, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA (2020) Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66(1):7–13

    Article  Google Scholar 

  • Souri MK, Tohidloo G (2019) Effectiveness of different methods of salicylic acid application on growth characteristics of tomato seedlings under salinity. Chem Biolog Technol Agri 6(1):26

    Article  CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Boˇcová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tari I, Csiszár J, Horváth E, Poór P, Takács Z, Szepesi A (2015) The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time and organ-specific antioxidant response. Acta Biol Cracov Bot 57:21–30

    CAS  Google Scholar 

  • Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Hassan MN, Roberts TH (2020) Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. Plos One 15(5):e0232269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ (2010) Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J 62(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Gupta SC, Chauhan PS, Lata C (2020a) An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone crosstalk. Plant Cell Rep 5:1–13

    CAS  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS et al (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS et al (2017b) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genet 18(6):469–482

    CAS  Google Scholar 

  • Tiwari S, Muthamilarasan M, Lata C (2021) Genome-wide identification and expression analysis of Arabidopsis GRAM-domain containing gene family in response to abiotic stresses and PGPR treatment. Aust J Biotechnol 325:7–14

    Article  CAS  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS et al (2017a) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Prasad V, Lata C (2019) Bacillus: plant growth promoting bacteria for sustainable agriculture and environment. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 43–55

    Chapter  Google Scholar 

  • Tiwari S, Shweta S, Prasad M, Lata C (2020b) Genome-wide investigation of GRAM-domain containing genes in rice reveals their role in plant-rhizobacteria interactions and abiotic stress responses. Int J Biol Macromol 156:1243–1257

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wael MS, Mostafa R, Taia AAE, Saad MH, Magdi TA (2015) Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J Hortic Sci Biotech 90:83–91

    Article  Google Scholar 

  • Wang L, Fan L, Loescher W, Duan W, Liu G, Cheng J, Luo H, Li S (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34. https://doi.org/10.1186/1471-2229-10-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wang X, Huang M, Cal J, Zhou Q, Dai T, Jiang D (2020) Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J Plant Growth Regul 40:811

    Article  CAS  Google Scholar 

  • Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM (2016) Arabidopsis thaliana GH3. 5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc Natl Acad Sci U S A 113(48):13917–13922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, Morris AG, Alt KW, Caramelli D, Dresely V, Farrell M (2017) Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544(7650):357–361

    Article  CAS  PubMed  Google Scholar 

  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant S (2017) Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants 23(1):43–58

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Pan C, Du Y, Li D, Liu W (2018) Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate–glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. Physiol Mol Biol Plants 24(4):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zengin F (2014) Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc Nat Acad Sci U S A 84(3):749–755

    CAS  Google Scholar 

  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhao L, Zhao J, Li Y, Wang J, Guo R, Gan S, Liu CJ, Zhang K (2017) S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol 175(3):1082–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3. 5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Lata, C., Chauhan, P.S. (2022). Salicylic Acid: Metabolism, Regulation, and Functions in Crop Abiotic Stress Tolerance. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_16

Download citation

Publish with us

Policies and ethics