Skip to main content

Metabolomic Advances in Fish Nutritional Research and Health Management

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

Aquaculture production has become one of the fastest-growing quality animal protein-producing enterprises, contributing significantly to satisfying increased demand for animal protein by providing barely half of all fish and shellfish consumed directly by humans. As consequences of the intensification of aquaculture for meeting the demand, high feed input, reckless use of antibiotics and drugs/chemicals, water quality deterioration, climate change, poor growth, and disease outbreak could be a major threat in fish culture. The majority of farmed fish is lost each year, resulting in significant economic losses owing to disease outbreaks in diverse culture systems, making farming unprofitable and unsustainable in the long run. Metabolomics is a technique for assessing metabolites in a living system holistically and systematically, and it employs a system biology approach to evaluate the biochemical processes of complex organisms in terms of nutrition and health conditions. Metabolomics strives to find biomarkers emblematic of physiological reactions of live samples such as whole organisms, tissues, and cells to ambient or culture conditions by using metabolite profiles as fingerprints. We have tried to highlight some of the most current uses of metabolomic developments in fish nutrition research and health management to solve challenges across the entire production cycle of an organism, including post-harvest quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abro R, Moazzami AA, Lindberg JE, Lundh T (2014a) Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int Aquatic Res 6(2):1–11

    Google Scholar 

  • Abro R, Moazzami AA, Lindberg JE, Lundh T (2014b) Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int Aquatic Res 6(2):1–11

    Google Scholar 

  • Alfaro AC, Young T (2018) Showcasing metabolomic applications in aquaculture: a review. Rev Aquac 10:135–152

    Google Scholar 

  • Alfaro AC, Nguyen TV, Mellow D (2019) A metabolomics approach to assess the effect of storage conditions on metabolic processes of New Zealand surf clam (crassula aequilatera). Aquaculture 498:315–321

    CAS  Google Scholar 

  • Allwood CM (2013) The role of culture and understanding in research. Soc Epistemol Rev Reply Collect 2(5):1–11

    Google Scholar 

  • Baumgarner BL, Cooper BR (2012) Evaluation of a tandem gas chromatography/time-of-flight mass spectrometry metabolomics platform as a single method to investigate the effect of starvation on whole-animal metabolism in rainbow trout (Oncorhynchus mykiss). J Exp Biol 215(10):1627–1632

    CAS  PubMed  Google Scholar 

  • Cajka T, Danhelova H, Vavrecka A, Riddellova K, Kocourek V, Vacha F, Hajslova J (2013) Evaluation of direct analysis in real time ionization–mass spectrometry (DART–MS) in fish metabolomics aimed to assess the response to dietary supplementation. Talanta 115:263–270

    CAS  PubMed  Google Scholar 

  • Cao Q, Liu H, Zhang G, Wang X, Manyande A, Du H (2020) 1 H-NMR based metabolomics reveals the nutrient differences of two kinds of freshwater fish soups before and after simulated gastrointestinal digestion. Food Funct 11(4):3095–3104

    CAS  PubMed  Google Scholar 

  • Chen K, Li E, Xu C, Wang X, Li H, Qin JG, Chen L (2019) Growth and metabolomic responses of Pacific white shrimp (Litopenaeus vannamei) to different dietary fatty acid sources and salinity levels. Aquaculture 499:329–340

    CAS  Google Scholar 

  • Cheng K, Wagner L, Moazzami AA, Gómez-Requeni P, Schiller Vestergren A, Brännäs E, Pickova J, Trattner S (2016) Decontaminated fishmeal and fish oil from the Baltic Sea are promising feed sources for Arctic char (Salvelinus alpinus L.)—studies of flesh lipid quality and metabolic profile. Eur J Lipid Sci Technol 118(6):862–873

    CAS  Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AW, Erkelens C, Verhoeven JTJ et al (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135(4):2398–2410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coen M, Lenz EM, Nicholson JK, Wilson ID, Pognan F, Lindon JC (2003) An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy. Chem Res Toxicol 16(3):295–303

    CAS  PubMed  Google Scholar 

  • Duan Y, Xiong D, Wang Y, Li H, Dong H, Zhang J (2021) Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei. Sci Total Environ 754:141867

    CAS  PubMed  Google Scholar 

  • FAO (2016) La situation mondiale des p^eches et de l’aquaculture 2016: Contribuer _a la s_ecurit_e alimentaire et _a la nutrition de tous. FAO, Rome (I)

    Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture 2020. Sustainability in action. FAO, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Functional genomics 10:155–171

    Google Scholar 

  • Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel C, Vandeputte M et al (2011) Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics 12(1):1–18

    Google Scholar 

  • German JB, Hammock BD, Watkins SM (2005) Metabolomics: building on a century of biochemistry to guide human health. Metabolomics 1(1):3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Solsona R, Nácher-Mestre J, Lacalle-Bergeron L, Sancho JV, Calduch-Giner JA, Hernández F, Pérez-Sánchez J (2017) Untargeted metabolomics approach for unraveling robust biomarkers of nutritional status in fasted gilthead sea bream (Sparus aurata). Peer J 5:e2920

    PubMed  PubMed Central  Google Scholar 

  • Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2(2):140–150

    CAS  PubMed  Google Scholar 

  • Grandiosa R, Mérien F, Young T, Van Nguyen T, Gutierrez N, Kitundu E, Alfaro AC (2018) Multi-strain probiotics enhance immune responsiveness and alters metabolic profiles in the New Zealand black-footed abalone (Haliotis iris). Fish Shellfish Immunol 82:330–338

    CAS  PubMed  Google Scholar 

  • Grandiosa R, Young T, Van Nguyen T, Mérien F, Alfaro AC (2020) Immune response in probiotic-fed New Zealand black-footed abalone (Haliotis iris) under Vibrio splendidus challenge. Fish Shellfish Immunol 104:633–639

    CAS  PubMed  Google Scholar 

  • Gribbestad IS, Aursand M, Martinez I (2005) High-resolution 1H magnetic resonance spectroscopy of whole fish, fillets and extracts of farmed Atlantic salmon (Salmo salar) for quality assessment and compositional analyses. Aquaculture 250(1–2):445–457

    CAS  Google Scholar 

  • Guo C, Huang XY, Yang MJ, Wang S, Ren ST, Li H, Peng XX (2014) GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol 39(2):215–222

    CAS  PubMed  Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41(5):770–776

    CAS  Google Scholar 

  • Heude C, Lemasson E, Elbayed K, Piotto M (2015) Rapid assessment of fish freshness and quality by 1 H HR-MAS NMR spectroscopy. Food Anal Methods 8(4):907–915

    Google Scholar 

  • Huo D, Sun L, Zhang L, Ru X, Liu S, Yang H (2019) Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: heat and hypoxia. Mar Pollut Bull 138:407–420

    CAS  PubMed  Google Scholar 

  • Huynh TG, Cheng AC, Chi CC, Chiu KH, Liu CH (2018) A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: metabolomic analysis reveal compelling evidence. Fish Shellfish Immunol 79:284–293

    CAS  PubMed  Google Scholar 

  • Jarak I, Tavares L, Palma M, Rito J, Carvalho RA, Viegas I (2018) Response to dietary carbohydrates in European seabass (Dicentrarchus labrax) muscle tissue as revealed by NMR-based metabolomics. Metabolomics 14(7):1–9

    CAS  Google Scholar 

  • Jasour MS, Wagner L, Sundekilde UK, Larsen BK, Greco I, Orlien V, Olsen K, Rasmussen HT, Hjermitslev NH, Hammershøj M, Dalsgaard AJ (2017) A comprehensive approach to assess feathermeal as an alternative protein source in aquafeed. J Agric Food Chem 65(48):10673–10684

    CAS  PubMed  Google Scholar 

  • Jiang M, Gong QY, Lai SS, Cheng ZX, Chen ZG, Zheng J, Peng B (2019) Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish Shellfish Immunol 84:912–919

    CAS  PubMed  Google Scholar 

  • Jiang M, Chen H, Luo Y, Han Q, Peng R, Jiang X (2021) Combined metabolomics and histological analysis of the tissues from cuttlefish Sepia pharaonis exposed to inking stress. Comp Biochem Physiol D: Genom Proteom 38:100829

    CAS  Google Scholar 

  • Jiao S, Nie M, Song H, Xu D, You F (2020) Physiological responses to cold and starvation stresses in the liver of yellow drum (Nibea albiflora) revealed by LC-MS metabolomics. Sci Total Environ 715:136940

    CAS  PubMed  Google Scholar 

  • Jin Y, Tian LX, Xie SW, Guo DQ, Yang HJ, Liang GY, Liu YJ (2015) Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 437:75–83

    CAS  Google Scholar 

  • Kim HK, Choi YH, Luijendijk TJ, Rocha RAV, Verpoorte R (2004) Comparison of extraction methods for secologanin and the quantitative analysis of secologanin from symphoricarpos albus using 1H-NMR. Phytochem Anal An Int J Plant Chem Biochem Techniq 15(4):257–261

    CAS  Google Scholar 

  • Krogdahl Ã…, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM (2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Chem 63(15):3887–3902

    CAS  PubMed  Google Scholar 

  • Kullgren A, Samuelsson LM, Larsson DJ, Björnsson BT, Bergman EJ (2010) A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am J Phys Regul Integr Comp Phys 299(6):R1440–R1448

    CAS  Google Scholar 

  • Kullgren A, Jutfelt F, Fontanillas R, Sundell K, Samuelsson L, Wiklander K, Kling P, Koppe W, Larsson DJ, Björnsson BT, Jönsson E (2013) The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 164(1):44–53

    CAS  PubMed  Google Scholar 

  • Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Su YB, Peng B, Peng XX, Li H (2020) Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Environ Microbiol 22(10):4295–4313

    CAS  PubMed  Google Scholar 

  • Li T, Li E, Suo Y, Xu Z, Jia Y, Qin JG, Chen L, Gu Z (2017) Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. Aquat Toxicol 183:28–37. https://doi.org/10.1016/j.aquatox.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  • Li X, Qu C, Bian Y, Gu C, Jiang X, Song Y (2019) New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. Environ Pollut 255:113312

    CAS  PubMed  Google Scholar 

  • Liu SR, Peng XX, Li H (2019) Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infect Drug Resist 12:417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, King RD (2009) An investigation into the population abundance distribution of mRNAs, proteins, and metabolites in biological systems. Bioinformatics 25(16):2020–2027

    CAS  PubMed  Google Scholar 

  • Ma YM, Yang MJ, Wang S, Li H, Peng XX (2015) Liver functional metabolomics discloses an action of L-leucine against Streptococcus iniae infection in tilapias. Fish Shellfish Immunol 45(2):414–421

    CAS  PubMed  Google Scholar 

  • Mannina L, Sobolev AP, Capitani D, Iaffaldano N, Rosato MP, Ragni P et al (2008) NMR metabolic profiling of organic and aqueous sea bass extracts: implications in the discrimination of wild and cultured sea bass. Talanta 77(1):433–444

    CAS  PubMed  Google Scholar 

  • Mekuchi M, Sakata K, Yamaguchi T, Koiso M, Kikuchi J (2017) Trans-omics approaches used to characterise fish nutritional biorhythms in leopard coral grouper (Plectropomus leopardus). Sci Rep 7(1):1–12

    CAS  Google Scholar 

  • Melis R, Cappuccinelli R, Roggio T, Anedda R (2014) Addressing marketplace gilthead sea bream (Sparus aurata L.) differentiation by 1H NMR-based lipid fingerprinting. Food Res Int 63:258–264

    CAS  Google Scholar 

  • Moore DS, Jepsen PU, Volka K (2014) Principles of vibrational spectroscopic methods and their application to bioanalysis. In: Gauglitz G, Moore DS (eds) Handbook of Spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  • Ng WK, Leow TC, Yossa R (2019) Effect of substituting fishmeal with corn protein concentrate on growth performance, nutrient utilization and skin coloration in red hybrid tilapia, Oreochromis sp. Aquac Nutr 25(5):1006–1016

    CAS  Google Scholar 

  • Nguyen TV, Alfaro AC (2020) Applications of omics to investigate responses of bivalve haemocytes to pathogen infections and environmental stress. Aquaculture 518:734488

    CAS  Google Scholar 

  • Nguyen TV, Alfaro AC, Young T, Ravi S, Merien F (2018a) Metabolomics study of immune responses of New Zealand greenshellâ„¢ mussels (Perna canaliculus) infected with pathogenic vibrio sp. Mar Biotechnol 20(3):396–409

    CAS  Google Scholar 

  • Nguyen TV, Alfaro AC, Young T, Ravi S, Merien F (2018b) Metabolomics study of immune responses of New Zealand greenshellâ„¢ mussels (Perna canaliculus) infected with pathogenic vibrio sp. Mar Biotechnol 20(3):396–409

    CAS  Google Scholar 

  • Nguyen TV, Alfaro AC, Young T, Merien F (2019) Tissue-specific immune responses to vibrio sp. infection in mussels (Perna canaliculus): a metabolomics approach. Aquaculture 500:118–125

    CAS  Google Scholar 

  • Nguyen TV, Alfaro A, Arroyo BB, Leon JAR, Sonnenholzner S (2020a) Metabolic responses of penaeid shrimp to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Aquaculture 533:736174

    Google Scholar 

  • Nguyen TV, Ragg NL, Alfaro AC, Zamora LN (2020b) Physiological stress associated with mechanical harvesting and transport of cultured mussels (Perna canaliculus): a metabolomics approach. Aquaculture 529:735657

    CAS  Google Scholar 

  • Nguyen TV, Alfaro A, Arroyo BB, Leon JAR, Sonnenholzner S (2021) Metabolic responses of penaeid shrimp to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. Aquaculture 533:736174

    CAS  Google Scholar 

  • Nguyen VT, Alfaro A, Young T, Ravi S, Merien F (2018c) Metabolomics study of immune responses of New Zealand greenshellâ„¢ mussels (Perna canaliculus) infected with pathogenic vibrio sp. Mar Biotechnol 20:396–409. https://doi.org/10.1007/s10126-018-9804-x

    Article  CAS  Google Scholar 

  • Ning M, Wei P, Shen H, Wan X, Jin M, Li X, Shi H, Qiao Y, Jiang G, Gu W, Wang W (2019) Proteomic and metabolomic responses in hepatopancreas of whiteleg shrimp Litopenaeus vannamei infected by microsporidian Enterocytozoon hepatopenaei. Fish Shellfish Immunol 87:534–545

    CAS  PubMed  Google Scholar 

  • Palma M, Trenkner LH, Rito J, Tavares LC, Silva E, Glencross BD, Jones JG, Wade NM, Viegas I (2020) Limitations to starch utilization in barramundi (Lates calcarifer) as revealed by NMR-based metabolomics. Front Physiol 11:205

    PubMed  PubMed Central  Google Scholar 

  • Panserat S, Hortopan GA, Plagnes-Juan E, Kolditz C, Lansard M, Skiba-Cassy S, Esquerre D, Geurden I, Medale F, Kaushik S, Corraze G (2009a) Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture 294(1–2):123–131

    CAS  Google Scholar 

  • Panserat S, Hortopan GA, Plagnes-Juan E, Kolditz C, Lansard M, Skiba-Cassy S et al (2009b) Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture 294(1–2):123–131

    CAS  Google Scholar 

  • Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pears MR, Cooper JD, Mitchison HM, Mortishire-Smith RJ, Pearce DA, Griffin JL (2005) High resolution 1H NMR-based metabolomics indicates a neurotransmitter cycling deficit in cerebral tissue from a mouse model of batten disease. J Biol Chem 280(52):42508–42514

    CAS  PubMed  Google Scholar 

  • Peng B, Ma YM, Zhang JY, Li H (2015) Metabolome strategy against Edwardsiella tarda infection through glucose-enhanced metabolic modulation in tilapias. Fish Shellfish Immunol 45(2):869–876

    CAS  PubMed  Google Scholar 

  • Picone G, Balling Engelsen S, Savorani F, Testi S, Badiani A, Capozzi F (2011) Metabolomics as a powerful tool for molecular quality assessment of the fish Sparus aurata. Nutrients 3(2):212–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Yu Z, Zhu Z, Lin Y, Xia J, Jia Y (2021) The integrated analyses of metabolomics and transcriptomics in gill of GIFT tilapia in response to long term salinity challenge. Aquacult Fisheries

    Google Scholar 

  • Rezzi S, Giani I, Héberger K, Axelson DE, Moretti VM, Reniero F, Guillou C (2007) Classification of gilthead sea bream (Sparus aurata) from 1H NMR lipid profiling combined with principal component and linear discriminant analysis. J Agric Food Chem 55(24):9963–9968

    CAS  PubMed  Google Scholar 

  • Robles R, Lozano AB, Sevilla A, Márquez L, Nuez-Ortin W, Moyano FJ (2013) Effect of partially protected butyrate used as feed additive on growth and intestinal metabolism in sea bream (Sparus aurata). Fish Physiol Biochem 39(6):1567–1580

    CAS  PubMed  Google Scholar 

  • Roques S, Deborde C, Guimas L, Marchand Y, Richard N, Jacob D, Skiba-Cassy S, Moing A, Fauconneau B (2020) Integrative metabolomics for assessing the effect of insect (Hermetia illucens) protein extract on rainbow trout metabolism. Meta 10(3):83

    CAS  Google Scholar 

  • Rosenblum ES, Viant MR, Braid BM, Moore JD, Friedman CS, Tjeerdema RS (2005) Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1 H NMR metabolomics. Metabolomics 1(2):199–209

    CAS  Google Scholar 

  • Savorani F, Rasmussen MA, Mikkelsen MS, Engelsen SB (2013) A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res Int 54(1):1131–1145

    CAS  Google Scholar 

  • Schock TB, Newton S, Brenkert K, Leffler J, Bearden DW (2012a) An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation. Food Chem 133(1):90–101

    CAS  Google Scholar 

  • Schock TB, Newton S, Brenkert K, Leffler J, Bearden DW (2012b) An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation. Food Chem 133(1):90–101

    CAS  Google Scholar 

  • Schock TB, Duke J, Goodson A, Weldon D, Brunson J, Leffler JW, Bearden DW (2013) Evaluation of Pacific white shrimp (Litopenaeus vannamei) health during a superintensive aquaculture growout using NMR-based metabolomics. PLoS One 8(3):e59521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, Ruane N, Jutfelt F, Toften H, Vaughan L (2012) Health of farmed fish: its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem 38(1):85–105

    CAS  PubMed  Google Scholar 

  • Shen G, Wang S, Dong J, Feng J, Xu J, Xia F et al (2019) Metabolic effect of dietary taurine supplementation on grouper (Epinephelus coioides): a 1H-NMR-based metabolomics study. Molecules 24(12):2253

    CAS  PubMed Central  Google Scholar 

  • Silva TS, da Costa AM, Conceição LE, Dias JP, Rodrigues PM, Richard N (2014) Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. Peer J 2:e527

    PubMed  PubMed Central  Google Scholar 

  • Solanky KS, Burton IW, MacKinnon SL, Walter JA, Dacanay A (2005) Metabolic changes in Atlantic salmon exposed to Aeromonas salmonicida detected by 1H-nuclear magnetic resonance spectroscopy of plasma. Dis Aquat Org 65(2):107–114

    CAS  Google Scholar 

  • Song M, Zhao J, Wen HS, Li Y, Li JF, Li LM, Tao YX (2019) The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS One 14(5):e0217133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southam AD, Easton JM, Stentiford GD, Ludwig C, Arvanitis TN, Viant MR (2008) Metabolic changes in flatfish hepatic tumours revealed by NMR-based metabolomics and metabolic correlation networks. J Proteome Res 7(12):5277–5285

    CAS  PubMed  Google Scholar 

  • Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wenbin W et al (2005a) Liver tumors in wild flatfish: a histopathological, proteomic, and metabolomic study. OMICS: A Journal of Integrative Biology 9(3):281–299

    CAS  PubMed  Google Scholar 

  • Stentiford GD, Viant MR, Ward DG, Johnson PJ, Martin A, Wenbin W, Cooper HJ, Lyons BP, Feist SW (2005b) Liver tumors in wild flatfish: a histopathological, proteomic, and metabolomic study. OMICS J Integ Biol 9(3):281–299

    CAS  Google Scholar 

  • Su M-A, Huang Y-T, Chen I-T, Lee D-Y, Hsieh Y-C, Li C-Y, Ng TH, Liang S-Y, Lin S-Y, Huang S-W, Chiang Y-A, Yu H-T, Khoo K-H, Chang G-D, Lo C-F, Wang H-C, Lagunoff M (2014) An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog 10(6):e1004196

    PubMed  PubMed Central  Google Scholar 

  • Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C et al (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci 111(37):13257–13263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vo B, Bui DP, Nguyen HQ, Fotedar R (2015) Optimized fermented lupin (Lupinus angustifolius) inclusion in juvenile barramundi (Lates calcarifer) diets. Aquaculture 444:62–69

    Google Scholar 

  • Viant MR, Lyeth BG, Miller MG, Berman RF (2005) An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomed 18(8):507–516

    CAS  PubMed  Google Scholar 

  • Wagner L, Trattner S, Pickova J, Gómez-Requeni P, Moazzami AA (2014a) 1H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem 147:98–105

    CAS  PubMed  Google Scholar 

  • Wagner L, Trattner S, Pickova J, Gómez-Requeni P, Moazzami AA (2014b) 1H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem 147:98–105

    CAS  PubMed  Google Scholar 

  • Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 70(2):151–161

    CAS  PubMed  Google Scholar 

  • Warne MA, Lenz EM, Osborn D, Weeks JM, Nicholson JK (2001) Comparative biochemistry and short-term starvation effects on the earthworms Eisenia veneta and Lumbricus terrestris studied by 1H NMR spectroscopy and pattern recognition. Soil Biol Biochem 33(9):1171–1180

    CAS  Google Scholar 

  • Wei Y, Liang M, Mai K, Zheng K, Xu H (2017) 1H NMR-based metabolomics studies on the effect of size-fractionated fish protein hydrolysate, fish meal and plant protein in diet for juvenile turbot (Scophthalmus maximus L.). Aquac Nutr 23(3):523–536

    CAS  Google Scholar 

  • Wu H, Zhang J, He Y, Zhou J, Yan J, Jiang M (2017a) A metabolic study in hepatopancreas of Litopenaeus vannamei response to white spot syndrome virus. Int Aquat Res 9(3):195–201

    Google Scholar 

  • Wu H, Zhang J, He Y, Zhou J, Yan J, Jiang M (2017b) A metabolic study in hepatopancreas of Litopenaeus vannamei response to white spot syndrome virus. Int Aquatic Res 9(3):195–201

    Google Scholar 

  • Xiao J, Li QY, Tu JP, Chen XL, Chen XH, Liu QY, Liu H, Zhou XY, Zhao YZ, Wang HL (2019) Stress response and tolerance mechanisms of ammonia exposure based on transcriptomics and metabolomics in Litopenaeus vannamei. Ecotoxicol Environ Saf 180:491–500

    CAS  PubMed  Google Scholar 

  • Xiao M, Qian K, Wang Y, Bao F (2020a) GC-MS metabolomics reveals metabolic differences of the farmed mandarin fish Siniperca chuatsi in recirculating ponds aquaculture system and pond. Sci Rep 10(1):1–8

    CAS  Google Scholar 

  • Xiao M, Qian K, Wang Y, Bao F (2020b) GC-MS metabolomics reveals metabolic differences of the farmed mandarin fish Siniperca chuatsi in recirculating ponds aquaculture system and pond. Sci Rep 10(1):1–8

    CAS  Google Scholar 

  • Xie S, Yin P, Tian L, Liu Y, Niu J (2020) Lipid metabolism and plasma metabolomics of juvenile largemouth bass Micropterus salmoides were affected by dietary oxidized fish oil. Aquaculture 522:735158

    CAS  Google Scholar 

  • Xu H, Mu Y, Zhang Y, Li J, Liang M, Zheng K, Wei Y (2016) Graded levels of fish protein hydrolysate in high plant diets for turbot (Scophthalmus maximus): effects on growth performance and lipid accumulation. Aquaculture 454:140–147

    CAS  Google Scholar 

  • Yoshida S, Date Y, Akama M, Kikuchi J (2014) Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan. Sci Rep 4(1):1–9

    Google Scholar 

  • Yue HM, Wu JP, Ruan R, Ye H, Chen XH, Li CJ (2019) 1H NMR-based metabolomics investigation of dietary soybean meal substitution in hybrid sturgeon (Acipenser baerii♀× A. schrenckii♂)

    Google Scholar 

  • Zhang S, Wang J, Jiang M, Xu D, Peng B, Peng XX, Li H (2019) Reduced redox-dependent mechanism and glucose-mediated reversal in gentamicin-resistant Vibrio alginolyticus. Environ Microbiol 21(12):4724–4739

    CAS  PubMed  Google Scholar 

  • Zhao Y, Wang HP, Yu C, Ding W, Han B, Geng S et al (2021) Integration of physiological and metabolomic profiles to elucidate the regulatory mechanisms underlying the stimulatory effect of melatonin on astaxanthin and lipids coproduction in Haematococcus pluvialis under inductive stress conditions. Bioresour Technol 319:124150

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, R., GM, S., Saurabh, S. (2021). Metabolomic Advances in Fish Nutritional Research and Health Management. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_13

Download citation

Publish with us

Policies and ethics