Skip to main content
Log in

Synthesis of the perdeuterated cellulose solvents N-methylmorpholine N-oxide (NMMO-d11 and NMMO-15N-d11), N,N-dimethylacetamide (DMAc-d9 and DMAc-15N-d9), 1-ethyl-3-methylimidazolium acetate (EMIM-OAc-d14) and 1-butyl-3-methylimidazolium acetate (BMIM-OAc-d18)

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The syntheses of several perdeuterated substances—some of them isotopically labeled (15N) in addition—are described, which act as direct solvents of cellulose either on their own, such as N-methylmorpholine N-oxide (NMMO), 1-butyl-3-methylimidazolium acetate (BMIM-OAc), or 1-ethyl-3-methylimidazolium acetate (EMIM-OAc), or in combination with auxiliaries, such as N,N-dimethylacetamide (DMAc—for the cellulose solvent DMAc/LiCl). NMMO-d11 (9) was obtained in an eight-step approach from non-labeled diglycolic acid (1) via diethylene glycol-d8 (4) and its bis-tosylate (5), which underwent ring closure with benzylamine to N-benzylmorpholine-d8 (6). Debenzylation, methylation and oxidation completed the synthetic sequence, which was also able to provide the 15N-labeled product (9a) by usage of 15N-benzylamine. DMAc-d9 (14) was obtained from deuterated acetic acid (10) and dimethylamine-d6–carbon dioxide complex (13) in a solvent-free gas-solid reaction with acidic alumina as the catalyst. Employing the CO2-complex of 15N-dimethylamine-d6 afforded the 15N-labeled product 15N-DMAc-d9 (14a) in a similar way. The two ionic liquids EMIM-OAc (21) and BMIM-OAc (22) were obtained from imidazole in three-step sequences starting with butylation and ethylation, respectively. The resulting 1-alkyl imidazoles were purified, and subsequently methylated according to a novel protocol using dimethylcarbonate-d6. Addition of acetic acid-d4 caused traceless degradation of the methylcarbonate anions and exchange for acetate. In all syntheses, the reaction steps were optimized with non-labeled compounds towards high yields and high reproducibility before entering the “hot runs” with deuterated and otherwise isotopically labeled material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  • Adelwöhrer C, Yoneda Y, Nakatsubo F, Rosenau T (2008) Synthesis of the perdeuterated cellulose solvents N-methylmorpholine N-oxide (NMMO-d11) and N,N-dimethylacetamide (DMAc-d9). J Labelled Comp Radiopharm 51:28–32. doi:10.1002/jlcr.1467

    Article  CAS  Google Scholar 

  • Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301. doi:10.1039/b513157j

    Article  CAS  Google Scholar 

  • Buchanan GW, Driega AB, Moghimi A, Bensimon C, Bourque K (1993) cis-Cyclohexano-9-crown-3 ether solid state and low-temperature solution stereochemistry as determined by X-ray crystallography and nuclear magnetic resonance spectroscopy. Can J Chem 71:951–958. doi:10.1139/v93-127

    Article  CAS  Google Scholar 

  • Chanzy H (1980) Quellung und Lösen von Cellulose im Aminoxid-Wasser-System. J Polym Sci Polym Phys Ed 18:1137–1144. doi:10.1002/pol.1980.180180517

    Article  CAS  Google Scholar 

  • Chanzy H, Nawrot S, Peguy A, Smith P (1982) The phase behavior of the quasiternary system N-methylmorpholine-N-oxide, water and cellulose. J Polym Sci 20:1909–1924

    CAS  Google Scholar 

  • Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. Macromol Chem Phys C30:405–440

    CAS  Google Scholar 

  • Farbenind IG (1933) Patent DE 619754

  • Fedorova TA, Reshetov VA, Yakushkin MI, Velichko LS, Kotov VI (1982) Kinetics of synthesis of dimethylacetamides over aluminum oxide. J Appl Chem USSR (Engl Transl) 55:1968–1970. Zh Prikl Khim Leningrad 55:2140–2142

    Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520. doi:10.1002/mabi.200500039

  • Hermanutz F, Meister F, Uerdingen E (2006) New developments in the manufacture of cellulose fibers with ionic liquids. Chem Fiber Int 06:342–343

    Google Scholar 

  • Hoh GLK, Barlow DO, Chadwick AF, Lake DB, Sheeran SR (1963) Hydrogen peroxide oxidation of tertiary amines. J Am Oil Chem Soc 40:268–271. doi:10.1007/BF02633687

    Article  CAS  Google Scholar 

  • Kreher UP, Rosamilia AE, Raston CL, Scott JL, Strauss CR (2004) Self-associated, “distillable” ionic media. Molecules 9:387–393

    Article  CAS  Google Scholar 

  • Licandro E, Maiorana S, Papagni A, Pryce M, Gerosa AZ, Riva S (1995) Asymmetric synthesis of (−)-(2R, 6R)-2, 6-dimethylmorpholine. Tetrahedron Asymmetry 6:1891–1894. doi:10.1016/0957-4166(95)00245-K

    Article  CAS  Google Scholar 

  • Malz F, Jäger C, Yoneda Y, Kosma P, Rosenau T (2007) Synthesis of methyl 4′-O-methyl-β-d-cellobioside-13C12 from d-glucose-13C6. Part 2: solid state NMR studies. Carbohydr Res 342:65–70. doi:10.1016/j.carres.2006.11.005

    Article  CAS  Google Scholar 

  • Marini I, Firgo H, Kalt W (1994) Lenzing Lyocell. Lenzinger Ber 74:53–57

    Google Scholar 

  • Ouchi M, Inoue Y, Kanzaki T, Hakushi T (1984) Molecular design of crown ethers. 1. Effects of methylene chain length: 15- to 17-crown-5 and 18- to 22-crown-6. J Org Chem 49:1408–1412. doi:10.1021/jo00182a017

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H et al (2002) The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53. doi:10.1023/A:1015811712657

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P (2006) Analysis of oxidized functionalities in cellulose. Adv Polym Sci 205:1–48

    Article  CAS  Google Scholar 

  • Radeglia R, Andersch J, Schroth W (1989) Zum dynamischen Strukturverhalten des Dimethylamin–Kohlendioxid–Komplexes (Dimcarb). Z Naturforsch 44b:181–186

    Google Scholar 

  • Richarz W, Lutz M, Guyer A (1959) Katalytische Aminierung von Methanol. Helv Chim Acta 42:2120–2212. doi:10.1002/hlca.19590420649

    Article  Google Scholar 

  • Richarz W, Lutz M, Guyer A (1962) Katalytische Aminierung von Methanol. 2. Mitteilung. Helv Chim Acta 45:2154–2161. doi:10.1002/hlca.19620450650

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Prog Polym Sci 26:1763–1837. doi:10.1016/S0079-6700(01)00023-5

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Rohrling J, Hofinger A, Sixta H, Kosma P (2002) A solvent-free and formalin-free Eschweiler–Clarke methylation for amines. Synth Commun 32:457–459. doi:10.1081/SCC-120002131

    Article  CAS  Google Scholar 

  • Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer 44:6153–6158. doi:10.1016/S0032-3861(03)00663-3

    Article  CAS  Google Scholar 

  • Ruhoff JR, Reid EE (1937) A series of aliphatic dimethyl amides. J Am Chem Soc 59:402. doi:10.1021/ja01281a054

    Article  Google Scholar 

  • Striegel AM (1997) Theory and applications of DMAc/LiCl in the analysis of polysaccharides. Carb Polym 34:267–274. doi:10.1016/S0144-8617(97)00101-X

    Article  CAS  Google Scholar 

  • Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A et al (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290. doi:10.1039/b713194a

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, John D, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975. doi:10.1021/ja025790m

    Article  CAS  Google Scholar 

  • Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266. doi:10.1021/bm034398d

    Article  CAS  Google Scholar 

  • Yoneda Y, Kawada T, Rosenau T, Kosma P (2005) Synthesis of methyl 4′-O-methyl-β-cellobioside-13C12 from d-glucose-13C6. Part 1: Reaction optimization and synthesis. Carbohydr Res 340:2428–2435. doi:10.1016/j.carres.2005.08.003

    Article  CAS  Google Scholar 

  • Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327. doi:10.1039/b601395c

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, project P-17426 is gratefully acknowledged. The authors would like to thank Dr. Andreas Hofinger, Department of Chemistry at the University of Agricultural Sciences Vienna, for recording the NMR spectra. Furthermore, the authors are indebted to Dr. Hiroshi Kamitakahara, Graduate School of Agriculture, Kyoto University, and to Dr. Toshinari Kawada, Faculty of Agriculture, Kyoto Prefectural University, for their support during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rosenau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adelwöhrer, C., Yoneda, Y., Takano, T. et al. Synthesis of the perdeuterated cellulose solvents N-methylmorpholine N-oxide (NMMO-d11 and NMMO-15N-d11), N,N-dimethylacetamide (DMAc-d9 and DMAc-15N-d9), 1-ethyl-3-methylimidazolium acetate (EMIM-OAc-d14) and 1-butyl-3-methylimidazolium acetate (BMIM-OAc-d18). Cellulose 16, 139–150 (2009). https://doi.org/10.1007/s10570-008-9241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9241-5

Keywords

Navigation