Skip to main content

Local Structure in Mixtures of Ionic Liquid with Molecular Solvent: Vibration Spectroscopy, NMR and Molecular Dynamics Simulation

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Abstract

Ionic liquids (IL), being low-temperature melts by their nature, are of considerable scientific interest due to a number of their unique properties. The practical application of ILs, especially in electrochemistry, has significantly expanded due to the use of mixtures with molecular solvents of various natures. A detailed microscopic description of the local structure in such systems, depending on the nature of its constituent components and the composition of the mixture, remains an urgent problem of modern chemistry of liquid state. In this chapter, we review the results obtained by vibration spectroscopy and NMR chemical shift on the variations in microscopic structure as a function of mixture composition. We point out the controversy about the assignment of the imidazolium C–H stretching vibration mode and systemized its red shift as associated with the outcome of the competition of the solvent molecules and the anions for the C–H bond. Furthermore, the introduction of the double difference relative chemical shift helps us to compare and rationalize the 1H chemical shift literature data obtained in various ionic liquid/solvent mixtures. The most significant changes in the 1H chemical shift occur at low ionic liquid content. Dilution and stacking interactions between the cation rings induce a negative variation of the 1H relative chemical shift. As the solvent and the ions can establish hydrogen bond interactions, when these interactions are weaker, almost equal or higher than the interionic interactions, this results in negative, almost equal to zero, or positive values of the relative chemical shift, respectively. Moreover, starting from the idea that the nearest neighbor anions or solvent molecules of the C–H bond are strongly influencing the associated C–H vibration mode and the 1H chemical shift, we used molecular dynamic simulation and the nearest neighbor approach to calculate radial distribution and spatial radial distribution functions, and to define two statistical distance descriptors of the hydrogen bond structure C–H… X ( X being atom of either the anion or of the solvent) to characterize the local structure around the C–H bond of the cation. The mole fraction dependence of these statistical properties, calculated by taking only the nearest neighbor into account, correlates consistently with spectroscopic data. Indeed, these descriptors are relatively unaffected in the ionic liquid mole fraction (x IL) range between 1.0 and 0.3, while with a further decrease of x IL a large effect on these descriptors is observed. These changes are compatible with the physical picture that the solvent molecules compete with the anions to occupy positions close to the cation ring hydrogen atoms. They are associated with the expected weakening of the cation–anion interactions in the chosen solvents. These results are in good agreement with the behavior of the 1H chemical shift and the C–H vibration mode as a function of x IL. Furthermore, the results of the MD simulations point out the importance of the anion—solvent interactions in weakening the interionic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576

    Article  CAS  PubMed  Google Scholar 

  2. Torimoto T, Tsuda T, Okazaki KI, Kuwabata S (2010) New frontiers in materials science opened by ionic liquids. Adv Mater 22:1196–1221

    Article  CAS  PubMed  Google Scholar 

  3. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373:1–56

    Article  CAS  Google Scholar 

  4. Giernoth R (2010) Task-specific ionic liquids. Angew Chem Int Ed 49:2834–2839

    Article  CAS  Google Scholar 

  5. Patel DD, Lee J-M (2012) Applications of ionic liquids. Chem Rec 12:329–355

    Article  CAS  PubMed  Google Scholar 

  6. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Xia S, Ma P (2005) Use of ionic liquids as ‘green’ solvents for extractions. J Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  8. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    Article  CAS  PubMed  Google Scholar 

  9. Abbott AP, Frisch G, Hartley J, Ryder KS (2011) Processing of metals and metal oxides using ionic liquids. Green Chem 13:471–481

    Article  CAS  Google Scholar 

  10. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A et al (2002) Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environ Sci Technol 36:2523–2529

    Article  CAS  PubMed  Google Scholar 

  11. Borra EF, Seddiki O, Angel R, Eisenstein D, Hickson P, Seddon KR et al (2007) Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447:979

    Article  CAS  PubMed  Google Scholar 

  12. Vijayraghavan R, Pas SJ, Izgorodina EI, MacFarlane DR (2013) Diamino protic ionic liquids for CO2 capture. Phys Chem Chem Phys 15:19994–19999

    Article  CAS  PubMed  Google Scholar 

  13. MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G et al (2010) An overview of CO2 capture technologies. Energy Environ Sci 3:1645–1669

    Article  CAS  Google Scholar 

  14. Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT et al (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    Article  CAS  Google Scholar 

  15. Petkovic M, Seddon KR, Rebelo LPN, Silva Pereira C (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    Article  CAS  PubMed  Google Scholar 

  16. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  17. Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M (2003) Brønsted acid−base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B 107:4024–4033

    Article  CAS  Google Scholar 

  18. Abraham TJ, MacFarlane DR, Pringle JM (2011) Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells. Chem Commun 47:6260–6262

    Article  CAS  Google Scholar 

  19. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14

    Article  Google Scholar 

  20. Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302:792–793

    Article  PubMed  Google Scholar 

  21. MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G et al (2007) Ioinc liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173

    Article  CAS  PubMed  Google Scholar 

  22. MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD et al (2014) Energy applications of ionic liquids. Energy Environ Sci 7:232–250

    Article  CAS  Google Scholar 

  23. Lu W, Qu L, Henry K, Dai L (2009) High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources 189:1270–1277

    Article  CAS  Google Scholar 

  24. Fedorov MV, Kornyshev AA (2014) Ionic liquids at electrified interfaces. Chem Rev 114:2978–3036

    Article  CAS  PubMed  Google Scholar 

  25. Merlet C, Rotenberg B, Madden PA, Taberna P-L, Simon P, Gogotsi Y et al (2012) On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 11:306–310

    Article  CAS  PubMed  Google Scholar 

  26. Lewandowski A, Galiński M (2004) Carbon–ionic liquid double-layer capacitors. J Phys Chem Solids 65:281–286

    Article  CAS  Google Scholar 

  27. Liu S, Liu W, Liu Y, Lin J-H, Zhou X, Janik MJ et al (2010) Influence of imidazolium-based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polymer Int 59:321–328

    Article  CAS  Google Scholar 

  28. Fumino K, Wulf A, Ludwig R (2008) Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed 47:8731–8734

    Article  CAS  Google Scholar 

  29. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    Article  CAS  Google Scholar 

  30. Canongia Lopes JN, Costa Gomes MF, Husson P, Pádua AH, Rebelo LPN, Sarraute S et al (2011) Polarity, viscosity, and ionic conductivity of liquid mixtures containing [C4C1im][Ntf2] and a molecular component. J Phys Chem B 115:6088–6099

    Article  CAS  Google Scholar 

  31. Li W, Zhang Z, Han B, Hu S, Xie Y, Yang G (2007) Effect of water and organic solvents on the ionic dissociation of ionic liquids. J Phys Chem B 111:6452–6456

    Article  CAS  PubMed  Google Scholar 

  32. Wang J, Tian Y, Zhao Y, Zhuo K (2003) A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N, N-dimethylformamide. Green Chem 5:618–622

    Article  CAS  Google Scholar 

  33. Rizzuto AM, Pennington RL, Sienerth KD (2011) Study of the BMIM-PF6: acetonitrile binary mixture as a solvent for electrochemical studies involving CO2. Electrochim Acta 56:5003–5009

    Article  CAS  Google Scholar 

  34. Trivedi S, Sarkar A, Pandey S (2009) Solvatochromic absorbance probe behavior within 1-butyl-3-methylimidazolium hexafluorophosphate + propylene carbonate: preferential solvation or solvent–solvent interaction? Chem Eng J 147:36–42

    Article  CAS  Google Scholar 

  35. Chagnes A, Diaw M, Carré B, Willmann P, Lemordant D (2005) Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J Power Sources 145:82–88

    Article  CAS  Google Scholar 

  36. Stoppa A, Hunger J, Buchner R (2009) Conductivities of binary mixtures of ionic liquids with polar solvents. J Chem Eng Data 54:472–479

    Article  CAS  Google Scholar 

  37. Nishida T, Tashiro Y, Yamamoto M (2003) Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluorine Chem 120:135–141

    Article  CAS  Google Scholar 

  38. Kalugin ON, Voroshylova IV, Riabchunova AV, Lukinova EV, Chaban VV (2013) Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochim Acta 105:188–199

    Article  CAS  Google Scholar 

  39. Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106:4585–4621

    Article  CAS  PubMed  Google Scholar 

  40. Dupont J (2004) On the solid, liquid and solution structural organization of imidazolium ionic liquids. J Braz Chem Soc 15:341–350

    Article  CAS  Google Scholar 

  41. Koverga VA, Voroshylova IV, Smortsova Y, Miannay F-A, Cordeiro NDS, Idrissi A et al (2019) Local structure and hydrogen bonding in liquid γ-butyrolactone and propylene carbonate: a molecular dynamics simulation. J Mol Liq 287:110912

    Article  Google Scholar 

  42. Koverga VA, Smortsova Y, Miannay FA, Kalugin ON, Takamuku T, Jedlovszky P et al (2019) Distance angle descriptors of the interionic and ion–solvent interactions in imidazolium-based ionic liquid mixtures with aprotic solvents: a molecular dynamics simulation study. J Phys Chem B 123:6065–6075

    Article  CAS  PubMed  Google Scholar 

  43. Angenendt K, Johansson P (2010) Ionic liquid structures from large density functional theory calculations using mindless configurations. J Phys Chem C 114:20577–20582

    Article  CAS  Google Scholar 

  44. Tokuda H, Tsuzuki S, Susan MABH, Hayamizu K, Watanabe M (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110:19593–19600

    Article  CAS  PubMed  Google Scholar 

  45. Avent AG, Chaloner PA, Day MP, Seddon KR, Welton T (1994) Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids. J Chem Soc Dalton Trans 23:3405–3413

    Article  Google Scholar 

  46. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  PubMed  Google Scholar 

  47. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ et al (2005) Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. J Phys Chem B 109:4341–4349

    Article  CAS  PubMed  Google Scholar 

  48. Russina O, Lo Celso F, Di Michiel M, Passerini S, Appetecchi GB, Castiglione F et al (2013) Mesoscopic structural organization in triphilic room temperature ionic liquids. Faraday Discuss 167:499–513

    Article  PubMed  Google Scholar 

  49. Fazio B, Triolo A, Di Marco G (2008) Local organization of water and its effect on the structural heterogeneities in room-temperature ionic liquid/H2O mixtures. J Raman Spectrosc 39:233–237

    Article  CAS  Google Scholar 

  50. Macchiagodena M, Gontrani L, Ramondo F, Triolo A, Caminiti R (2011) Liquid structure of 1-alkyl-3-methylimidazolium-hexafluorophosphates by wide angle x-ray and neutron scattering and molecular dynamics. J Chem Phys 134:114521

    Article  PubMed  Google Scholar 

  51. Zheng W, Mohammed A, Hines LG, Xiao D, Martinez OJ, Bartsch RA et al (2011) Effect of cation symmetry on the morphology and physicochemical properties of imidazolium ionic liquids. J Phys Chem B 115:6572–6584

    Article  CAS  PubMed  Google Scholar 

  52. Stassen HK, Ludwig R, Wulf A, Dupont J (2015) Imidazolium salt ion pairs in solution. Chem Eur J 21:8324–8335

    Article  CAS  PubMed  Google Scholar 

  53. Williams IM, Qasim LN, Tran L, Scott A, Riley K, Dutta S (2019) C–D vibration at C2 position of imidazolium cation as a probe of the ionic liquid microenvironment. J Phys Chem A 123:6342–6349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paschoal VH, Faria LFO, Ribeiro MCC (2017) Vibrational spectroscopy of ionic liquids. Chem Rev 117:7053–7112

    Article  CAS  PubMed  Google Scholar 

  55. Kiefer J (2010) Vibrational spectroscopy for studying hydrogen bonding in imidazolium ionic liquids and their mixtures with cosolvents. In: Hydrogen bonding and transfer in the excited state. Wiley, Boca Raton, FL, pp 341–352

    Chapter  Google Scholar 

  56. Cha S, Ao M, Sung W, Moon B, Ahlstrom B, Johansson P et al (2014) Structures of ionic liquid-water mixtures investigated by IR and NMR spectroscopy. Phys Chem Chem Phys 16:9591–9601

    Article  CAS  PubMed  Google Scholar 

  57. Takamuku T, Kyoshoin Y, Shimomura T, Kittaka S, Yamaguchi T (2009) Effect of water on structure of hydrophilic imidazolium-based ionic liquid. J Phys Chem B 113:10817–10824

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Wang J, Zhang L (2013) Temperature dependence of the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate in aqueous solution. Vib Spectrosc 68:20–28

    Article  CAS  Google Scholar 

  59. Zhang Q-G, Wang N-N, Wang S-L, Yu Z-W (2011) Hydrogen bonding behaviors of binary systems containing the ionic liquid 1-butyl-3-methylimidazolium trifluoroacetate and water/methanol. J Phys Chem B 115:11127–11136

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Q-G, Wang N-N, Yu Z-W (2010) The hydrogen bonding interactions between the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and water. J Phys Chem B 114:4747–4754

    Article  CAS  PubMed  Google Scholar 

  61. Zhang L, Xu Z, Wang Y, Li H (2008) Prediction of the solvation and structural properties of ionic liquids in water by two-dimensional correlation spectroscopy. J Phys Chem B 112:6411–6419

    Article  CAS  PubMed  Google Scholar 

  62. Jeon Y, Sung J, Kim D, Seo C, Cheong H, Ouchi Y et al (2008) Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate + water mixtures studied by infrared vibrational spectroscopy. J Phys Chem B 112:923–928

    Article  CAS  PubMed  Google Scholar 

  63. Jeon Y, Sung J, Seo C, Lim H, Cheong H, Kang M et al (2008) Structures of ionic liquids with different anions studied by infrared vibration spectroscopy. J Phys Chem B 112:4735–4740

    Article  CAS  PubMed  Google Scholar 

  64. Holomb R, Martinelli A, Albinsson I, Lassègues JC, Johansson P, Jacobsson P (2008) Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]). J Raman Spectrosc 39:793–805

    Article  CAS  Google Scholar 

  65. Hatano N, Watanabe M, Takekiyo T, Abe H, Yoshimura Y (2012) Anomalous conformational change in 1-butyl-3-methylimidazolium tetrafluoroborate-D2O mixtures. J Phys Chem A 116:1208–1212

    Article  CAS  PubMed  Google Scholar 

  66. Andanson JM, Traïkia M, Husson P (2014) Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids. J Chem Thermodyn 77:214–221

    Article  CAS  Google Scholar 

  67. Klimavicius V, Gdaniec Z, Kausteklis J, Aleksa V, Aidas K, Balevicius V (2013) NMR and Raman spectroscopy monitoring of proton/deuteron exchange in aqueous solutions of ionic liquids forming hydrogen bond: a role of anions, self-aggregation, and mesophase formation. J Phys Chem B 117:10211–10220

    Article  CAS  PubMed  Google Scholar 

  68. Berg RW (2007) Raman spectroscopy and ab-initio model calculations on ionic liquids. Monatsh Chem Chem Mon 138:1045–1075

    Article  CAS  Google Scholar 

  69. Heimer NE, Del Sesto RE, Meng Z, Wilkes JS, Carper WR (2006) Vibrational spectra of imidazolium tetrafluoroborate ionic liquids. J Mol Liq 124:84–95

    Article  CAS  Google Scholar 

  70. Umebayashi Y, Jiang J-C, Shan Y-L, Lin K-H, Fujii K, Seki S et al (2009) Structural change of ionic association in ionic liquid/water mixtures: a high-pressure infrared spectroscopic study. J Chem Phys 130:124503

    Article  PubMed  Google Scholar 

  71. Cammarata L, Kazarian SG, Salter PA, Welton T (2001) Molecular states of water in room temperature ionic liquids. Phys Chem Chem Phys 3:5192–5200

    Article  CAS  Google Scholar 

  72. Gao Y, Zhang L, Wang Y, Li H (2010) Probing Electron density of H-bonding between cation−anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy. J Phys Chem B 114:2828–2833

    Article  CAS  PubMed  Google Scholar 

  73. Noack K, Leipertz A, Keifer J (2012) Molecular interactions and mactoscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. J Mol Struct 1018:45–53

    Article  CAS  Google Scholar 

  74. Roth C, Appelhagen A, Jobst N, Ludwig R (2012) Microheterogeneities in ionic-liquid–methanol solutions studied by FTIR spectroscopy, DFT calculations and molecular dynamics simulations. ChemPhysChem 13:1708–1717

    Article  CAS  PubMed  Google Scholar 

  75. He H, Chen H, Zheng Y, Zhang X, Yao X, Yu Z et al (2013) The hydrogen-bonding interactions between 1-ethyl-3-methylimidazolium lactate ionic liquid and methanol. Aust J Chem 66:50–59

    Article  CAS  Google Scholar 

  76. Shimomura T, Fujii K, Takamuku T (2010) Effects of the alkyl-chain length on the mixing state of imidazolium-based ionic liquid-methanol solutions. Phys Chem Chem Phys 12:12316–12324

    Article  CAS  PubMed  Google Scholar 

  77. López-Pastor M, Ayora-Cañada MJ, Valcárcel M, Lendl B (2006) Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution. J Phys Chem B 110:10896–10902

    Article  PubMed  Google Scholar 

  78. Chang H-C, Jiang J-C, Liou Y-C, Hung C-H, Lai T-Y, Lin SH (2008) Effects of water and methanol on the molecular organization of 1-butyl-3-methylimidazolium tetrafluoroborate as functions of pressure and concentration. J Chem Phys 129:445061–445066

    Article  Google Scholar 

  79. Umebayashi Y, Jiang J-C, Lin K-H, Shan Y-L, Fujii K, Seki S et al (2009) Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy. J Chem Phys 131:234502

    Article  PubMed  Google Scholar 

  80. Kumar B, Singh T, Rao KS, Pal A, Kumar A (2012) Thermodynamic and spectroscopic studies on binary mixtures of imidazolium ionic liquids in ethylene glycol. J Chem Thermodyn 44:121–127

    Article  CAS  Google Scholar 

  81. Singh T, Rao KS, Kumar A (2011) Polarity behaviour and specific interactions of imidazolium-based ionic liquids in ethylene glycol. ChemPhysChem 12:836–845

    Article  CAS  PubMed  Google Scholar 

  82. Wang N-N, Zhang Q-G, Wu F-G, Li Q-Z, Yu Z-W (2010) Hydrogen bonding interactions between a representative pyridinium-based ionic liquid [BuPy][BF4] and water/dimethyl sulfoxide. J Phys Chem B 114:8689–8700

    Article  CAS  PubMed  Google Scholar 

  83. Jiang J-C, Lin K-H, Li S-C, Shih P-M, Hung K-C, Lin SH et al (2011) Association structures of ionic liquid/DMSO mixtures studied by high-pressure infrared spectroscopy. J Chem Phys 134:445061–445068

    Article  Google Scholar 

  84. Zheng Y-Z, He H-Y, Zhou Y, Yu Z-W (2014) Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide. J Mol Struct 1069:140–146

    Article  CAS  Google Scholar 

  85. Zhang L, Wang Y, Xu Z, Li H (2009) Comparison of the blue-shifted C−D stretching vibrations for DMSO-d 6 in imidazolium-based room temperature ionic liquids and in water. J Phys Chem B 113:5978–5984

    Article  CAS  PubMed  Google Scholar 

  86. Zheng Y-Z, Wang N-N, Luo J-J, Zhou Y, Yu Z-W (2013) Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. PCCP 15:18055–18064

    Article  CAS  PubMed  Google Scholar 

  87. Bhat MA, Dutta CK, Rather GM (2013) Exploring physicochemical aspects of N-alkylimidazolium based ionic liquids. J Mol Liq 181:142–151

    Article  CAS  Google Scholar 

  88. Garcia HC, de Oliveira LFC, Nicolau BG, Ribeiro MCC (2010) Raman spectra of acetonitrile in imidazolium ionic liquids. J Raman Spectrosc 41:1720–1724

    Article  Google Scholar 

  89. Kiefer J, Molina MM, Noack K (2012) The peculiar nature of molecular interactions between an imidazolium ionic liquid and acetone. ChemPhysChem 13:1213–1220

    Article  CAS  PubMed  Google Scholar 

  90. Köddermann T, Wertz C, Heintz A, Ludwig R (2006) Ion-pair formation in the ionic liquid 1-ethyl-3-methylimidazolium Bis(triflyl)imide as a function of temperature and concentration. ChemPhysChem 7:1944–1949

    Article  PubMed  Google Scholar 

  91. Marekha BA, Koverga VA, Moreau M, Kiselev M, Takamuku T, Kalugin ON et al (2015) Intermolecular interactions, ion solvation, and association in mixtures of 1-n-butyl-3-methylimidazolium hexafluorophosphate and γ-butyrolactone: insights from Raman spectroscopy. J Raman Spectrosc 46:339–352

    Article  CAS  Google Scholar 

  92. Shirota H, Kakinuma S, Itoyama Y, Umecky T, Takamuku T (2016) Effects of tetrafluoroborate and bis(trifluoromethylsulfonyl)amide anions on the microscopic structures of 1-methyl-3-octylimidazolium-based ionic liquids and benzene mixtures: a multiple approach by ATR-IR, NMR, and Femtosecond Raman-induced Kerr effect spectroscopy. J Phys Chem B 120:513–526

    Article  CAS  PubMed  Google Scholar 

  93. Lassègues J-C, Grondin J, Cavagnat D, Johansson P (2009) New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids. J Phys Chem A 113:6419–6421

    Article  PubMed  Google Scholar 

  94. Zeng HJ, Menges FS, Johnson MA (2020) Comment on “C–D vibration at C2 position of imidazolium cation as a probe of the ionic liquid microenvironment”. J Phys Chem A 124:755–756

    Article  CAS  PubMed  Google Scholar 

  95. Grondin J, Lassègues J-C, Cavagnat D, Buffeteau T, Johansson P, Holomb R (2011) Revisited vibrational assignments of imidazolium-based ionic liquids. J Raman Spectrosc 42:733–743

    Article  CAS  Google Scholar 

  96. Katsyuba SA, Zvereva EE, Vidiš A, Dyson PJ (2006) Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids. J Phys Chem A 111:352–370

    Article  Google Scholar 

  97. Johnson CJ, Fournier JA, Wolke CT, Johnson MA (2013) Ionic liquids from the bottom up: local assembly motifs in [EMIM][BF4] through cryogenic ion spectroscopy. J Chem Phys 139:224305

    Article  PubMed  Google Scholar 

  98. Roth C, Chatzipapadopoulos S, Kerlé D, Friedriszik F, Lütgens M, Lochbrunner S et al (2012) Hydrogen bonding in ionic liquids probed by linear and nonlinear vibrational spectroscopy. New J Phys 14:105026

    Article  Google Scholar 

  99. Obi EI, Leavitt CM, Raston PL, Moradi CP, Flynn SD, Vaghjiani GL et al (2013) Helium nanodroplet isolation and infrared spectroscopy of the isolated ion-pair 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Phys Chem A 117:9047–9056

    Article  CAS  PubMed  Google Scholar 

  100. Cooper R, Zolot AM, Boatz JA, Sporleder DP, Stearns JA (2013) IR and UV spectroscopy of vapor-phase jet-cooled ionic liquid [emim]+[Tf2N]: ion pair structure and photodissociation dynamics. J Phys Chem A 117:12419–12428

    Article  CAS  PubMed  Google Scholar 

  101. Wendler K, Brehm M, Malberg F, Kirchner B, Delle Site L (2012) Short time dynamics of ionic liquids in AIMD-based power spectra. J Chem Theory Comput 8:1570–1579

    Article  CAS  PubMed  Google Scholar 

  102. Brehm M, Kirchner B (2011) TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J Chem Inf Model 51:2007–2023

    Article  CAS  PubMed  Google Scholar 

  103. Jiang J-C, Li S-C, Shih P-M, Hung T-C, Chang S-C, Lin SH et al (2010) A high-pressure infrared spectroscopic study on the interaction of ionic liquids with PEO-PPO-PEO block copolymers and 1,4-dioxane. J Phys Chem B 115:883–888

    Article  PubMed  Google Scholar 

  104. Chang H-C, Tsai T-T, Kuo M-H (2014) Using high-pressure infrared spectroscopy to study the interactions between triblock copolymers and ionic liquids. Macromolecules 47:3052–3058

    Article  CAS  Google Scholar 

  105. Chang H-C, Jiang J-C, Chang C-Y, Su J-C, Hung C-H, Liou Y-C et al (2008) Structural organization in aqueous solutions of 1-butyl-3-methylimidazolium halides: a high-pressure infrared spectroscopic study on ionic liquids. J Phys Chem B 112:4351–4356

    Article  CAS  PubMed  Google Scholar 

  106. Wilkes JS, Levisky JA, Pflug JL, Hussey CL, Scheffler TB (1982) Composition determinations of liquid chloroaluminate molten salts by nuclear magnetic resonance spectrometry. Anal Chem 54:2378–2379

    Article  CAS  Google Scholar 

  107. Wilkes JS, Frye JS, Reynolds GF (1983) Aluminum-27 and carbon-13 NMR studies of aluminum chloride-dialkylimidazolium chloride molten salts. Inorg Chem 22:3870–3872

    Article  CAS  Google Scholar 

  108. Fannin AA, King LA, Levisky JA, Wilkes JS (1984) Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 1. Ion interactions by nuclear magnetic resonance spectroscopy. J Phys Chem 88:2609–2614

    Article  CAS  Google Scholar 

  109. Su B-M, Zhang S, Zhang ZC (2004) Structural elucidation of thiophene interaction with ionic liquids by multinuclear NMR spectroscopy. J Phys Chem B 108:19510–19517

    Article  CAS  Google Scholar 

  110. Zhai C, Wang J, Zhao Y, Tang J, Wang H (2006) A NMR study on the interactions of 1-alkyl-3-methylimidazolium ionic liquids with acetone. Z Phys Chem 220:775–785

    Article  CAS  Google Scholar 

  111. Singh T, Kumar A (2007) Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J Phys Chem B 111:7843–7851

    Article  CAS  PubMed  Google Scholar 

  112. Singh T, Kumar A (2011) Cation–anion–water interactions in aqueous mixtures of imidazolium based ionic liquids. Vib Spectrosc 55:119–125

    Article  CAS  Google Scholar 

  113. Russo JW, Hoffmann MM (2011) Measurements of surface tension and chemical shift on several binary mixtures of water and ionic liquids and their comparison for assessing aggregation. J Chem Eng Data 56:3703–3710

    Article  CAS  Google Scholar 

  114. Shimomura T, Inoue S, Kadohata S, Umecky T, Takamuku T (2013) SANS, ATR-IR, and 1D- and 2D-NMR studies of mixing states of imidazolium-based ionic liquid and aryl solvents. Phys Chem Chem Phys 15:20565–20576

    Article  CAS  PubMed  Google Scholar 

  115. Shimomura T, Takamuku T, Yamaguchi T (2011) Clusters of imidazolium-based ionic liquid in benzene solutions. J Phys Chem B 115:8518–8527

    Article  CAS  PubMed  Google Scholar 

  116. Dias N, Shimizu K, Morgado P, Filipe EJM, Canongia Lopes JN, Vaca Chávez F (2014) Charge templates in aromatic plus ionic liquid systems revisited: NMR experiments and molecular dynamics simulations. J Phys Chem B 118:5772–5780

    Article  CAS  PubMed  Google Scholar 

  117. D'Anna F, Cascino M, Lo Meo P, Riela S, Noto R (2009) The effect of some amines and alcohols on the organized structure of [bmim][BF4] investigated by 1H NMR spectroscopy. ARKIVOC 2009:30–46

    Article  Google Scholar 

  118. Hsu W-Y, Tai C-C, Su W-L, Chang C-H, Wang S-P, Sun IW (2008) A criterion for proper cosolvents used for ionic liquids: the Lewis acidic and basic dual nature of propylene carbonate. Inorg Chim Acta 361:1281–1290

    Article  CAS  Google Scholar 

  119. Holbrey D, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 13:2133–2140

    Article  Google Scholar 

  120. Cui-ping Z, Jian-ji W, Xiao-peng X, Han-qing W, Miao C (2006) Interactions of 1-hexyl-3-methylimidazolium Bromide with Acetone. Chin J Chem Phys 19:447

    Article  Google Scholar 

  121. Zhai C, Wang J, Zhao Y, Tang J (2009) A NMR relaxation study for the interactions of some 1-alkyl-3-methylimidazolium ionic liquids with acetone. Z Anorg Allg Chem 223:839–847

    CAS  Google Scholar 

  122. Ruiz E, Ferro VR, Palomar J, Ortega J, Rodriguez JJ (2013) Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and NMR analysis. J Phys Chem B 117:7388–7398

    Article  CAS  PubMed  Google Scholar 

  123. Lungwitz R, Spange S (2008) A hydrogen bond accepting (HBA) scale for anions, including room temperature ionic liquids. New J Chem 32:392–394

    Article  CAS  Google Scholar 

  124. Hesse-Ertelt S, Heinze T, Kosan B, Schwikal K, Meister F (2010) Solvent effects on the NMR chemical shifts of imidazolium-based ionic liquids and cellulose therein. Macromol Symp 294:75–89

    Article  CAS  Google Scholar 

  125. Lungwitz R, Spange S (2012) Determination of hydrogen-bond-accepting and -donating abilities of ionic liquids with halogeno complex anions by means of 1H NMR spectroscopy. ChemPhysChem 13:1910–1916

    Article  CAS  PubMed  Google Scholar 

  126. Freire MG, Neves CMSS, Silva AMS, Santos LMNBF, Marrucho IM, Rebelo LPN et al (2010) 1H NMR and molecular dynamics evidence for an unexpected interaction on the origin of salting-in/salting-out phenomena. J Phys Chem B 114:2004–2014

    Article  CAS  PubMed  Google Scholar 

  127. Abe H, Hatano N, Ima Y, Ohta S, Shimizu A, Yoshimura Y (2011) Peculiar concentration dependence of H/D exchange reaction in 1-butyl-3-methylimidazolium tetrafluoroborate-D2O mixtures. Open J Phys Chem 1:70–76

    Article  Google Scholar 

  128. Harris RK, Becker ED, Cabral de Menezes SM, Goodfellow R, Granger P (2001) NMR nomenclature. Nuclear spin properties and conventions for chemical shifts (IUPAC Recommendations 2001). Pure Appl Chem 73:1795–1818

    Article  CAS  Google Scholar 

  129. Harris RK, Becker ED, Cabral de Menezes SM, Granger P, Hoffmann RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008). Pure Appl Chem 80:59–84

    Article  CAS  Google Scholar 

  130. Wang J, Yao H, Nie Y, Zhang X, Li J (2012) Synthesis and characterization of the iron-containing magnetic ionic liquids. J Mol Liq 169:152–155

    Article  CAS  Google Scholar 

  131. Umecky T, Takamuku T, Matsumoto T, Kawai E, Takagi M, Funazukuri T (2013) Effects of dissolved water on Li+ solvation in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquid studied by NMR. J Phys Chem B 117:16219–16226

    Article  CAS  PubMed  Google Scholar 

  132. Takamuku T, Honda Y, Fujii K, Kittaka S (2008) Aggregation of imidazolium ionic liquids in molecular liquids studied by small-angle neutron scattering and NMR. Anal Sci 24:1285–1290

    Article  CAS  PubMed  Google Scholar 

  133. Takamuku T, Shimomura T, Sadakane K, Koga M, Seto H (2012) Aggregation of 1-dodecyl-3-methylimidazolium nitrate in water and benzene studied by SANS and 1H NMR. Phys Chem Chem Phys 14:11070–11080

    Article  CAS  PubMed  Google Scholar 

  134. Mizuno K, Tamiya Y, Mekata M (2004) External double reference method to study concentration and temperature dependences of chemical shifts determined on a unified scale. Pure Appl Chem 76:105–114

    Article  CAS  Google Scholar 

  135. Momoki K, Fukazawa Y (1990) Bulbed capillary external referencing method for proton nuclear magnetic resonance spectroscopy. Anal Chem 62:1665–1671

    Article  CAS  Google Scholar 

  136. Momoki K, Fukazawa Y (1994) Bulbed capillary external referencing method using a superconducting magnet NMR instrument. Anal Sci 10:53–58

    Article  CAS  Google Scholar 

  137. Mulay LN, Haverbusch M (1964) Modified shape factor NMR method for measuring magnetic susceptibility. Rev Sci Instrum 35:756–757

    Article  CAS  Google Scholar 

  138. Bagno A, D’Amico F, Saielli G (2007) Computing the 1H NMR spectrum of a Bulk ionic liquid from snapshots of Car–Parrinello molecular dynamics simulations. ChemPhysChem 8:873–881

    Article  CAS  PubMed  Google Scholar 

  139. Adelwöhrer C, Yoneda Y, Takano T, Nakatsubo F, Rosenau T (2008) Synthesis of the perdeuterated cellulose solvents N-methylmorpholine N-oxide (NMMO-d11 and NMMO-15N-d11), N,N-dimethylacetamide (DMAc-d9 and DMAc-15N-d9), 1-ethyl-3-methylimidazolium acetate (EMIM-OAc-d14) and 1-butyl-3-methylimidazolium acetate (BMIM-OAc-d18). Cellulose 16:139

    Article  Google Scholar 

  140. Min G-H, Yim T-E, Lee H-Y, Huh D-H, Lee E-J, Mun J-Y et al (2006) Synthesis and properties of ionic liquids:imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 27:847–852

    Article  CAS  Google Scholar 

  141. Lin S-T, Ding M-F, Chang C-W, Lue S-S (2004) Nuclear magnetic resonance spectroscopic study on ionic liquids of 1-alkyl-3-methylimidazolium salts. Tetrahedron 60:9441–9446

    Article  CAS  Google Scholar 

  142. MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448

    Article  CAS  Google Scholar 

  143. Chen S, Vijayaraghavan R, MacFarlane DR, Izgorodina EI (2013) Ab initio prediction of proton NMR chemical shifts in imidazolium ionic liquids. J Phys Chem B 117:3186–3197

    Article  CAS  PubMed  Google Scholar 

  144. Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR, Seddon KR et al (2002) Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem 4:407–413

    Article  CAS  Google Scholar 

  145. Marekha BA, Kalugin ON, Bria M, Takamuku T, Gadžurić S, Idrissi A (2017) Competition between cation–solvent and cation–anion interactions in imidazolium ionic liquids with polar aprotic solvents. ChemPhysChem 18:718–721

    Article  CAS  PubMed  Google Scholar 

  146. Stark A, Zidell AW, Hoffmann MM (2011) Is the ionic liquid 1-ethyl-3-methylimidazolium methanesulfonate [emim][MeSO3] capable of rigidly binding water? J Mol Liq 160:166–179

    Article  CAS  Google Scholar 

  147. Scharf NT, Stark A, Hoffmann MM (2012) Ion pairing and dynamics of the ionic liquid 1-hexyl-3-methylimidazolium bis(irifluoromethylsulfonyl)amide ([C6mim][NTf2]) in the low dielectric solvent chloroform. J Phys Chem B 116:11488–11497

    Article  CAS  PubMed  Google Scholar 

  148. Stark A, Zidell AW, Russo JW, Hoffmann MM (2012) Composition dependent physicochemical property data for the binary system water and the ionic liquid 1-butyl-3-methylimidazolium methanesulfonate ([C4mim][MeSO3]). J Chem Eng Data 57:3330–3339

    Article  CAS  Google Scholar 

  149. Hall CA, Le KA, Rudaz C, Radhi A, Lovell CS, Damion RA et al (2012) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate–water mixtures. J Phys Chem B 116:12810–12818

    Article  CAS  PubMed  Google Scholar 

  150. Xu Y, Gao Y, Zhang L, Yao J, Wang C, Li H (2010) Microscopic structures of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate in water probed by the relative chemical shift. Sci China Chem 53:1561–1565

    Article  CAS  Google Scholar 

  151. Lyčka A, Doleček R, Šimûnek P, Macháček V (2006) 15N NMR spectra of some ionic liquids based on 1,3-disubstituted imidazolium cations. Magn Reson Chem 44:521–523

    Article  PubMed  Google Scholar 

  152. Remsing RC, Liu Z, Sergeyev I, Moyna G (2008) Solvation and aggregation of N,N′-dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy and molecular dynamics simulation study. J Phys Chem B 112:7363–7369

    Article  CAS  PubMed  Google Scholar 

  153. Chen Y, Cao Y, Sun X, Mu T (2014) Hydrogen bonding interaction between acetate-based ionic liquid 1-ethyl-3-methylimidazolium acetate and common solvents. J Mol Liq 190:151–158

    Article  CAS  Google Scholar 

  154. Cesare Marincola F, Piras C, Russina O, Gontrani L, Saba G, Lai A (2012) NMR investigation of imidazolium-based ionic liquids and their aqueous mixtures. ChemPhysChem 13:1339–1346

    Article  PubMed  Google Scholar 

  155. D'Anna F, Frenna V, La Marca S, Noto R, Pace V, Spinelli D (2008) On the characterization of some [bmim][X]/co-solvent binary mixtures: a multidisciplinary approach by using kinetic, spectrophotometric and conductometric investigations. Tetrahedron 64:672–680

    Article  CAS  Google Scholar 

  156. Gutel T, Santini CC, Pádua AAH, Fenet B, Chauvin Y, Canongia Lopes JN et al (2009) Interaction between the π-system of toluene and the imidazolium ring of ionic liquids: a combined NMR and molecular simulation study. J Phys Chem B 113:170–177

    Article  CAS  PubMed  Google Scholar 

  157. Vreekamp R, Castellano D, Palomar J, Ortega J, Espiau F, Fernández LS et al (2011) Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations. J Phys Chem B 115:8763–8774

    Article  CAS  PubMed  Google Scholar 

  158. D’Anna F, Marullo S, Vitale P, Noto R (2012) Binary mixtures of ionic liquids: a joint approach to investigate their properties and catalytic ability. ChemPhysChem 13:1877–1884

    Article  PubMed  Google Scholar 

  159. Cremer T, Kolbeck C, Lovelock KRJ, Paape N, Wölfel R, Schulz PS et al (2010) Towards a molecular understanding of cation-anion interactions-probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations. Chem Eur J 16:9018–9033

    Article  CAS  PubMed  Google Scholar 

  160. Marekha BA, Kalugin ON, Bria M, Idrissi A (2015) Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative 1H and 13C NMR chemical shifts. Phys Chem Chem Phys 17:23183–23194

    Article  CAS  PubMed  Google Scholar 

  161. Marekha BA, Kalugin ON, Bria M, Takamuku T, Gadzuric S, Idrissi A (2017) Competition between cation-solvent and cation-anion interactions in imidazolium ionic liquids with polar aprotic solvents. Chemphyschem 18:718–721

    Article  CAS  PubMed  Google Scholar 

  162. Moreno M, Castiglione F, Mele A, Pasqui C, Raos G (2008) Interaction of water with the model ionic liquid [bmim][BF4]: molecular dynamics simulations and comparison with NMR data. J Phys Chem B 112:7826–7836

    Article  CAS  PubMed  Google Scholar 

  163. Zhai C-P, Liu X-J, Zhao Y, Wang J-J (2009) NMR study on the aggregation of [C4mim][BF4] in D2O and CDCl3. Acta Phys Chim Sin 25:1185–1189

    Article  CAS  Google Scholar 

  164. Zhai C-P, Wang J-J, Xuan X-P, Wang H-Q, Chen M (2006) Interactions of 1-hexyl-3-methylimidazolium bromide with acetone. Chin J Chem Phys 19:447–450

    Article  CAS  Google Scholar 

  165. Zheng YZ, Wang NN, Luo JJ, Zhou Y, Yu ZW (2013) Hydrogen-bonding interactions between [BMIM][BF4] and acetonitrile. Phys Chem Chem Phys 15:18055–18064

    Article  CAS  PubMed  Google Scholar 

  166. Cade EA, Petenuci J III, Hoffmann MM (2016) Aggregation behavior of several ionic liquids in molecular solvents of low polarity—indication of a bimodal distribution. ChemPhysChem 17:520–529

    Article  CAS  PubMed  Google Scholar 

  167. Katsyuba SA, Griaznova TP, Vidiš A, Dyson PJ (2009) Structural studies of the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate in dichloromethane using a combined DFT-NMR spectroscopic approach. J Phys Chem B 113:5046–5051

    Article  CAS  PubMed  Google Scholar 

  168. Radhi A, Le KA, Ries ME, Budtova T (2015) Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures. J Phys Chem B 119:1633–1640

    Article  CAS  PubMed  Google Scholar 

  169. Zheng Y-Z, Zhou Y, Deng G, Yu Z-W (2016) Hydrogen-bonding interactions between a nitrile-based functional ionic liquid and DMSO. J Mol Struct 1124:207–215

    Article  CAS  Google Scholar 

  170. Majhi D, Pabbathi A, Sarkar M (2016) Probing the aggregation behavior of neat imidazolium-based alkyl sulfate (alkyl = ethyl, butyl, hexyl, and octyl) ionic liquids through time resolved florescence anisotropy and NMR and fluorescence correlation spectroscopy study. J Phys Chem B 120:193–205

    Article  CAS  PubMed  Google Scholar 

  171. Li X, Zhang Y, Tang J, Lan A, Yang Y, Gibril M et al (2016) Efficient preparation of high concentration cellulose solution with complex DMSO/ILs solvent. J Polym Res 23:32

    Article  CAS  Google Scholar 

  172. Marekha BA, Kalugin ON, Bria M, Buchner R, Idrissi A (2014) Translational diffusion in mixtures of imidazolium ILs with polar aprotic molecular solvents. J Phys Chem B 118:5509–5517

    Article  CAS  PubMed  Google Scholar 

  173. Hansen PE, Jezierska A, Panek JJ, Spanget-Larsen J (2019) Theoretical calculations are a strong tool in the investigation of strong intramolecular hydrogen bonds. Mol Spectrosc 1:215–251

    Article  CAS  Google Scholar 

  174. Johnson CE, Bovey FA (1958) Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons. J Chem Phys 29:1012–1014

    Article  CAS  Google Scholar 

  175. Hansen PE, Spanget-Larsen J (2017) NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules 22:552

    Article  PubMed Central  Google Scholar 

  176. Headley AD, Jackson NM (2002) The effect of the anion on the chemical shifts of the aromatic hydrogen atoms of liquid 1-butyl-3-methylimidazolium salts. J Phys Org Chem 15:52–55

    Article  CAS  Google Scholar 

  177. Cremer T, Kolbeck C, Lovelock KR, Paape N, Wolfel R, Schulz PS et al (2010) Towards a molecular understanding of cation-anion interactions--probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations. Chemistry 16:9018–9033

    Article  CAS  PubMed  Google Scholar 

  178. Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109:17028–17030

    Article  CAS  PubMed  Google Scholar 

  179. Stoppa A, Hunger J, Hefter G, Buchner R (2012) Structure and dynamics of 1-n-alkyl-3-n-methylimidazolium tetrafluoroborate + acetonitrile mixtures. J Phys Chem B 116:7509–7521

    Article  CAS  PubMed  Google Scholar 

  180. Hansen PE, Jezierska A, Panek JJ, Spanget-Larsen J (2019) Theoretical calculations are a strong tool in the investigation of strong intramolecular hydrogen bonds. Mol Spectrosc 37:215–251

    Article  Google Scholar 

  181. Tsuzuki S, Tokuda H, Mikami M (2007) Theoretical analysis of the hydrogen bond of imidazolium C2–H with anions. Phys Chem Chem Phys 9:4780

    Article  CAS  PubMed  Google Scholar 

  182. Dong K, Song Y, Liu X, Cheng W, Yao X, Zhang S (2012) Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B 116:1007–1017

    Article  CAS  PubMed  Google Scholar 

  183. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. Oxford University Press, Oxford

    Book  Google Scholar 

  184. Danten Y, Cabaço MI, Besnard M (2010) Interaction of water diluted in 1-butyl-3-methyl imidazolium ionic liquids by vibrational spectroscopy modeling. J Mol Liq 153:57–66

    Article  CAS  Google Scholar 

  185. Hu X, Lin Q, Gao J, Wu Y, Zhang Z (2011) Anion–cation and ion–solvent interaction of some typical ionic liquids in solvents with different dielectric constant. Chem Phys Lett 516:35–39

    Article  CAS  Google Scholar 

  186. Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2012) Proton transfer and polarity changes in ionic liquid-water mixtures: a perspective on hydrogen bonds from ab initio molecular dynamics at the example of 1-ethyl-3-methylimidazolium acetate-water mixtures—part 1. Phys Chem Chem Phys 14:5030–5044

    Article  CAS  PubMed  Google Scholar 

  187. Chaban VV, Voroshylova IV, Kalugin ON (2011) A new force field model for the simulation of transport properties of imidazolium-based ionic liquids. Phys Chem Chem Phys 13:7910–7920

    Article  CAS  PubMed  Google Scholar 

  188. Herrera C, Costa LT, Atilhan M, Aparicio S (2017) Microscopic characterization of amino acid ionic liquids - water mixtures. J Mol Liq 236:81–92

    Article  CAS  Google Scholar 

  189. Ghoshdastidar D, Senapati S (2015) Nanostructural reorganization manifests in sui-generis density trend of imidazolium acetate/water binary mixtures. J Phys Chem B 119:10911–10920

    Article  CAS  PubMed  Google Scholar 

  190. Niazi AA, Rabideau BD, Ismail AE (2013) Effects of water concentration on the structural and diffusion properties of imidazolium-based ionic liquid–water mixtures. J Phys Chem B 117:1378–1388

    Article  CAS  PubMed  Google Scholar 

  191. Zhou J, Liu X, Zhang S, Zhang X, Yu G (2017) Effect of small amount of water on the dynamics properties and microstructures of ionic liquids. AIChE J 63:2248–2256

    Article  CAS  Google Scholar 

  192. Shimomura T, Kodama D, Kanakubo M, Tsuzuki S (2017) Solvation structure of imidazolium cation in mixtures of [C4mim][TFSA] ionic liquid and diglyme by NMR measurements and MD simulations. J Phys Chem B 121:2873–2881

    Article  CAS  PubMed  Google Scholar 

  193. Sharma A, Zhang Y, Gohndrone T, Oh S, Brennecke JF, McCready MJ et al (2017) How mixing tetraglyme with the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide changes volumetric and transport properties: An experimental and computational study. Chem Eng Sci 159:43–57

    Article  CAS  Google Scholar 

  194. Alcalde R, Atilhan M, Aparicio S (2016) Insights on 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + ethanol liquid mixtures: a molecular dynamics approach. J Chem Eng Data 61:2729–2737

    Article  CAS  Google Scholar 

  195. Nickerson SD, Nofen EM, Chen H, Ngan M, Shindel B, Yu H et al (2015) A combined experimental and molecular dynamics study of iodide-based ionic liquid and water mixtures. J Phys Chem B 119:8764–8772

    Article  CAS  PubMed  Google Scholar 

  196. Zhong X, Fan Z, Liu Z, Cao D (2012) Local structure evolution and its connection to thermodynamic and transport properties of 1-butyl-3-methylimidazolium tetrafluoroborate and water mixtures by molecular dynamics simulations. J Phys Chem B 116:3249–3263

    Article  CAS  PubMed  Google Scholar 

  197. Sharma A (2016) Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: an all-atom molecular dynamics simulation investigation. J Chem Phys 144:114505

    Article  PubMed  Google Scholar 

  198. Hegde GA, Bharadwaj VS, Kinsinger CL, Schutt TC, Pisierra NR, Maupin CM (2016) Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions. J Chem Phys 145:064504

    Article  Google Scholar 

  199. Migliorati V, Zitolo A, D’Angelo P (2013) Using a combined theoretical and experimental approach to understand the structure and dynamics of imidazolium-based ionic liquids/water mixtures. 1. MD simulations. J Phys Chem B 117:12505–12515

    Article  CAS  PubMed  Google Scholar 

  200. Méndez-Morales T, Carrete J, Cabeza O, Gallego LJ, Varela LM (2011) Molecular dynamics simulations of the structural and thermodynamic properties of imidazolium-based ionic liquid mixtures. J Phys Chem B 115:11170–11182

    Article  PubMed  Google Scholar 

  201. Xu W, Wu F, Zhao Y, Zhou R, Wang H, Zheng X et al (2017) Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase. Sci Rep 7:43835

    Article  PubMed  PubMed Central  Google Scholar 

  202. Tupikina EY, Denisov GS, Tolstoy PM (2015) NMR study of CHN hydrogen bond and proton transfer in 1,1-dinitroethane complex with 2,4,6-trimethylpyridine. J Phys Chem A 119:659–668

    Article  CAS  PubMed  Google Scholar 

  203. Tolstoy PM, Schah-Mohammedi P, Smirnov SN, Golubev NS, Denisov GS, Limbach H-H (2004) Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects. J Am Chem Soc 126:5621–5634

    Article  CAS  PubMed  Google Scholar 

  204. Sternberg U, Brunner E (1994) The influence of short-range geometry on the chemical shift of protons in hydrogen bonds. J Magn Reson Ser A 108:142–150

    Article  CAS  Google Scholar 

  205. Mori Y, Masuda Y (2015) Effect of solvent on proton location and dynamic behavior in short intramolecular hydrogen bonds studied by molecular dynamics simulations and NMR experiments. Chem Phys 458:18–29

    Article  CAS  Google Scholar 

  206. Lomas JS (2019) Relationships between NMR shifts and interaction energies in biphenyls, alkanes, aza-alkanes, and oxa-alkanes with X─H…H─Y and X─H…Z (X, Y = C or N; Z = N or O) hydrogen bonding. Magn Reson Chem 57:1121–1135

    Article  CAS  PubMed  Google Scholar 

  207. Limbach H-H, Tolstoy PM, Pérez-Hernández N, Guo J, Shenderovich IG, Denisov GS (2009) OHO hydrogen bond geometries and NMR chemical shifts: from equilibrium structures to geometric H/D isotope effects, with applications for water, protonated water, and compressed ice. Isr J Chem 49:199–216

    Article  CAS  Google Scholar 

  208. Koeppe B, Guo J, Tolstoy PM, Denisov GS, Limbach H-H (2013) Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV–vis and NMR spectroscopy. J Am Chem Soc 135:7553–7566

    Article  CAS  PubMed  Google Scholar 

  209. Kim S-H (2020) Microscopic difference of hydrogen double-minimum potential well detected by hydroxyl group in hydrogen-bonded system. Sci Rep 10:4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jeffrey GA, Yeon Y (1986) The correlation between hydrogen-bond lengths and proton chemical shifts in crystals. Acta Crystallogr Sect B 42:410–413

    Article  Google Scholar 

  211. Herschlag D, Pinney MM (2018) Hydrogen bonds: simple after all? Biochemistry 57:3338–3352

    Article  CAS  PubMed  Google Scholar 

  212. Harris RK, Jackson P, Merwin LH, Say BJ, Hägele G (1988) Perspectives in high-resolution solid-state nuclear magnetic resonance, with emphasis on combined rotation and multiple-pulse spectroscopy. J Chem Soc Faraday Trans I 84:3649–3672

    Article  CAS  Google Scholar 

  213. First JT, Slocum JD, Webb LJ (2018) Quantifying the effects of hydrogen bonding on nitrile frequencies in GFP: beyond solvent exposure. J Phys Chem B 122:6733–6743

    Article  CAS  PubMed  Google Scholar 

  214. Choi J-H, Oh K-I, Lee H, Lee C, Cho M (2008) Nitrile and thiocyanate IR probes: quantum chemistry calculation studies and multivariate least-square fitting analysis. J Chem Phys 128:134506

    Article  PubMed  Google Scholar 

  215. Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi J-H, Corcelli SA et al (2020) Vibrational spectroscopic map, vibrational spectroscopy, and intermolecular interaction. Chem Rev 120:7152–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Schäfer T, Schwarzer D, Lindner J, Vöhringer P (2008) ND-stretching vibrational energy relaxation of NH2D in liquid-to-supercritical ammonia studied by femtosecond midinfrared spectroscopy. J Chem Phys 128:064502

    Article  PubMed  Google Scholar 

  217. Lafrad F, Tassaing T, Kiselev M, Idrissi A (2017) The local structure of sub- and supercritical water as studied by FTIR spectroscopy and molecular dynamics simulations. J Mol Liq 239:61–67

    Article  CAS  Google Scholar 

  218. Kandratsenka A, Schwarzer D, Vöhringer P (2008) Relating linear vibrational spectroscopy to condensed-phase hydrogen-bonded structures: liquid-to-supercritical water. J Chem Phys 128:244510

    Article  PubMed  Google Scholar 

  219. Chaban V (2011) Polarizability versus mobility: atomistic force field for ionic liquids. PCCP 13:16055–16062

    Article  CAS  PubMed  Google Scholar 

  220. Mondal A, Balasubramanian S (2014) Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. J Phys Chem B 118:3409–3422

    Article  CAS  PubMed  Google Scholar 

  221. Matthews RP, Villar-Garcia IJ, Weber CC, Griffith J, Cameron F, Hallett JP et al (2016) A structural investigation of ionic liquid mixtures. Phys Chem Chem Phys 18:8608–8624

    Article  CAS  PubMed  Google Scholar 

  222. Skarmoutsos I, Dellis D, Matthews RP, Welton T, Hunt PA (2012) Hydrogen bonding in 1-butyl- and 1-ethyl-3-methylimidazolium chloride ionic liquids. J Phys Chem B 116:4921–4933

    Article  CAS  PubMed  Google Scholar 

  223. Stark A, Brehm M, Brüssel M, Lehmann SC, Pensado A, Schöppke M et al (2014) A theoretical and experimental chemist’s joint view on hydrogen bonding in ionic liquids and their binary mixtures. In: Kirchner B (ed) Electronic effects in organic chemistry. Springer, Berlin, pp 149–187

    Google Scholar 

  224. Chaban VV, Prezhdo OV (2011) A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. PCCP 13:19345–19354

    Article  CAS  PubMed  Google Scholar 

  225. Wu X, Liu Z, Huang S, Wang W (2005) Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field. Phys Chem Chem Phys 7:2771–2779

    Article  CAS  PubMed  Google Scholar 

  226. Chaban VV, Voroshylova IV, Kalugin ON, Prezhdo OV (2012) Acetonitrile boosts conductivity of imidazolium ionic liquids. J Phys Chem B 116:7719–7727

    Article  CAS  PubMed  Google Scholar 

  227. Bandlamudi SRP, Cooney MJ, Martin GL, Benjamin KM (2017) Molecular simulation and experimental characterization of ionic-liquid-based cosolvent extraction solvents. Ind Eng Chem Res 56:3040–3048

    Article  CAS  Google Scholar 

  228. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the French National Agency for Research (ANR-19-CE05-0009-01 Ultrafast photoinduced processes of organic dyes in ionic liquid/molecular solvent mixtures designed for dye solar cells), the Ministries of Europe and Foreign Affairs (MEAE) and Higher Education, Research and Innovation (MESRI) and the Ministry of Education and Science of Ukraine under project Nos 42645ND (France) 0119U002532 (Ukraine), the Hungarian NKFIH Foundation (project No. 134596), and from the Hungarian French Intergovernmental Science and Technology Program (TéT, Balaton) under project Nos. 2019-2.1.11-TÉT-2019-00017 (Hungary) and 44706QK (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdenacer Idrissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marekha, B.A. et al. (2021). Local Structure in Mixtures of Ionic Liquid with Molecular Solvent: Vibration Spectroscopy, NMR and Molecular Dynamics Simulation. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_10

Download citation

Publish with us

Policies and ethics