Skip to main content

Crop Adaptability to Excess Salt

  • Chapter
  • First Online:
Augmenting Crop Productivity in Stress Environment

Abstract

High salt concentration in arable soil/soil salinization poses an increasing agricultural problem all over the world. Such salt accrual is resulting from the sea water mixing with irrigation supply and naturally high content of salts in water used for agricultural irrigation. Further, concerning plants, the stress generated by salt salinization of the soil can be divided into two stages: (i) early osmotic imbalance disturbing water uptake by the plant roots and (ii) the stress created by Na+ and Cl− ions that disturb the metabolism together with the productivity of photosynthesis. Plants moderate these stresses by developing certain mechanisms for enhancing water retention (decrease in the loss of water with increase in its uptake) and preventing the detrimental effects of Na+ ions by their vacuolar entrapment together with exclusion from the tissues of the leaves. However, even after employing the tolerant mechanisms, plants are adversely affected, and this is specially observed as a decrease in crop productivity/yields that ultimately resulting in continuous decrease in arable land resources. Factors of rapid expansion of population size and continuously improving quality of life are exerting a great pressure upon the agriculture resources. Therefore, managing the salt stress in agricultural plants and developing varieties with such mechanisms can play a pivotal role in addressing the challenge of rapidly increasing demand of agribusiness. This chapter focuses on the mechanisms of salt tolerance in plants, sensory, and signaling networks associated with salinization, Na+ transport, gene expression regulatory responses toward salt stress, and the approaches toward designing salt tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khayri JM, Ansari MI, Singh AK (2021) Nanobiotechnology: mitigation of abiotic stress in plants, 1st edn. Springer, Cham, pp 1–593

    Book  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    Article  CAS  PubMed  Google Scholar 

  • Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23:224–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M, Vitek O, Salt DE (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet 6:e1001193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na(+) recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumwald E, Poole RJ (1985) Na/H Antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao DY, Dilkes B, Luo H, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341:658–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Cui MH, Yoo KS, Hyoung S, Nguyen HT, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  • de Boer AH, Wegner LH (1997) Regulatory mechanisms of ion channels in xylem parenchyma cells. J Exp Bot 48:441–449

    Article  PubMed  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall D, Evans AR, Newbury HJ, Pritchard J (2006) Functional analysis of CHX21: a putative sodium transporter in Arabidopsis. J Exp Bot 57:1201–1210

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. J Biosci Bioeng 111:346–356

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain P, Pandey B, Singh P, Singh R, Singh SP, Sonkar S, Gupta R, Rathore SS, Singh AK (2021) Plant performance and defensive role of glycine betaine under environmental stress. In: Husen A (ed) Plant performance under environmental stress. Springer, pp 225–248

    Chapter  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Belfield EJ, Cao Y, Smith JA, Harberd NP (2013a) An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25:3535–3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics 282:503–516

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Zhu S, Ye R, Xue Y, Chen A, An L, Pei ZM (2013b) Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis. PLoS One 8:e76130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Krebs M, Beyhl D, Gorlich E, Al-Rasheid KA, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci U S A 107:3251–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MN, Jane WN, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161:942–953

    Article  CAS  PubMed  Google Scholar 

  • Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18:227–233

    Article  CAS  PubMed  Google Scholar 

  • Laohavisit A, Richards SL, Shabala L, Chen C, Colaco RD, Swarbreck SM, Shaw E, Dark A, Shabala S, Shang Z, Davies JM (2013) Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol 163:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laohavisit A, Shang Z, Rubio L, Cuin TA, Very AA, Wang A, Mortimer JC, Macpherson N, Coxon KM, Battey NH, Brownlee C, Park OK, Sentenac H, Shabala S, Webb AA, Davies JM (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane ca(2)+− and K+-permeable conductance in root cells. Plant Cell 24:1522–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leidi EO, Barragan V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernandez JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61:495–506

    Article  CAS  PubMed  Google Scholar 

  • Marti MC, Stancombe MA, Webb AA (2013) Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol 163:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Schaller GE (2010) Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. Plant J 64:753–763

    Article  CAS  PubMed  Google Scholar 

  • Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25:295–303

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Popova OV, Yang O, Dietz KJ, Golldack D (2008) Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Gene 423:142–148

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H(+)-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K channels in guard-cell protoplasts. Proc Natl Acad Sci U S A 84:4108–4112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471

    Article  CAS  PubMed  Google Scholar 

  • Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  PubMed  Google Scholar 

  • Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48

    Article  CAS  PubMed  Google Scholar 

  • Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31:1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Undurraga SF, Santos MP, Paez-Valencia J, Yang H, Hepler PK, Facanha AR, Hirschi KD, Gaxiola RA (2012) Arabidopsis sodium dependent and independent phenotypes triggered by H(+)-PPase up-regulation are SOS1 dependent. Plant Sci 183:96–105

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in Xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalta I, Reina-Sanchez A, Bolarin MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na(+) and K (+) concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z (2011a) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38:419–424

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Xiong L, Li W, Zhu JK, Zhu J (2011b) The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23:1971–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK ca(2+)-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  • Weng H, Yoo CY, Gosney MJ, Hasegawa PM, Mickelbart MV (2012) Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance. PLoS One 7:e32925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI (2011) AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One 6:e24725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang O, Popova OV, Suthoff U, Luking I, Dietz KJ, Golldack D (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li X, Deng XW, Schumaker KS, Guo Y (2012) Ubiquitin-specific protease16 modulates salt tolerance in Arabidopsis by regulating Na(+)/H(+) antiport activity and serine hydroxymethyltransferase stability. Plant Cell 24:5106–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2008) Epigenome sequencing comes of age. Cell 133:395–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Singh Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Singh, R.P., Singh, S., Rathore, S.S. (2022). Crop Adaptability to Excess Salt. In: Ansari, S.A., Ansari, M.I., Husen, A. (eds) Augmenting Crop Productivity in Stress Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-6361-1_11

Download citation

Publish with us

Policies and ethics