Skip to main content

Transforming Soil Paradigms with Machine Learning

  • Chapter
  • First Online:
Data Science in Agriculture and Natural Resource Management

Abstract

Numerous technological advancements have assisted to secure the vital key for scientific predictions in various fields, and soil science is no exception. Soil has always been chosen as an indispensable component by scientists, environmentalists, and policy makers for shaping a sustainable present and a secure future. Evidently, a huge amount of soil spatial data is required in the process to attain the desired outcomes. However, the challenges posed by the paucity of time and resources pose the hurdle in the collection and analysis of soil information. State-of-art technologies like Machine Learning (ML) and Big Data come as saviors to address those challenges. ML is helping to quantify, predict, identify, and classify the soil resources. The advanced algorithms, and models helped to gain better insights into soil mapping along with widening the perspective for its better management. Digital Soil Mapping (DSM), ML integrated with spectroscopic soil studies is gaining momentum among the scientific communities. These innovative approaches have the capabilities to solve global issues like desertification, ecological stability, carbon pool management and climate mitigation in a holistic and integrated way by keeping the soil as one of the key parameters. In this chapter, an attempt has been made to present a comprehensive overview of ML algorithms, which have been adopted by many researchers across the globe in prediction of various soil properties and presented a case study on digital soil mapping by using ML algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari K, Hartemink AE, Minasny B, Kheir RB, Greve MB, Greve MH (2014) Digital mapping of soil organic carbon contents and stocks in Denmark. PloS One 9(8):e105519

    Google Scholar 

  • Adhikari K, Kheir RB, Greve M, Greve MH, Malone MB, Minasny B, McBratney A (2014) Mapping soil pH and bulk density at multiple soil depths in Denmark. In: GlobalSoilMap: basis of the global spatial soil information system. Taylor & Francis, London, pp.155–160.

    Google Scholar 

  • Ahmad S, Kalra A, Stephen H (2010) Estimating soil moisture using remote sensing data: a machine learning approach. Adv Water Resou 33(1):69–80

    Article  Google Scholar 

  • Akpa SI, Odeh IO, Bishop TF, Hartemink AE (2014) Digital mapping of soil particle-size fractions for Nigeria. Soil Sci Soc Am J 78(6):1953–1966

    Article  Google Scholar 

  • Arrouays D, Lagacherie P, Hartemink AE (2017) Digital soil mapping across the globe. Geoderma Reg 9:1–4

    Article  Google Scholar 

  • Arrouays D, McBratney A, Bouma J, Libohova Z, Richer-de-Forges AC, Morgan CL, Roudier P, Poggio L, Mulder VL (2020) Impressions of digital soil maps: the good, the not so good, and making them ever better. Geoderma Reg 20:e00255

    Google Scholar 

  • Attarzadeh R, Amini J, Notarnicola C, Greifeneder F (2018) Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale. Remote Sens 10(8):1285

    Article  Google Scholar 

  • Barman U, Choudhury RD (2020) Soil texture classification using multi class support vector machine. Inf Process Agric 7(2):318–332

    Google Scholar 

  • Behrens T, Förster H, Scholten T, Steinrücken U, Spies ED, Goldschmitt M (2005) Digital soil mapping using artificial neural networks. J Plant Nutr Soil Sci 168(1):21–33

    Article  Google Scholar 

  • Benedet L, Faria WM, Silva SHG, Mancini M, Guilherme LRG, Demattê JAM, Curi N (2020) Soil subgroup prediction via portable X-ray fluorescence and visible near-infrared spectroscopy. Geoderma 365:114212

    Google Scholar 

  • Bondi G, Creamer R, Ferrari A, Fenton O, Wall D (2018) Using machine learning to predict soil bulk density on the basis of visual parameters: tools for in-field and post-field evaluation. Geoderma 318:137–147

    Article  Google Scholar 

  • Breiman L (1999) Random forests. UC Berkeley TR567

    Google Scholar 

  • Brungard CB, Boettinger JL (2012) July. Spatial prediction of biological soil crust classes; value added DSM from soil survey. In Digital soil assessments and beyond: proceedings of the 5th global workshop on digital soil mapping. CRC Press, Sydney, pp 57–60

    Google Scholar 

  • Brungard CW, Boettinger JL, Duniway MC, Wills SA, Edwards TC Jr (2015) Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma 239:68–83

    Article  Google Scholar 

  • Butler BM, O’Rourke SM, Hillier S (2018) Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data. Geoderma 329:43–53

    Article  Google Scholar 

  • Camera C, Zomeni Z, Noller JS, Zissimos AM, Christoforou IC, Bruggeman A (2017) A high resolution map of soil types and physical properties for Cyprus: a digital soil mapping optimization. Geoderma 285:35–49

    Article  Google Scholar 

  • Coopersmith EJ, Minsker BS, Sivapalan M (2014) Using similarity of soil texture and hydroclimate to enhance soil moisture estimation. Hydrol Earth Syst Sci 18(8):3095–3107

    Article  Google Scholar 

  • Dai F, Zhou Q, Lv Z, Wang X, Liu G (2014) Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol Indic 45:184–194

    Article  Google Scholar 

  • Dangal SR, Sanderman J, Wills S, Ramirez-Lopez L (2019) Accurate and precise prediction of soil properties from a large mid-infrared spectral library. Soil Syst 3(1):11

    Article  Google Scholar 

  • Dharumarajan S, Hegde R, Singh SK (2017) Spatial prediction of major soil properties using Random Forest techniques-a case study in semi-arid tropics of South India. Geoderma Reg 10:154–162

    Article  Google Scholar 

  • Dharumarajan S, Hegde R, Janani N, Singh SK (2019) The need for digital soil mapping in India. Geoderma Reg 16:e00204

    Google Scholar 

  • Dharumarajan S, Vasundhara R, Suputhra A, Lalitha M, Hegde R (2020a) Prediction of soil depth in karnataka using digital soil mapping approach. J Indian Soc Remote Sens 48:1593–1600

    Google Scholar 

  • Dharumarajan S, Kalaiselvi B, Suputhra A, Lalitha M, Hegde R, Singh SK, Lagacherie P (2020b) Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau. Geoderma Reg 20:e00250.

    Google Scholar 

  • Dharumarajan S, Hegde R (2020) Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Managehttps://doi.org/10.1111/sum.12668

  • Dharumarajan S, Kalaiselvi B, Suputhra A, Lalitha M, Vasundhara R, Kumar KA, Nair KM, Hegde R, Singh SK, Lagacherie P (2021a) Digital soil mapping of soil organic carbon stocks in Western Ghats, South India. Geoderma Reg 25:e00387

    Google Scholar 

  • Dharumarajan S, Hegde R, Lalitha M Vasundhara R (2021b). Predicting and mapping of soil hydraulic properties in Karnataka. J Indian Soc Remote Sens 1–9

    Google Scholar 

  • Dharumarajan S, Kalaiselvi B, Lalitha M, Vasundhara R, Rajendra Hegde (2021c) Defining fertility management units and land suitability analysis using digital soil mapping approach. Geocarto Int.https://doi.org/10.1080/10106049.2021.1926553

  • Ding J, Yang A, Wang J, Sagan V, Yu D (2018) Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. Peer J 6:e5714

    Google Scholar 

  • Du Plessis C, Van Zijl G, Van Tol J, Manyevere A (2020) Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa. Geoderma 368:114287

    Google Scholar 

  • Farfani HA, Behnamfar F, Fathollahi A (2015) Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Syst Appl 42(22):8971–8981

    Article  Google Scholar 

  • Forkuor G, Hounkpatin OK, Welp G, Thiel M (2017) High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS One 12(1):e0170478

    Google Scholar 

  • Greifeneder F, Notarnicola C, Wagner W (2021) A machine learning-based approach for surface soil moisture estimations with google earth engine. Remote Sens 13(11):2099

    Article  Google Scholar 

  • Grimm R, Behrens T, Märker M, Elsenbeer H (2008) Soil organic carbon concentrations and stocks on Barro Colorado Island—digital soil mapping using Random Forests analysis. Geoderma 146(1–2):102–113

    Article  Google Scholar 

  • Grunwald S (2009) Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma 152(3–4):195–207

    Article  Google Scholar 

  • Grunwald S (2010) Current state of digital soil mapping and what is next. In: Digital soil mapping. Springer, Dordrecht, pp 3–12

    Google Scholar 

  • Grunwald S, Vasques GM, Rivero RG (2015) Fusion of soil and remote sensing data to model soil properties. Adv Agron 131:1–109

    Article  Google Scholar 

  • Hengl T, Heuvelink GB, Kempen B, Leenaars JG, Walsh MG, Shepherd KD, Sila A, MacMillan RA, Mendes de Jesus J, Tamene L, Tondoh JE (2015) Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PloS One 10(6):e0125814

    Google Scholar 

  • Hengl T, Leenaars JG, Shepherd KD, Walsh MG, Heuvelink GB, Mamo T, Tilahun H, Berkhout E, Cooper M, Fegraus E, Wheeler I (2017) Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutr Cycl Agroecosys 109(1):77–102

    Article  Google Scholar 

  • Heung B, Ho HC, Zhang J, Knudby A, Bulmer CE, Schmidt MG (2016) An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 265:62–77

    Article  Google Scholar 

  • Heuvelink GB, Angelini ME, Poggio L, Bai Z, Batjes NH, van den Bosch R, Bossio D, Estella S, Lehmann J, Olmedo GF, Sanderman J (2020) Machine learning in space and time for modelling soil organic carbon change. Eur J Soil Sci 1–17

    Google Scholar 

  • Hu B, Xue J, Zhou Y, Shao S, Fu Z, Li Y, Chen S, Qi L, Shi Z (2020) Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ Pollut 262:114308

    Google Scholar 

  • Iticha B, Takele C (2019) Digital soil mapping for site-specific management of soils. Geoderma 351:85–91

    Article  Google Scholar 

  • Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Bui EN, Wilford J (2018) Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int J Appl Earth Obs 68:230–237

    Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer, New York, p 18

    Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New York

    Book  Google Scholar 

  • Jia X, Hu B, Marchant BP, Zhou L, Shi Z, Zhu Y (2019) A methodological framework for identifying potential sources of soil heavy metal pollution based on machine learning: a case study in the Yangtze Delta, China. Environ Pollut 250:601–609

    Article  Google Scholar 

  • Kalambukattu JG, Kumar S, Raj RA (2018) Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model. Environ Earth Sci 77(5):1–14

    Article  Google Scholar 

  • Keskin H, Grunwald S, Harris WG (2019) Digital mapping of soil carbon fractions with machine learning. Geoderma 339:40–58

    Article  Google Scholar 

  • Khaledian Y, Miller BA (2020) Selecting appropriate machine learning methods for digital soil mapping. Appl Math Model 81:401–418

    Article  MATH  Google Scholar 

  • Khanal S, Fulton J, Klopfenstein A, Douridas N, Shearer S (2018) Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput Electron Agr 153:213–225

    Article  Google Scholar 

  • Kheir RB, Greve MH, Bøcher PK, Greve MB, Larsen R, McCloy K (2010) Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models: the case study of Denmark. J Environ Manage 91(5):1150–1160

    Article  Google Scholar 

  • Kovačević M, Bajat B, Gajić B (2010) Soil type classification and estimation of soil properties using support vector machines. Geoderma 154(3–4):340–347

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer, New York

    Book  MATH  Google Scholar 

  • Kuhn M, Weston, S, Keefer C, Coulter N, Ross Q, Cubist: rule-and instance-based regression modeling (2016) R package version 0.0: 19

    Google Scholar 

  • Lagacherie P, McBratney A, Voltz M (2006) Digital soil mapping: an introductory perspective. Elsevier

    Google Scholar 

  • Lamichhane S, Kumar L, Wilson B (2019) Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: a review. Geoderma 352:395–413

    Article  Google Scholar 

  • Lamichhane S, Kumar L, Adhikari K (2021) Updating the national soil map of Nepal through digital soil mapping. Geoderma 394:115041

    Google Scholar 

  • Licznar P, Nearing MA (2003) Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena 51(2):89–114

    Article  Google Scholar 

  • Ließ M, Glaser B, Huwe B (2012) Uncertainty in the spatial prediction of soil texture: comparison of regression tree and Random Forest models. Geoderma 170:70–79

    Article  Google Scholar 

  • Liu C, Li Z, Chang X, He J, Nie X, Liu L, Xiao H, Wang D, Peng H, Zeng G (2018a) Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: a case study in a loess hilly-gully catchment, China. Agr Ecosyst Environ 253:11–22

    Google Scholar 

  • Liu X, Yang T, Wang Q, Huang F, Li L (2018b) Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions: a meta-analysis. Sci Total Environ 618:1658–1664

    Google Scholar 

  • Malone BP, McBratney AB, Minasny B, Laslett GM (2009) Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154(1–2):138–152

    Article  Google Scholar 

  • McBratney AB, Odeh IO, Bishop TF, Dunbar MS, Shatar TM (2000) An overview of pedometric techniques for use in soil survey. Geoderma 97(3–4):293–327

    Article  Google Scholar 

  • McBratney AB, Santos MM Minasny B (2003) On digital soil mapping. Geoderma 117(1–2):3–52

    Google Scholar 

  • Minasny B, McBratney AB, Malone BP, Wheeler I (2013) Digital mapping of soil carbon. Adv Agron 118:1–47

    Article  Google Scholar 

  • Morellos A, Pantazi XE, Moshou D, Alexandridis T, Whetton R, Tziotzios G, Wiebensohn J, Bill R, Mouazen AM (2016) Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst Eng 152:104–116

    Article  Google Scholar 

  • Nussbaum M, Spiess K, Baltensweiler A, Grob U, Keller A, Greiner L, Schaepman ME, Papritz A (2018) Evaluation of digital soil mapping approaches with large sets of environmental covariates. Soil 4:1–22

    Article  Google Scholar 

  • Padarian J, Minasny B, McBratney AB (2019) Using deep learning to predict soil properties from regional spectral data. Geoderma Reg 16:e00198

    Google Scholar 

  • Padarian J, Minasny B, McBratney AB (2020) Machine learning and soil sciences: a review aided by machine learning tools. Soil 6(1):35–52

    Article  Google Scholar 

  • Padarian J, McBratney AB, Minasny B (2020) Game theory interpretation of digital soil mapping convolutional neural networks. Soil 6(2):389–397

    Article  Google Scholar 

  • Panday D, Maharjan B, Chalise D, Shrestha RK, Twanabasu B (2018) Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS. PloS One 13(10):e0206350

    Google Scholar 

  • Pouladi N, Møller AB, Tabatabai S, Greve MH (2019) Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 342:85–92

    Article  Google Scholar 

  • Priori S, Bianconi N, Costantini EA (2014) Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine-learning methods. Geoderma 226:354–364

    Article  Google Scholar 

  • Quinlan JR (1992 November) Learning with continuous classes. In: 5th Australian joint conference on artificial intelligence, vol 92, pp 343–348

    Google Scholar 

  • Quinlan JR (1993 June) instance-based and model-based learning. In: Proceedings of the tenth international conference on machine learning, pp 236–243

    Google Scholar 

  • Rial M, Cortizas AM Rodríguez-Lado L (2017) Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Sci Total Environ 609:1411–1422

    Google Scholar 

  • Safari A, Sohrabi H, Powell S, Shataee S (2017) A comparative assessment of multi-temporal Landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests. Int J Remote Sens 38(22):6407–6432

    Article  Google Scholar 

  • Silveira CT, Oka-Fiori C, Santos LJC, Sirtoli AE, Silva CR, Botelho MF (2013) Soil prediction using artificial neural networks and topographic attributes. Geoderma 195:165–172

    Article  Google Scholar 

  • Sreenivas K, Dadhwal VK, Kumar S, Harsha GS, Mitran T, Sujatha G, Suresh GJR, Fyzee MA, Ravisankar T (2016) Digital mapping of soil organic and inorganic carbon status in India. Geoderma 269:160–173

    Article  Google Scholar 

  • Taghizadeh-Mehrjardi R, Nabiollahi K, Kerry R (2016) Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region. Iran. Geoderma 266:98–110

    Article  Google Scholar 

  • Tajik S, Ayoubi S, Shirani H, Zeraatpisheh M (2019) Digital mapping of soil invertebrates using environmental attributes in a deciduous forest ecosystem. Geoderma 353:252–263

    Article  Google Scholar 

  • Van Den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, De Goede RG, Adams BJ, Ahmad W, Andriuzzi WS, Bardgett RD (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572(7768):194–198

    Article  Google Scholar 

  • Vapnik V, Guyon I, Hastie T (1995) Support vector machines. Mach Learn 20(3):273–297

    Article  Google Scholar 

  • Vaysse K, Lagacherie P (2015) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoderma Reg 4:20–30

    Article  Google Scholar 

  • Wadoux AMC, Minasny B, McBratney AB (2020) Machine learning for digital soil mapping: applications, challenges and suggested solutions. Earth Sci Rev 210:103359

    Google Scholar 

  • Wang J, Ding J, Abulimiti A, Cai L (2018) Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ 6:e4703

    Google Scholar 

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U (2019) Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333:149–162

    Article  Google Scholar 

  • Yang M, Xu D, Chen S, Li H, Shi Z (2019) Evaluation of machine learning approaches to predict soil organic matter and pH using Vis-NIR spectra. Sensors 19(2):263

    Article  Google Scholar 

  • Zeraatpisheh M, Ayoubi S, Jafari A, Tajik S, Finke P (2019) Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 338:445–452

    Article  Google Scholar 

  • Zeraatpisheh M, Jafari A, Bodaghabadi MB, Ayoubi S, Taghizadeh-Mehrjardi R, Toomanian N, Kerry R, Xu M (2020) Conventional and digital soil mapping in Iran: past, present, and future. Catena 188:104424

    Google Scholar 

  • Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning-based recommender system: a survey and new perspectives. ACM Comput Surv (CSUR) 52(1):1–38

    Article  Google Scholar 

  • Zhu AX, Band L Vertessy R, Dutton B (1997) Derivation of soil properties using a soil land inference model (SoLIM). Soil Sci Soc Am J 61(2):523–533

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sweta, K. et al. (2022). Transforming Soil Paradigms with Machine Learning. In: Reddy, G.P.O., Raval, M.S., Adinarayana, J., Chaudhary, S. (eds) Data Science in Agriculture and Natural Resource Management. Studies in Big Data, vol 96. Springer, Singapore. https://doi.org/10.1007/978-981-16-5847-1_12

Download citation

Publish with us

Policies and ethics