Skip to main content

Role of Brassinosteroids and Its Cross Talk with Other Phytohormone in Plant Responses to Heavy Metal Stress

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Brassinosteroids (BRs) assume crucial part in plant development, formative cycles, and plant reaction to different abiotic stresses. From one viewpoint, plant chemicals may reserve limited assets to the most genuine burdens; then again, the cross discussions among different plant chemical signaling manage the harmony between plant development and its safeguard system under distressing conditions. It is well documented that the cross talks between brassinosteroids and various plant hormones such as auxin, cytokinin, gibberellin, abscisic acid, ethylene, salicylic acid, jasmonic acid, nitric oxide, hydrogen peroxide, and glucose are well established. Based on these studies, this chapter focusses on the cross talks between BRs and signaling of other plant hormones for the regulation of the balance between growth in plants and defensive responses under heavy metal stress. It has been observed that considerable work is required to reveal the mechanism related with BRs and other plant hormones to regulate plant growth and its metabolism under heavy metal stress. At last, it was also found that BRs act as a primary signal molecule in the phytohormone signaling network in plants under metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, P., Renou, J. P., Berthomé, R., Harberd, N. P., & Genschik, P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology, 18, 656–660.

    Article  CAS  PubMed  Google Scholar 

  • Agami, R. A., & Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94, 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Anwar, A., Liu, Y., Dong, R., Bai, L., Yu, X., & Li, Y. (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biological Research, 51, 46.

    Article  CAS  PubMed  Google Scholar 

  • Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A. (2000). Effect of brassinosteroids on nucleic acid and protein content in cultured cell of Chlorella vulgaris. Plant Physiology and Biochemistry, 38, 209–215.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. Journal of Plant Physiology, 159, 321–324.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2009). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68, 175–179.

    Article  CAS  Google Scholar 

  • Barcelo, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. Environmental and Experimental Botany, 48, 75–92.

    Article  CAS  Google Scholar 

  • Belin, C., de Franco, P. O., Bourbousse, C., Chaignepain, S., Schmitter, J. M., Vavasseur, A., & Thomine, S. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiology, 141, 1316–1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussama, N., Ouariti, O., Suzuki, A., & Ghorbal, M. H. (1999). Cd-stress on nitrogen assimilation. Journal of Plant Physiology, 155, 310–317.

    Article  CAS  Google Scholar 

  • Cai, Z. Y., Liu, J. J., Wang, H. J., Yang, C. Q., Chen, Y. X., Li, Y. C., & Wang, X. (2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 111, 9651–9656.

    Article  CAS  PubMed  Google Scholar 

  • Campos, M. L., de Almeida, M., Rossi, M. L., Martinelli, A. P., Junior, C. G. L., Figueira, A., et al. (2009). Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 60, 4347–4361.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C. (2016). Q&A: How do plants respond to ethylene and what is its importance? BMC Biology, 14, 7.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Taylor, N. L., Chi, Y., Millar, A. H., Lambers, H., & Finnegan, P. M. (2014). The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial LIPOAMIDE DEHYDROGENASE2, a key enzyme in oxidative metabolism. Plant, Cell & Environment, 37, 684–695.

    Article  CAS  Google Scholar 

  • Cho, H., Ryu, H., Rho, S., Hill, K., Smith, S., Audenaert, D., et al. (2014). A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology, 16, 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, S. P., Bhardwaj, R., Gupta, B. D., Dutt, P., Gupta, R. K., Biondi, S., & Kanwar, M. (2010). Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Plant Physiology, 140, 280–296.

    CAS  Google Scholar 

  • Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605.

    Article  CAS  PubMed  Google Scholar 

  • Clark, N. M., De Luis Balaguer, M. A., & Sozzani, R. (2014). Experimental data and computational modeling link auxin gradient and development in the Arabidopsis root. Frontiers in Plant Science, 5, 328.

    Article  PubMed  Google Scholar 

  • Clarke, S. M., Mur, L. A., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signalling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. The Plant Journal, 38, 432–447.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, S. M., Cristescu, S. M., Miersch, O., Harren, F. J., Wasternack, C., & Mur, L. A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. The New Phytologist, 182, 175–187.

    Article  CAS  PubMed  Google Scholar 

  • De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., et al. (2012). Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology, 158, 1833–1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dempsey, D. M. A., & Klessig, D. F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng, X. G., Zhu, T., Zhang, D. W., & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of Experimental Botany, 66, 6219–6232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Gaied, L. F., Abu El-Heba, G. A., & El-Sherif, N. A. (2013). Effect of growth hormones on some antioxidant parameters and gene expression in tomato. GM Crops & Food, 4, 67–73.

    Article  Google Scholar 

  • Etchells, J. P., Smit, M. E., Gaudinier, A., Williams, C. J., & Brady, S. M. (2016). A brief history of the TDIF-PXY signalling module: Balancing meristem identity and differentiation during vascular development. The New Phytologist, 209, 474–484.

    Article  CAS  PubMed  Google Scholar 

  • Fàbregas, N., Lozano-Elena, F., Blasco-Escámez, D., Tohge, T., Martínez-Andújar, C., Albacete, A., Osorio, S., Bustamante, M., Riechmann, J. L., & Nomura, T. (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications, 9, 468.

    Article  CAS  Google Scholar 

  • Fujii, H., & Zhu, J. K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences of the United States of America, 106, 8380–8385.

    Google Scholar 

  • Fujii, H., Verslues, P. E., & Zhu, J. K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell, 19, 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, Y., Yoshida, T., & Yamaguchi-Shinozaki, K. (2013). Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 147, 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Gallego-Bartoloméa, J., Mingueta, E. G., Grau-Enguixa, F., Abbasa, M., Locascioa, A., Thomasb, S. J., Alabadía, D., & Blázquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. PNAS, 109, 13446–13451.

    Article  Google Scholar 

  • Gray, W. M., Del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., et al. (1999). Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes & Development, 13, 1678–1691.

    Article  CAS  Google Scholar 

  • Gray, W. M., Hellmann, H., Dharmasiri, S., & Estelle, M. (2002). Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell, 14, 2137–2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, C., Ji, J., Wu, D., Li, X., Jin, C., Guan, W., et al. (2015). The glutathione synthesis may be regulated by cadmium-induced endogenous ethylene in Lycium chinense, and overexpression of an ethylene responsive transcription factor gene enhances tolerance to cadmium stress in tobacco. Molecular Breeding, 35, 123.

    Article  CAS  Google Scholar 

  • Guo, Y. F., Shan, W., Liang, S. M., Wu, C. J., Wei, W., Chen, J. Y., Lu, W. J., & Kuang, J. F. (2019). MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiologia Plantarum, 165, 555–568.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, A., Singh, M., & Laxmi, A. (2015). Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis. Plant Physiology, 168, 307–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, Y. M., Shang, Y., & Nam, K. H. (2016). Brassinosteroids modulate ABA induced stomatal closure in Arabidopsis. Journal of Experimental Botany, 67, 6297–6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, Y. M., Shang, Y., Yang, D. M., & Nam, K. H. (2018). Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochemical and Biophysical Research Communications, 504, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, M., Chae, H. S., & Kieber, J. J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal, 57, 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, S. A., Hayat, S., Ali, B., & Ahmad, A. (2008). 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution, 151, 60–66.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Ali, B., Hassan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., et al. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  • Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., Del Pozo, C., et al. (2003). Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. The EMBO Journal, 22, 3314–3325.

    Google Scholar 

  • Hong, J., Lee, H., Lee, J., Kim, H., & Ryu, H. (2019). ABSCISIC ACIDINSENSITIVE 3 is involved in brassinosteroid-mediated regulation of flowering in plants. Plant Physiology and Biochemistry, 139, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y. R., & Yu, D. Q. (2014). BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell, 26, 4394–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irani, S. R., Pettingill, P., & Kleopa, K. A. (2012). Morvan syndrome: Clinical and serological observations in 29 cases. Annals of Neurology, 72, 241–255.

    Article  PubMed  Google Scholar 

  • Janda, T., Horváth, E., Szalai, G., & Páldi, E. (2007). Role of salicylic acid in the induction of abiotic stress tolerance. In Salicylic acid: A plant hormone (pp. 91–150). Springer.

    Chapter  Google Scholar 

  • Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., & Skoczowski, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 43, 293–298.

    Article  CAS  Google Scholar 

  • Jia, Z., Giehl, R. F. H., Meyer, R. C., Altmann, T., & von Wirén, N. (2019). Natural variation of BSK3 tunes brassinosteroid signaling to regulate root foraging under low nitrogen. Nature Communications, 10, 2378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., et al. (2012). Cellular glutathione redox homeostasis plays an important role in the brassinosteroid−induced increase in CO2 assimilation in Cucumis sativus. The New Phytologist, 194, 932–943.

    Article  CAS  PubMed  Google Scholar 

  • Keunen, E., Schellingen, K., Vangronsveld, J., & Cuypers, A. (2016). Ethylene and metal stress: Small molecule, big impact. Frontiers in Plant Science, 7, 1–18.

    Article  Google Scholar 

  • Khripach, V. A., Zhabinskii, V. N., & Groot, A. E. (1999). Brassinosteroids: A new class of plant hormones. Academic Press.

    Google Scholar 

  • Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–704.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.

    Article  CAS  PubMed  Google Scholar 

  • Kitanaga, Y., Jian, C., Hasegawa, M., Yazaki, J., Kishimoto, N., Kikuchi, S., et al. (2006). Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Bioscience, Biotechnology, and Biochemistry, 70, 2410–2419.

    Article  CAS  PubMed  Google Scholar 

  • Kolbert, Z., Molnár, Á., Szőllősi, R., Feigl, G., Erdei, L., & Ördög, A. (2018). Nitro-oxidative stress correlates with Se tolerance of Astragalus species. Plant & Cell Physiology, 59, 1827–1843.

    Article  CAS  Google Scholar 

  • Krishnamurthy, A., & Rathinasabapathi, B. (2013). Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant, Cell & Environment, 36, 1838–1849.

    Article  CAS  Google Scholar 

  • Larkindale, J., Hall, J. D., Knight, M. R., & Verling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.

    Article  CAS  PubMed  Google Scholar 

  • Lavy, M., Prigge, M. J., Tao, S., Shain, S., Kuo, A., Kirchsteiger, K., et al. (2016). Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife, 5, e13325.

    Article  PubMed  Google Scholar 

  • Li, Q. F., Wang, C., Jiang, L., Li, S., Sun, S. S., & He, J. X. (2012). An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling, 5, 72.

    Google Scholar 

  • Lv, B., Tian, H., Zhang, F., Liu, J., Lu, S., Bai, M., Li, C., & Ding, Z. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 14, e1007144.

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec, W. (2011). Effects of jasmonate and some other signalling factors on bean and onion growth during the initial phase of cadmium action. Biologia Plantarum, 55, 112–118.

    Article  CAS  Google Scholar 

  • Marschner, H. (2002). Mineral nutrition of higher plants. Academic Press.

    Google Scholar 

  • Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins: A new family of plant hormones from rape pollen. Nature, 225, 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Mustilli, A. C., Merlot, S., Vavasseur, A., Fenzi, F., & Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 14, 3089–3099.

    Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Hofte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162, 479–495.

    Article  CAS  Google Scholar 

  • Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., et al. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803.

    Article  CAS  Google Scholar 

  • Nishiyama, R., Watanabe, Y., Fujita, Y., Le, D. T., Kojima, M., Werner, T., et al. (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell, 23, 2169–2183.

    Article  CAS  PubMed  Google Scholar 

  • Nolan, T. M., Brennan, B., Yang, M., Chen, J., Zhang, M., & Li, Z. (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Developmental Cell, 41, 33–46.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Z., Han, C., Yuan, L., Zhang, K., Huang, H., & Ren, C. (2011). Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. Journal of Integrative Plant Biology, 53, 632–640.

    Article  CAS  PubMed  Google Scholar 

  • Piacentini, D., Della Rovere, F., Sofo, A., Fattorini, L., Falasca, G., & Altamura, M. M. (2020). Nitric oxide cooperates with auxin to mitigate the alterations in the root system caused by cadmium and arsenic. Frontiers in Plant Science, 11, 1182.

    Article  PubMed  Google Scholar 

  • Planas-Riverola, A., Gupta, A., Betegón-Putze, I., Bosch, N., Ibañes, M., & Caño-Delgado, A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development, 146, dev151894.

    Article  PubMed  CAS  Google Scholar 

  • Quint, M., Ito, H., Zhang, W., & Gray, W. M. (2005). Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. The Plant Journal, 43, 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277.

    Article  CAS  Google Scholar 

  • Shang, Y., Cb, D., Lee, M. M., Kwak, J. M., & Nam, K. H. (2016). BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Molecular Plant, 9, 447–460.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., & Bhardwaj, R. (2007). Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum, 29, 259–263.

    Article  CAS  Google Scholar 

  • Sharma, P., Bhardwaj, R., Arora, N., Arora, H. K., & Kumar, A. (2008). Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biologia Plantarum, 52, 767–770.

    Article  CAS  Google Scholar 

  • Sharma, I., Pati, P. K., & Bhardwaj, R. (2011). Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology, 20, 862–874.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Kumar, A., & Bhardwaj, R. (2016). Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany, 122, 1–9.

    Article  CAS  Google Scholar 

  • Singh, M., Gupta, A., & Laxmi, A. (2014). Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis. Plant Signaling & Behavior, 9, e29219.

    Article  CAS  Google Scholar 

  • Stewart Lilley, J. L., Gan, Y., Graham, I. A., & Nemhauser, J. L. (2013). The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. The Plant Journal, 76, 165–173.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.

    Article  CAS  PubMed  Google Scholar 

  • Tang, W., Yuan, M., Wang, R., Yang, Y., Wang, C., Oses-Prieto, J. A., et al. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology, 13, 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., et al. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 9, 1063.

    Article  PubMed  CAS  Google Scholar 

  • Tossi, V., Lamattina, L., & Cassia, R. (2013). Pharmacological and genetical evidence supporting nitric oxide requirement for 2,4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signaling & Behavior, 8, 7.

    Article  CAS  Google Scholar 

  • Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.

    Article  PubMed  Google Scholar 

  • Vercruyssen, L., Gonzalez, N., Werner, T., Schmülling, T., & Inzé, D. (2011). Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. Plant Physiology, 155, 1339–1352.

    Article  CAS  PubMed  Google Scholar 

  • Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences of the United States of America, 105, 9829–9834.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. J., Tang, J., Liu, J., Hu, J., Liu, J. J., Chen, Y. X., et al. (2018). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular Plant, 11, 315–325.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Wang, Z., Xu, Y., Joo, S.-H., Kim, S.-K., Xue, Z., Xu, Z., Wang, Z., & Chong, K. (2009). OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant Journal, 57, 498–451.

    Article  CAS  Google Scholar 

  • Wang, R., Wang, J., Zhao, L., Yang, S., & Song, Y. (2015). Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals, 28, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Yu, F., & Xie, Q. (2020). Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. Plant Cell & Environment, 43, 2325–2335.

    Article  CAS  Google Scholar 

  • Weast, R. C. (1984). Handbook of chemistry and physics. CRC Press.

    Google Scholar 

  • Werner, T., & Schmülling, T. (2009). Cytokinin action in plant development. Current Opinion in Plant Biology, 12, 527–538.

    Article  CAS  PubMed  Google Scholar 

  • Werner, T., Nehnevajova, E., Köllmer, I., Novák, O., Strnad, M., Krämer, U., et al. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 22, 3905–3920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, X. X., Chen, J. L., Xu, S., Zhu, Z. W., & Zha, D. S. (2016). Exogenous 24-epibrassinolide alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione-ascorbate-dependent detoxification pathway. The Journal of Horticultural Science and Biotechnology, 27, 1–9.

    CAS  Google Scholar 

  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. J., Gao, C. J., Song, L. X., Zhou, Y. H., Shi, K., & Yu, J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell & Environment, 37, 2036–2050.

    Article  CAS  Google Scholar 

  • Yin, Y., Wang, Z. Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., Vafeados, D., Tao, Y., Yokoda, T., Asami, T., & Chory, J. (2005). A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J. R., & Shinozaki, K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant & Cell Physiology, 43, 1473–1483.

    Article  CAS  Google Scholar 

  • Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., & Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. The Journal of Biological Chemistry, 281, 5310–5318.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., & Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal, 61, 672–685.

    Article  CAS  Google Scholar 

  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–146.

    Article  CAS  Google Scholar 

  • Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., et al. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L. B., Peng, Z. H., Zhi, T. T., Zho, Z., Liu, Y., Zhu, Q., et al. (2015). Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biologia Plantarum, 59, 99–105.

    Article  CAS  Google Scholar 

  • Yuldashev, R., Avalbaev, A., Bezrukova, M., Vysotskaya, L., Khripach, V., & Shakirova, F. (2012). Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physiology and Biochemistry, 55, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., & Ahmad, A. (2011). 28-Homobrassinolide mitigates boron induced toxicity through enhanced antioxidant system in Vigna radiata plants. Chemosphere, 85, 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., & Ahmad, A. (2012). 24-Epibrassinolide modulates growth, nodulation, antioxidant system and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology and Biochemistry, 57, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., & He, J. (2015). Sugar-induced plant growth is dependent on brassinosteroids. Plant Signaling & Behavior, 10(12), e1082700.

    Article  CAS  Google Scholar 

  • Zhang, S. S., Cai, Z. Y., & Wang, X. L. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 106, 4543–4548.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A. Y., Zhang, J., Zhang, J. H., Ye, N. H., Zhang, H., Tan, M. P., & Jiang, M. Y. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell and Environment, 52, 181–192.

    CAS  Google Scholar 

  • Zhou, J., Liu, D., Wang, P., Ma, X., Lin, W., Chen, S., Mishev, K., Lu, D., Kumar, R., Vanhoutte, I., & Meng, X. (2018). Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 115(8), E1906–E1915.

    CAS  PubMed  Google Scholar 

  • Zhu, J. Y., Sae-Seaw, J., & Wang, Z. Y. (2013). Brassinosteroid signaling. Development, 140, 1615–1620.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Liu, W. J., Sheng, Y., Zhang, J., Chiu, T., Yan, J. W., & Zhang, A. Y. (2015a). ABA affects brassinosteroid-induced antioxidant defense via ZmMAP65-1a in maize plants. Plant Cell and Environment, 56, 1442–1455.

    CAS  Google Scholar 

  • Zhu, F., Yun, Z., Ma, Q., Gong, Q., Zeng, Y., Xu, J., Cheng, Y., & Deng, X. (2015b). Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Postharvest Biology and Technology, 100, 8–15.

    Article  CAS  Google Scholar 

  • Zhu, T., Deng, X., Zhou, X., Zhu, L., Zou, L., Li, P., Zhang, D., & Lin, H. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific Reports, 6, 35392.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiology, 136, 2621–2632.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MY is very grateful to Chair, Department of Biology, College of Science, UAE University, Al Ain, UAE for providing all the necessary facilities to compile this chapter.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yusuf, M., Khan, M.T.A., Faizan, M., Khalil, R., Qazi, F. (2022). Role of Brassinosteroids and Its Cross Talk with Other Phytohormone in Plant Responses to Heavy Metal Stress. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_11

Download citation

Publish with us

Policies and ethics