Skip to main content

Bone Minimodeling, Modeling-Based Bone Formation in Trabecular, Endocortical and Periosteal Bone

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

Minimodeling is modeling on a microscopic level and occurs on trabecular, endocortical, and periosteal surfaces. Precursor cells are activated to osteoblasts that form new bone, called formation modeling. When osteoclastic precursor cells are activated and osteoclasts resorb bone, it is called resorption modeling. These processes are influenced by mechanical loading at physiological or supra-physiological force levels, and by various metabolic bone diseases and drugs for the treatment of osteoporosis.

The chapter illustrates two drift patterns in elongation of long tubular bone (growth) and healing of angulated tubular bone to be straight in children. The latter occurs under the influence of supra-physiologic mechanical loading, that is compression force on the cortex of the concave side, and tensile force on the convex side. Minimodeling is observed in dialysis patients with adynamic bone disease. Vitamin D and its derivative and human PTH(1–34) stimulate minimodeling in cancellous bone.

In the last decade, several drugs have been developed and are available for the treatment of osteoporotic patients. Therapeutic effects of each drug have a different proportion of action on remodeling and modeling, which cannot be identified by DXA. There has been renewed interest lately in the role of “minimodeling,” that is modeling-based formation (MBF) during osteoporosis therapy.

Recent reports of early effects of an established anabolic (teriparatide) versus antiresorptive (denosumab) agent were described on three bone envelopes: cancellous, periosteal, and endocortical surfaces in human transiliac bone biopsies. Renamed terms on bone formation were defined and described.

The present invited review was completed and submitted to the publisher on 23-Sep-20. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milch RA, Rall DP, Tobie JE. Bone localization of the tetracycline. J Natl Cancer Inst. 1957;19:87.

    CAS  PubMed  Google Scholar 

  2. Frost HM. Preparation of thin, undecalcified bone sections by rapid manual method. Stain Tech. 1958;33:273–6.

    CAS  Google Scholar 

  3. Frost HM. Staining of fresh, undecalcified thin bone sections. Stain Tech. 1959;34:135–46.

    CAS  Google Scholar 

  4. Frost HM, Roth H, Villanueva AR, Stanisavljevic S. Experimental multiband tetracycline measurement of lamellar osteoblastic activity. Henry Ford Hosp Med Bull. 1961;9:312–29.

    CAS  PubMed  Google Scholar 

  5. Frost HM. Bone remodeling dynamics. Springfield, IL: Charles C Thomas; 1963.

    Google Scholar 

  6. Frost HM. Mathematical elements of lamellar bone remodeling. Springfield, IL: Charles C Thomas; 1964.

    Google Scholar 

  7. Frost HM. Tetracycline-based histological analysis of bone remodeling. Calc Tiss Res. 1969;3:211–37.

    CAS  Google Scholar 

  8. Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton, FL: CRC Press; 1983.

    Google Scholar 

  9. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595–610.

    CAS  PubMed  Google Scholar 

  10. Dempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28(1):2–17.

    PubMed  Google Scholar 

  11. Frost HM. Physiology of bone, cartilage and fibrous tissue. Springfield: Charles C Thomas; 1972.

    Google Scholar 

  12. Allen MR, Burr DB. Bone growth, modeling and remodeling. In: Burr DB, Allen MR, editors. Basic and applied bone biology. 2nd ed. Academic; 2019. p. 85–100.

    Google Scholar 

  13. Takahashi H, Epker B, Frost HM. Resorption precedes formative activity. Surg Forum. 1964;15:437–8.

    CAS  PubMed  Google Scholar 

  14. Takahashi H, Hattner R, Epker B, Frost HM. Evidence that Bone resorption precedes formation at the cellular level. Henry Ford Hosp Med Bull. 1964;12:359–64.

    Google Scholar 

  15. Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodeling. Nature. 1965;206(983):489–90.

    CAS  PubMed  Google Scholar 

  16. Baron R. Importance of the intermediate phases between resorption and formation in the measurement and understanding of the bone remodeling sequence. In: Meunier PJ, editor. Bone histomorphometry: second international workshop Lyon. Toulouse: Armour Montagu; 1977. p. 179–83.

    Google Scholar 

  17. Parfitt AM: The cellular basis of bone remodeling: The quantum concept reviewed in the light of recent advances in the cell biology of bone. Calc Tiss Int 1984;Suppl 36: 37–45.

    Google Scholar 

  18. Delaisse JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014;3:561.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Andersen TL, Abdelgawad ME, Kristensen HB, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol. 2013;183(1):235–46. https://doi.org/10.1016/j.ajpath.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  20. Frost HM. Strains and other mechanical influences on bone strength and maintenance. Curr Opin Orthop. 1997;8:60–70.

    Google Scholar 

  21. Frost HM. The Utah paradigm of skeletal physiology. Vol. I, International Society of Musculoskeletal and Neuronal Interactions; 2002.

    Google Scholar 

  22. Chow JWM, Badve S, Chambers TJ. Bone formation is not coupled to bone resorption in site – specific manner in adults rats. Anat Rec. 1993;236:366–72.

    CAS  PubMed  Google Scholar 

  23. Erben RG. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec. 1996;246(1):39–46.

    CAS  PubMed  Google Scholar 

  24. Kobayashi S, Takahashi HE, Ito A, et al. Trabecular minimodeling in human iliac bone. Bone. 2003;32(2):163–9. https://doi.org/10.1016/s8756-3282(02)00947-x.

    Article  CAS  PubMed  Google Scholar 

  25. Ubara Y, Fushimi T, Tagami T, et al. Histomorphometric features of bone in patients with primary and secondary hypoparathyroidism. Kidney Int. 2003;63(5):1809–16.

    PubMed  Google Scholar 

  26. Ubara Y, Tagami T, Nakanishi S, et al. Significance of minimodeling in dialysis patients with adynamic bone disease. Kidney Int. 2005;68(2):833–9. https://doi.org/10.1111/j.1523-1755.2005.00464.x.

    Article  PubMed  Google Scholar 

  27. Yajima A, Inaba M, Tominaga Y, et al. Minimodeling reduces the rate of cortical bone loss in patients with secondary hyperparathroidim. Am J Kidney Dis. 2007;49(3):440–51.

    PubMed  Google Scholar 

  28. Erben RG, Weiser H, Sinowatz F, et al. Vitamin D metabolites prevent vertebral osteopenia in ovariectomized rats. Calcif Tissue Int. 1992;50:228–36.

    CAS  PubMed  Google Scholar 

  29. Li M, Healy DR, Li Y, et al. Alfacalcidol prevents age-related bone loss and causes an atypical pattern of bone formation in aged male rats. J Musculoskelet Neuronal Interact. 2004;4(1):22–32.

    PubMed  Google Scholar 

  30. Liu XQ, Chen HY, Tian XY, et al. Alfacalcidol treatment increases bone mass from anticatabolic and anabolic effects on cancellous and cortical bone in intact female rats. J Bone Miner Metab. 2008;26:425–35.

    CAS  PubMed  Google Scholar 

  31. de Freitas PHL, Hasegawa T, Amizuka N, et al. Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats. Bone. 2011;49(3):335–42.

    PubMed  Google Scholar 

  32. Saito H, Takeda S, Amizuka N. Eldecalcitol and calcitoriol stimulates ‘bone minimodeling’, focal bone formation without prior bone resorption, in rat trabecular bone. J Steroid Biochem Mol Biol. 2013;136:178–82.

    CAS  PubMed  Google Scholar 

  33. Hikata T, Hasegawa T, Horiuchi K, et al. Histomorphometric analysis of minimodeling in the vertebrae in postmenopausal patients treated with anti-osteoporotic agents. Bone Rep. 2016;5:286–91.

    PubMed  PubMed Central  Google Scholar 

  34. Inoue J. Bone changes with long term administration of low dose 1-34 human PTH on adult beagles. J Jpn Orthop Ass. 1985;59:409–27.

    CAS  Google Scholar 

  35. Li M, Liang H, Shen Y, et al. Parathyroid hormone stimulates cancellous bone formation at skeletal sites regardless of marrow composition in ovariectomized rats. Bone. 1999;24:95–100.

    CAS  PubMed  Google Scholar 

  36. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    CAS  PubMed  Google Scholar 

  37. Marcus R, Wang O, Satterwhite J, Mitlak B. The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res. 2003;18(1):18–23. https://doi.org/10.1359/jbmr.2003.18.1.18.

    Article  CAS  PubMed  Google Scholar 

  38. Ma YL, Zeng Q, Donley DW, et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res. 2006;21(6):855–64.

    CAS  PubMed  Google Scholar 

  39. Lindsay R, Cosman F, Zhou H, et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J Bone Miner Res. 2006;21(3):366–73.

    CAS  PubMed  Google Scholar 

  40. Jee WS, Tian XY, Setterberg RB. Cancellous bone minimodeling-based formation: a Frost, Takahashi legacy. J Musculoskelet Neuronal Interact. 2007;7(3):232–9.

    CAS  PubMed  Google Scholar 

  41. Dobnig H, Stepan JJ, Burr DB, et al. Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res. 2009;24(12):1998–2006.

    CAS  PubMed  Google Scholar 

  42. Lindsay R, Zhou H, Cosman F, et al. Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res. 2009;22(4):495–502.

    Google Scholar 

  43. Nakamura T, Sugimoto T, Nakano T, et al. Randomized teriparatide [human parathyroid hormone (PTH)1–34] once-weekly efficacy research (TOWER) trial for examining the reduction in new vertebral fractures in subjects with primary osteoporosis and high fracture risk. J Clin Endocrinol Metab. 2012;97:3097–106.

    CAS  PubMed  Google Scholar 

  44. Sugimoto T, Shiraki M, Fukunaga M, et al. Study of twice-weekly injections of Teriparatide by comparing efficacy with once-weekly injections in osteoporosis patients: the TWICE study. Osteoporosis Int. 2019;30:2321–31. doi.org/10.1007/s00198-019-05111-6

    CAS  Google Scholar 

  45. Dempster DW, Zhou H, Recker RR, et al. Remodeling- and modeling-based bone formation with teriparatide versus denosumab: a longitudinal analysis from baseline to 3 months in the AVA Study. J Bone Miner Res. 2017;33(2):298–306. https://doi.org/10.1002/jbmr.3309.

    Article  CAS  PubMed  Google Scholar 

  46. Bone HG, Wagman RB, Brandi ML, et al. 10 years of Denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomized FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23. https://doi.org/10.1016/S2213-8587(17)30138-9.

    Article  CAS  PubMed  Google Scholar 

  47. Dempster DW, Chines A, Bostrom MP, et al. Modeling-based bone formation in the human femoral neck in subjects treated with denosumab. J Bone Miner Res. 2020;35(7):1282–8. https://doi.org/10.1002/jbmr.4006.

    Article  CAS  PubMed  Google Scholar 

  48. Eriksen EF, Chapurlat R, Brown JP, et al.: Extensive modeling-based bone formation after 2 months of romosozumab treatemnt: results from the FRAME Clinical Trial. Annual Meeting ASBMF 2019, Abstract 1049.

    Google Scholar 

  49. Dempster DW, Nieves J, Zhou H, et al. Effects of Teriparatide on modeling-based and remodeling-based bone formation in the human femoral neck. Annual meeting of American Society for Bone Mineral Research, Sept, 12, 2020, Abstract 1039.

    Google Scholar 

  50. Dempster DW, Zhou H, Rao SD, et al.: Effects of abaloparatide on modeling and remodeling based bone formation. Annual meeting of American Society for Bone Mineral Research, Sept, 12, 2020, Abstract 1040.

    Google Scholar 

  51. Sano H, Kondo N, Shimakura T, et al. Evidence for ongoing modeling-based bone formation in human femoral head trabeculae via forming minimodeling structure: a study in patients with fracture and arthritis. Front Endocrinol. 2018;9:88. https://doi.org/10.3389/fendo.2018.00088.

    Article  Google Scholar 

  52. Villanueva AR, Kundin KD. A veratile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol. 1989;64:129–38.

    CAS  PubMed  Google Scholar 

  53. Villanueva AR. Preparation and staining of mineralized sections of bone. In: Takahashi HE, editor. Handbook of bone morphometry. 2nd ed. Niigata: Nishimura Publisher; 1997. p. 27–40.

    Google Scholar 

Download references

Acknowledgments

Authors are most grateful to Prof. David W. Dempster in reviewing the manuscript for his critical and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki E. Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, H.E., Yamamoto, N., Sano, H., Shimakura, T. (2022). Bone Minimodeling, Modeling-Based Bone Formation in Trabecular, Endocortical and Periosteal Bone. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics