Skip to main content

Role of Plant Microbiome Under Stress Environment to Enhance Crop Productivity

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

Plants during their life cycle often come across multiple biotic and abiotic stress that mutilates their growth and productivity. As the world’s population is increasing gradually and the climate is changing at an alarming rate, the need for global food security has become the priority. Therefore, addressing approaches that can enhance food productivity sustainably and safeguard food availability in the future is the need of the hour. Plants possess an intrinsic defense mechanism to combat stressful environmental conditions but in severe conditions are unable to overcome persisting situations. To strengthen their defense system plants recruit associated beneficial microbiome that alleviates stresses and promotes plant growth. Plants select particular microorganisms mainly through the production of varied compounds via root exudates. The plant microbiome lives either as epiphytes in the rhizosphere and phyllosphere or as endophytes within living tissues and caters multiple beneficial effects. The plant microbiome shows resilience toward stress and promotes plant productivity through various mechanisms. These mechanisms include the production of antioxidants, antibiotics, phytohormones, exopolysaccharides, and cell wall degrading enzymes that lead to inhibition of pathogens, bioremediation of toxic metals, acquisition of nutrients, tolerance toward abiotic stress, and enhanced plant growth parameters. Engineering plant microbiome to enhance stress tolerance and plant growth may be the most sustainable approach that can ensure food security for the growing population. Thus, understanding and deciphering mechanisms employed by the plant microbiome is important to harness their potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2020) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10:1777

    Article  PubMed  PubMed Central  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66(8):3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21(2):621

    Article  CAS  PubMed Central  Google Scholar 

  • Ansari MI, Lin TP (2010) Molecular analysis of dehydration in plants. Int Res J Plant Sci 1:21–25

    Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil 366(1):93–105

    Article  CAS  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510

    Article  CAS  PubMed  Google Scholar 

  • Braun H, Woitsch L, Hetzer B, Geisen R, Zange B, Schmidt-Heydt M (2018) Trichoderma harzianum: inhibition of mycotoxin producing fungi and toxin biosynthesis. Int J Food Microbiol 280:10–16

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306

    Article  CAS  Google Scholar 

  • Claydon N, Allan M, Hanson JR, Avent AG (1987) Antifungal alkyl pyrones of Trichoderma harzianum. Trans British Mycol Soc 88:503

    Article  CAS  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28(3):274–285

    Article  CAS  PubMed  Google Scholar 

  • del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Article  CAS  Google Scholar 

  • Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621

    Article  PubMed  Google Scholar 

  • Doty SL (2017) Functional importance of the plant endophytic microbiome: implications for agriculture, forestry, and bioenergy. In: Functional importance of the plant microbiome. Springer, Cham, pp 1–5

    Chapter  Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Ghiasian M (2020) Endophytic microbiomes: biodiversity, current status, and potential agricultural applications. In: Advances in plant microbiome and sustainable agriculture. Springer, Singapore, pp 61–82

    Chapter  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Contr 117:147–157

    Article  Google Scholar 

  • GroĂźkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IEG, Nelson LM, Novak O, Strnad M, van der Graaff E, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6(1):1–11

    Article  CAS  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Halverson LJ (2009) Role of alginate in bacterial biofilms. In: Rehm BHA (ed) Alginates, biology and applications. Springer, Berlin, Heidelberg, pp 135–151

    Chapter  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • He A, Sun J, Wang X, Zou L, Fu B, Chen J (2019) Reprogrammed endophytic microbial community in maize stalk induced by Trichoderma asperellum biocontrol agent against fusarium diseases and mycotoxin accumulation. Fungal Biol 123(6):448–455

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Mehnaz S, Siddique KH (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Plant microbiome: stress response. Springer, Singapore, pp 21–43

    Chapter  Google Scholar 

  • Iqbal Z, Iqbal MS, Hashem A, Abd Allah EF, Ansari MI (2021) Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front Plant Sci 12:297

    Google Scholar 

  • Jabnoun-Khiareddine H, Daami-Remadi M, Ayed F, El Mahjoub M (2009) Biological control of tomato Verticillium wilt by using indigenous Trichoderma spp. African J Plant Sci Biotechnol 3(1):26–36

    Google Scholar 

  • Jalil SU, Ansari MI (2018) Plant microbiome and its functional mechanism in response to environmental stress. Int J Green Pharm 12(01):81–92

    Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    Article  CAS  Google Scholar 

  • Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 40:107503

    Article  CAS  PubMed  Google Scholar 

  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A, Akram W (2017) Application of Bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. Int J Phytoremediation 19(9):813–824

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Anderson AJ (2018) Rhizosphere pseudomonads as probiotics improving plant health. Mol Plant Pathol 19(10):2349–2359

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35(2):141–151

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS, Saxena AK (2020) Amelioration of drought stress in foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3(1):23–34

    Article  Google Scholar 

  • Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich IA (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology 72(1):37–41

    Article  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276

    Article  CAS  PubMed  Google Scholar 

  • Latha P, Karthikeyan M, Rajeswari E (2019) Endophytic bacteria: prospects and applications for the plant disease management. In: Plant health under biotic stress. Springer, Singapore, pp 1–50

    Google Scholar 

  • Li Y, Wu X, Chen T, Wang W, Liu G, Zhang W, Li S, Wang M, Zhao C, Zhou H, Zhang G (2018) Plant phenotypic traits eventually shape its microbiota: a common garden test. Front Microbiol 9:2479

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24(3):187–189

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE, Qiu Z, Singh BK (2020) Microbiome-mediated stress resistance in plants. Trends Plant Sci

    Google Scholar 

  • Lopes MJDS, Dias-Filho MB, Gurgel ESC (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front Sustain Food Syst 5:48

    Google Scholar 

  • Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraud C, Leroy F, Ourry A, Lemanceau P, Salon C, Mazurier S (2020) Impact of bacterial siderophores on iron status and ionome in pea. Front Plant Sci 11:730

    Article  PubMed  PubMed Central  Google Scholar 

  • Marulanda A, Barea JM, AzcĂłn R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28(2):115–124

    Article  CAS  Google Scholar 

  • Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A (2017) Live imaging of root–bacteria interactions in a microfluidics setup. Proc Natl Acad Sci 114(17):4549–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra S, Mittra B (2017) Alleviation of Fusarium oxysporum induced oxidative stress in wheat by Trichoderma viride. Arch Phytopathol Plant Protect 50(1–2):84–96

    Article  CAS  Google Scholar 

  • Mukhtar T, Smith D, Sultan T, Seleiman MF, Alsadon AA, Ali S, Chaudhary HJ, Solieman THI, Ibrahim AA, Saad MA (2020) Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12(6):2159

    Article  CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9(1):689–701

    Article  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(2):121–131

    Article  CAS  Google Scholar 

  • Palyzova A, Svobodová K, Sokolová L, Novák J, NovotnĂ˝ ÄŚ (2019) Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum. Folia Microbiol 64(6):779–787. https://doi.org/10.1007/s12223-019-00690-7

    Article  CAS  Google Scholar 

  • Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, Seo CW, Kim AY, Lee SU, Oh KY, Lee DY, Lee IJ, Yun BW (2017) Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12(3):e0173203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascale A, Vinale F, Manganiello G, Nigro M, Lanzuise S, Ruocco M, Marra R, Lombardi N, Woo SL, Lorito M (2017) Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Prot 92:176–181

    Article  CAS  Google Scholar 

  • Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H (2020) Rhizosphere microbiome assembly and its impact on plant growth. J Agric Food Chem 68(18):5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Solanki MK, Solanki AC, Surapathrudu K (2019) Biocontrol potential of Trichoderma spp.: current understandings and future outlooks on molecular techniques. In: Plant health under biotic stress. Springer, Singapore, pp 129–160

    Chapter  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev S, Singh RP (2016a) Current challenges, constraints and future strategies for development of successful market for biopesticides. Clim Change Environ Sustain 4(2):129–136

    Article  Google Scholar 

  • Sachdev S, Singh RP (2016b) Studies on trends in use of pesticides and fertilizers for tomato cultivation in the vicinity of Lucknow, India. Int J Sci Technol Soc 2(1–2):49–54

    Google Scholar 

  • Sachdev S, Singh RP (2018a) Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Ecol Environ Sci 3:240–242

    Google Scholar 

  • Sachdev S, Singh RP (2018b) Isolation, characterisation and screening of native microbial isolates for biocontrol of fungal pathogens of tomato. Clim Change Environ Sustain 6(1):46–58

    Article  Google Scholar 

  • Sachdev S, Singh RP (2020) Trichoderma: a multifaceted fungus for sustainable agriculture. In: Ecological and practical applications for sustainable agriculture. Springer, Singapore, pp 261–304

    Chapter  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomon MV, Bottini R, de Souza Filho GA, Cohen AC, Moreno D, Gil M, Piccoli P (2014) Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine. Physiol Plant 151(4):359–374. https://doi.org/10.1111/ppl.12117

    Article  CAS  PubMed  Google Scholar 

  • Sandhya VSKZ, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Article  CAS  Google Scholar 

  • Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46(1):17–26

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2019) ACC deaminase-producing bacteria: a key player in alleviating abiotic stresses in plants. In: Plant growth promoting Rhizobacteria for agricultural sustainability. Springer, Singapore, pp 267–291

    Chapter  Google Scholar 

  • Saravanakumar D, Kavino M, Raguchander T, Subbian P, Samiyappan R (2011) Plant growth promoting bacteria enhance water stress resistance in green gram plants. Acta Physiol Plant 33:203–209. https://doi.org/10.1007/s11738-010-0539-1

    Article  CAS  Google Scholar 

  • Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant Microbe Interact 28(3):212–217

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Gerards S, Hundscheid M, Melenhorst J, de Boer W, Garbeva P (2018) Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J 12(5):1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72 a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 5:1190–1196. https://doi.org/10.1111/j.1438-8677.2008.00162.x

    Article  CAS  Google Scholar 

  • Shubha J, Srinivas C (2017) Diversity and extracellular enzymes of endophytic fungi associated with Cymbidium aloifolium L. Afr J Biotechnol 16(48):2248–2258

    Google Scholar 

  • Stone BW, Weingarten EA, Jackson CR (2018) The role of the phyllosphere microbiome in plant health and function. Annual Plant Rev 2018:533–556

    Article  Google Scholar 

  • Subiramani S, Ramalingam S, Muthu T, Nile SH, Venkidasamy B (2020) Development of abiotic stress tolerance in crops by plant growth-promoting rhizobacteria (PGPR). In: Phyto-microbiome in stress regulation. Springer, Singapore, pp 125–145

    Chapter  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):1–10

    Article  CAS  Google Scholar 

  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72(11):2032–2035

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R, Cavallo P, Lorito M, Woo SL (2014b) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19(7):9760–9772. https://doi.org/10.3390/molecules19079760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G, Lorito M (2014a) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8(1):127–139

    Article  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youssef SA, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Contr 100:79–86

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Israil Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachdev, S., Ansari, M.I. (2022). Role of Plant Microbiome Under Stress Environment to Enhance Crop Productivity. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_13

Download citation

Publish with us

Policies and ethics