Skip to main content
Log in

Detecting Soil pH from Open-Source Remote Sensing Data: A Case Study of Angul and Balangir Districts, Odisha State

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Soil sampling, collection, and analysis are a costly and labor-intensive activity that cannot cover the entire farmlands; hence, it was conceived to use high-speed open-source platforms like Google Earth Engine in this research to estimate soil characteristics remotely using high-resolution open-source satellite data. The objective of this research was to estimate soil pH from Sentinel-1, Sentinel-2, and Landsat-8 satellite-derived indices; data from Sentinel-1, Sentinel-2, and Landsat-8 satellite missions were used to generate indices and as proxies in a statistical model to estimate soil pH. Step-wise multiple regression (SWMR), artificial neural networks (ANN), and random forest (RF) regression were used to develop predictive models for soil pH, SWMR, ANN, and RF regression models. The SWMR greedy method of variable selection was used to select the appropriate independent variables that were highly correlated with soil pH. Variables that were retained in the SWMR are B2, B11, Brightness index, Salinity index 2, Salinity index 5 of Sentinel-2 data; VH/VV index of Sentinel 1 and TIR1 (thermal infrared band1) Landsat-8 with p-value < 0.05. Among the four statistical models developed, the class-wise RF model performed better than other models with a cumulative correlation coefficient of 0.87 and RMSE of 0.35. The better performance of class-wise RF models can be attributed to different spectral characteristics of different soil pH groups. More than 70% of the soils in Angul and Balangir districts are acidic soils, and therefore, the training of the dataset was affected by that leading to misclassification of neutral and alkaline soils hindering the performance of single class models. Our results showed that the spectral bands and indices can be used as proxies to soil pH with individual classes of acidic, neutral, and alkaline soils. This study has shown the potential in using big data analytics to predict soil pH leading to the accurate mapping of soils and help in decision support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147, 77–89.

    Article  Google Scholar 

  • Bai, L., Wang, C., Zang, S., Zhang, Y., Hao, Q., & Wu, Y. (2016). Remote sensing of soil alkalinity and salinity in the Wuyu’er-Shuangyang River Basin, Northeast China. Remote Sensing, 8(2), 163.

    Article  Google Scholar 

  • Banerjee, K., Panda, S., Bandyopadhyay, J., & Jain, M. K. (2014). Forest canopy density mapping using advance geospatial technique. International Journal of Innovative Science, Engineering & Technology, 1(7), 358–363.

    Google Scholar 

  • Bannari, A., Guédon, A., & El-Ghmari, A. (2016). Mapping slight and moderate saline soils in irrigated agricultural land using advanced land imager sensor (EO-1) data and semi-empirical models. Communications in Soil Science and Plant Analysis, 47(16), 1883–1906.

    Google Scholar 

  • Breaux, H. J. (1967). On stepwise multiple linear regression. Army Ballistic Research Lab Abredeen Proving Ground MD.

  • Breitenbach, M., Nielsen, R., & Grudic, G. (2003). Probabilistic Random Forests: Predicting Data Point Specific Misclassification Probabilities. CU-CS-954–03.

  • Buerge, I. J., Bächli, A., Kasteel, R., Portmann, R., López-Cabeza, R., Schwab, L. F., & Poiger, T. (2019). Behavior of the chiral herbicide imazamox in soils: PH-dependent, enantioselective degradation, formation and degradation of several chiral metabolites. Environmental Science & Technology, 53(10), 5725–5732.

    Article  Google Scholar 

  • Byrne, J. M., & Yang, M. (2016). Spatial variability of soil magnetic susceptibility, organic carbon and total nitrogen from farmland in northern China. CATENA, 145, 92–98.

    Article  Google Scholar 

  • Chang, D.-H., & Islam, S. (2000). Estimation of soil physical properties using remote sensing and artificial neural network. Remote Sensing of Environment, 74(3), 534–544.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • De Sousa, L. M., Poggio, L., Batjes, N. H., Heuvelink, G. B., Kempen, B., Riberio, E., & Rossiter, D. (2020). SoilGrids 2.0: Producing quality-assessed soil information for the globe. Soil Discussions, 2020, 1–37.

    Google Scholar 

  • Douaoui, A., Hartani, T., & Lakehal, M. (2006). La salinisation dans la plaine du Bas-Cheliff: acquis et perspectives. Presented at the Economies d’eau en Systèmes IRrigués au Maghreb. Deuxième atelier régional du projet Sirma.

  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.

    Article  Google Scholar 

  • Eisele, A., Chabrillat, S., Hecker, C., Hewson, R., Lau, I. C., Rogass, C., et al. (2015). Advantages using the thermal infrared (TIR) to detect and quantify semi-arid soil properties. Remote Sensing of Environment, 163, 296–311.

    Article  Google Scholar 

  • Eli-Chukwu, N. C. (2019). Applications of artificial intelligence in agriculture: A review. Engineering, Technology & Applied Science Research, 9(4), 4377–4383.

    Article  Google Scholar 

  • Elshorbagy, A., & Parasuraman, K. (2008). On the relevance of using artificial neural networks for estimating soil moisture content. Journal of Hydrology, 362(1–2), 1–18.

    Article  Google Scholar 

  • Fichter, W. (1984). Reduction of root-mean-square error in faceted space antennas. AIAA Journal, 22(11), 1679–1684.

    Article  Google Scholar 

  • Forkuor, G., Hounkpatin, O. K., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PloS one, 12(1), e0170478.

    Article  Google Scholar 

  • Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266.

    Article  Google Scholar 

  • Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., Fernández, B. L., & Martimort, P. (2014). Copernicus Sentinel-2 mission: products, algorithms and Cal/Val (Vol. 9218, p. 92181E). Presented at the Earth observing systems XIX, International Society for Optics and Photonics.

  • Gopal, P. M., & Bhargavi, R. (2019). A novel approach for efficient crop yield prediction. Computers and Electronics in Agriculture, 165, 104968.

    Article  Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Gorelick, N. (2013). Google earth engine (Vol. 15, p. 11997). Presented at the EGU General Assembly Conference Abstracts.

  • Grishin, I., & Timirgaleeva, R. (2020). Remote sensing: The method of GIS application for monitoring the state of soils (Vol. 175, p. 06009). Presented at the E3S Web of Conferences, EDP Sciences.

  • Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12(2), e0169748.

    Article  Google Scholar 

  • Kah, M., Beulke, S., & Brown, C. D. (2007). Factors influencing degradation of pesticides in soil. Journal of Agricultural and Food Chemistry, 55(11), 4487–4492.

    Article  Google Scholar 

  • Kartalopoulos, S. V., & Kartakapoulos, S. V. (1997). Understanding neural networks and fuzzy logic: basic concepts and applications. Wiley-IEEE Press.

    Google Scholar 

  • Khan, N. M., Rastoskuev, V. V., Shalina, E. V., & Sato, Y. (2001). Mapping salt-affected soils using remote sensing indicators-a simple approach with the use of GIS IDRISI.

  • Lee, W., Sanchez, J., Mylavarapu, R., & Choe, J. (2003). Estimating chemical properties of Florida soils using spectral reflectance. Transactions of the ASAE, 46(5), 1443.

    Google Scholar 

  • Li, J., & Mocko, M. (2020). Machine learning for a citizen data scientist: an experience with JMP.

  • Li, S., & Chen, X. (2014). A new bare-soil index for rapid mapping developing areas using landsat 8 data. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(4), 139.

    Article  Google Scholar 

  • Ließ, M., Glaser, B., & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models. Geoderma, 170, 70–79.

    Article  Google Scholar 

  • Liu, K., He, Y., Xu, S., Hu, L., Luo, K., Liu, X., et al. (2018). Mechanism of the effect of pH and biochar on the phytotoxicity of the weak acid herbicides imazethapyr and 2, 4-D in soil to rice (Oryza sativa) and estimation by chemical methods. Ecotoxicology and Environmental Safety, 161, 602–609.

    Article  Google Scholar 

  • Loveland, T. R., & Irons, J. R. (2016). Landsat 8: The plans, the reality, and the legacy. Remote Sensing of Environment, 185, 1–6.

    Article  Google Scholar 

  • Malley, D. F., Yesmin, L., Wray, D., & Edwards, S. (1999). Application of near-infrared spectroscopy in analysis of soil mineral nutrients. Communications in Soil Science and Plant Analysis, 30(7–8), 999–1012.

    Article  Google Scholar 

  • McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52.

    Article  Google Scholar 

  • Mekonnen, Y., Namuduri, S., Burton, L., Sarwat, A., & Bhansali, S. (2019). Machine learning techniques in wireless sensor network based precision agriculture. Journal of the Electrochemical Society, 167(3), 037522.

    Article  Google Scholar 

  • Merry, R., & Janik, L. (2001). Mid infrared spectroscopy for rapid and cheap analysis of soils. Presented at the Proceedings of the 10th Australian agronomy conference, Australian society of agronomy.

  • Millard, K., & Richardson, M. (2015). On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7(7), 8489–8515.

    Article  Google Scholar 

  • Minasny, B., McBratney, A., Malone, B., & Wheeler, I. (2013). Digital mapping of soil carbon. Advances in agronomy, 118, 1–47.

    Article  Google Scholar 

  • Mishra, A. (2007). A review on genesis and taxonomic classification of soils of Orissa. Orissa Review, 63(6), 53–56.

    Google Scholar 

  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 1–9.

    Article  Google Scholar 

  • Ozer, D. J. (1985). Correlation and the coefficient of determination. Psychological Bulletin, 97(2), 307.

    Article  Google Scholar 

  • Pahlavan-Rad, M. R., & Akbarimoghaddam, A. (2018). Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). CATENA, 160, 275–281.

    Article  Google Scholar 

  • Parastatidis, D., Mitraka, Z., Chrysoulakis, N., & Abrams, M. (2017). Online global land surface temperature estimation from Landsat. Remote Sensing, 9(12), 1208.

    Article  Google Scholar 

  • Potin, P., Bargellini, P., Laur, H., Rosich, B., & Schmuck, S. (2012). Sentinel-1 mission operations concept (pp. 1745–1748). Presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE.

  • Ranjbar, F., & Jalali, M. (2016). The combination of geostatistics and geochemical simulation for the site-specific management of soil salinity and sodicity. Computers and Electronics in Agriculture, 121, 301–312.

    Article  Google Scholar 

  • Rikimaru, A., Roy, P., & Miyatake, S. (2002). Tropical forest cover density mapping. Tropical Ecology, 43(1), 39–47.

    Google Scholar 

  • Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., et al. (2020). Soil science challenges in a new era: A transdisciplinary overview of relevant topics. Air, Soil and Water Research, 13, 1178622120977491.

    Article  Google Scholar 

  • Roelofsen, H. D., van Bodegom, P. M., Kooistra, L., van Amerongen, J. J., & Witte, J.-P.M. (2015). An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments. International Journal of Applied Earth Observation and Geoinformation, 43, 149–159.

    Article  Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172.

    Article  Google Scholar 

  • Sall, J., Stephens, M. L., Lehman, A., & Loring, S. (2017). JMP start statistics: A guide to statistics and data analysis using JMP. Sas Institute.

    Google Scholar 

  • Spadotto, C. A., & Hornsby, A. G. (2003). Organic compounds in the environment: Soil sorption of acidic pesticides: modeling pH effects. Embrapa Meio Ambiente-Artigo em periódico indexado (ALICE).

  • Taghizadeh-Mehrjardi, R., Nabiollahi, K., & Kerry, R. (2016). Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110.

    Article  Google Scholar 

  • Todd, S. W., & Hoffer, R. M. (1998). Responses of spectral indices to variations in vegetation cover and soil background. Photogrammetric Engineering and Remote Sensing, 64, 915–922.

    Google Scholar 

  • Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., et al. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120, 9–24.

    Article  Google Scholar 

  • Tucker, C. J., Elgin, J., Jr., McMurtrey Iii, J., & Fan, C. (1979). Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sensing of Environment, 8(3), 237–248.

    Article  Google Scholar 

  • Vogelmann, J., Rock, B., & Moss, D. (1993). Red edge spectral measurements from sugar maple leaves. TitleREMOTE SENSING, 14(8), 1563–1575.

    Article  Google Scholar 

  • von Tucher, S., Hörndl, D., & Schmidhalter, U. (2018). Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio, 47(1), 41–49.

    Article  Google Scholar 

  • Wang, X.-X., Liu, S., Zhang, S., Li, H., Maimaitiaili, B., Feng, G., & Rengel, Z. (2018). Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity. Field Crops Research, 217, 75–81.

    Article  Google Scholar 

  • Wani, S. P., Chander, G., Bhattacharyya, T., & Patil, M. (2016). Soil health mapping and direct benefit: Transfer of fertilizer subsidy, research report IDC-6.

  • Wilson, H. F., Satchithanantham, S., Moulin, A. P., & Glenn, A. J. (2016). Soil phosphorus spatial variability due to landform, tillage, and input management: A case study of small watersheds in southwestern Manitoba. Geoderma, 280, 14–21.

    Article  Google Scholar 

  • Yang, R.-M., Zhang, G.-L., Liu, F., Lu, Y.-Y., Yang, F., Yang, F., et al. (2016). Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecological Indicators, 60, 870–878.

    Article  Google Scholar 

  • Zhang, Y., Sui, B., Shen, H., & Wang, Z. (2018). Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Computers and Electronics in Agriculture, 154, 204–212.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the grants from the Department of Agriculture, Odisha state to undertake Bhoochetana project by ICRISAT. We are also grateful to all the participating of farmers, departmental staff, NGOs and University students of University of Agriculture and Technology, Odisha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpajeet Choudhari.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogumalla, P., Rupavatharam, S., Datta, A. et al. Detecting Soil pH from Open-Source Remote Sensing Data: A Case Study of Angul and Balangir Districts, Odisha State. J Indian Soc Remote Sens 50, 1275–1290 (2022). https://doi.org/10.1007/s12524-022-01524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01524-9

Keywords

Navigation