Skip to main content
Log in

Fish nutrition research: past, present and future

  • European Aquaculture Development since 1993
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The systematic, scientific investigation of nutrition dates from the eighteenth century, but for many years, there were few studies on fish. As a result, knowledge about fish nutrition still lags behind that of man and his domesticated terrestrial animals. Initially, there were few incentives to collect information about the nutritional requirements of fish, and it is difficult to carry out experiments on aquatic animals. Fish were being farmed, but the extensive rearing methods used meant that there was no pressing need to gather detailed information that could be used for preparing feeds. Research into fish nutrition started in earnest around the middle of the twentieth century. Since then information has accumulated quite rapidly as research efforts have been spurred on by the expansion of aquaculture and developments within intensive fish farming. Nevertheless, the gaining of more knowledge about the nutrition of fish still needs to be given priority to assist in the continued development and improvement of sustainable practices in aquaculture. In this brief overview, fish nutrition research is placed in a historical perspective by considering some of the major challenges faced by fish nutritionists, how these challenges were addressed, the advances made, and knowledge gaps that need to be filled. The spotlight is focused on nutrient requirements, feed ingredients and their evaluation, and the formulation of diets that promote effective production whilst serving to maintain fish health and well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almaida-Pagán PF, Rubio VC, Mendiola P et al (2006) Macronutrient selection through post-ingestive signals in sharpnose seabream fed gelatin capsules and challenged with protein dilution. Physiol Behav 88:550–558

    Article  PubMed  CAS  Google Scholar 

  • Aragâo C, Colen R, Ferreira S et al (2014) Microencapsulation of taurine in Senegalese sole diets improves its metabolic availability. Aquaculture 431:53–58

    Article  CAS  Google Scholar 

  • Aranda A, Sánchez-Vázquez FJ, Zamora S, Madrid JA (2000) Self-design of fish diets by means of self-feeders: validation of procedures. J Physiol Biochem 56:155–166

    Article  CAS  PubMed  Google Scholar 

  • Bell JG, Farndale BM, Bruce MP et al (1997) Effects of broodstock dietary lipid on fatty acid compositions of eggs from sea bass (Dicentrarchus labrax). Aquaculture 149:107–119

    Article  CAS  Google Scholar 

  • Betancor MB, Howarth FJE, Glencross BD, Tocher DR (2014) Influence of dietary docosahexaenoic acid in combination with other long-chain polyunsaturated fatty acids on expression of biosynthesis genes and phospholipid fatty acid compositions in tissues of post-smolt Atlantic salmon (Salmo salar). Comp Biochem Physiol B 172–173:74–89

    Article  PubMed  CAS  Google Scholar 

  • Black JL (2014) Brief history and future of animal simulation models for science and application. Anim Prod Sci 54:1883–1895

    CAS  Google Scholar 

  • Brooks S, Tyler CR, Sumpter JR (1997) Quality in fish: what makes a good egg? Rev Fish Biol Fish 7:387–416

    Article  Google Scholar 

  • Carlson DL, Hites RA (2005) Polychlorinated biphenyls in salmon and salmon feed: global differences and bioaccumulation. Environ Sci Technol 39:7389–7395

    Article  CAS  PubMed  Google Scholar 

  • Carpenter KJ (2003a) A short history of nutritional science: part 1 (1785–1885). J Nutr 133:638–645

    CAS  PubMed  Google Scholar 

  • Carpenter KJ (2003b) A short history of nutritional science: part 2 (1885–1912). J Nutr 133:975–984

    CAS  PubMed  Google Scholar 

  • Carpenter KJ (2003c) A short history of nutritional science: part 3 (1912–1944). J Nutr 133:3023–3032

    CAS  PubMed  Google Scholar 

  • Carpenter KJ (2003d) A short history of nutritional science: part 4 (1945–1985). J Nutr 133:3331–3342

    CAS  PubMed  Google Scholar 

  • Castillo S, Gatlin DM III (2015) Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: a review. Aquaculture 435:286–292

    Article  CAS  Google Scholar 

  • Cheng Q, Su B, Qin Z et al (2014) Interaction of diet and masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and n-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res 23:729–742

    Article  CAS  PubMed  Google Scholar 

  • Coccia E, Varricchio E, Vito P et al (2014) Fatty acid-specific alterations in leptin, PPARα, and CPT-1 gene expression in the rainbow trout. Lipids 49:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Conceicão LEC, Yúfera M, Makridis P et al (2010) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  • Cowey CB, Sargent JR (1972) Fish nutrition. Adv Mar Biol 10:383–492

    Article  CAS  Google Scholar 

  • Cubero-Leon E, Peñalver R, Maquet A (2014) Review on metabolomics for food authentication. Food Res Int 60:95–107

    Article  CAS  Google Scholar 

  • Dhert P, King N, O’Brien E (2014) Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture 431:59–64

    Article  CAS  Google Scholar 

  • Domingo E, Tirelli AA, Nunes CA et al (2014) Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: a review. Food Res Int 60:131–139

    Article  CAS  Google Scholar 

  • Elango R, Levesque C, Ball RO, Pencharz PB (2012) Available versus digestible amino acids—new stable isotope methods. Br J Nutr 108:S306–S314

    Article  CAS  PubMed  Google Scholar 

  • Everstine K, Spink J, Kennedy S (2013) Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. J Food Prot 76:723–735

    Article  PubMed  Google Scholar 

  • Finn RN, Fyhn HJ (2010) Requirement for amino acids in ontogeny of fish. Aquac Res 41:684–716

    Article  CAS  Google Scholar 

  • Flachowsky G, Chesson A, Aulrich K (2005) Animal nutrition with feeds from genetically modified plants. Arch Anim Nutr 59:1–40

    Article  PubMed  Google Scholar 

  • Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

    Article  CAS  Google Scholar 

  • Frewer LJ, Coles D, Houdebine L-M, Kleter GA (2014) Attitudes towards genetically modified animals in food production. Br Food J 116:1291–1313

    Article  Google Scholar 

  • Gaggia F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28

    Article  PubMed  Google Scholar 

  • Gatlin DM III, Barrows FT, Brown P et al (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579

    Article  CAS  Google Scholar 

  • Glencross BD, Booth M, Allan GL (2007) A feed is only as good as its ingredients—a review of ingredient evaluation strategies for aquaculture feeds. Aquac Nutr 13:17–34

    Article  CAS  Google Scholar 

  • Gong Y, Wan X, Jiang M et al (2014) Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated acids. Prog Lipid Res 56:19–35

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Bakke AM, Valen EC et al (2014a) Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles—impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses. PLoS ONE 9:399932

    Google Scholar 

  • Gu M, Kortner TM, Penn M et al (2014b) Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br J Nutr 111:432–444

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Halver JE (ed) (1972) Fish nutrition. Academic Press, New York

    Google Scholar 

  • Halver JE (ed) (1989) Fish nutrition, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Halver JE, Hardy RW (eds) (2002) Fish nutrition, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Hara TJ (ed) (1992) Fish chemoreception. Chapman and Hall, London

    Google Scholar 

  • Hara TJ (1994) The diversity of chemical stimulation of fish olfaction and gustation. Rev Fish Biol Fish 4:1–35

    Article  Google Scholar 

  • Hara TJ (2006) Feeding behaviour in some teleosts is triggered by single amino acids primarily through olfaction. J Fish Biol 68:810–825

    Article  CAS  Google Scholar 

  • Harter TS, Heinsbroek LTN, Schrama JW (2014) The source of dietary non-protein energy affects in vivo protein digestion in African catfish (Clarias gariepinus). Aquac Nutr. doi:10.1111/anu.12185

    Google Scholar 

  • Hertrampf JW, Piedad-Pascual F (2000) Handbook on Ingredients for aquaculture feeds. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Hites RA, Foran JA, Carpenter DO et al (2004) Global assessment of organic contaminants in farmed salmon. Science 303:226–229

    Article  CAS  PubMed  Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Holt GJ (ed) (2011) Larval fish nutrition. Wiley, Oxford

    Google Scholar 

  • Houlihan D, Boujard T, Jobling M (eds) (2001) Food intake in fish. Blackwell Science, Oxford

    Google Scholar 

  • Huet M (1986) Textbook of fish culture: breeding and cultivation of fish, 2nd edn. Fishing News Books, Farnham

    Google Scholar 

  • Jobling M, Arnesen AM, Baardvik BM et al (1995) Monitoring feeding behaviour and food intake: methods and applications. Aquac Nutr 1:131–143

    Article  Google Scholar 

  • Jones AC, Mead A, Kaiser MJ et al (2014) Prioritization of knowledge needs for sustainable aquaculture: a national and global perspective. Fish Fish. doi:10.1111/faf.12086

    Google Scholar 

  • Kamler E (2008) Resource allocation in yolk-feeding fish. Rev Fish Biol Fish 18:143–200

    Article  Google Scholar 

  • Kasumyan AO, Døving KB (2003) Taste preferences in fishes. Fish Fish 4:289–347

    Article  Google Scholar 

  • Kitessa SM, Abeywardena M, Wijesundera C, Nichols PD (2014) DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils. Nutrients 6:2035–2058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kjørsvik E, Magnor-Jensen A, Holmefjord I (1990) Egg quality in fishes. Adv Mar Biol 26:71–113

    Article  Google Scholar 

  • Kortner TM, Björkheim I, Krasnov A et al (2014) Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.). Br J Nutr 111:2089–2103

    Article  CAS  PubMed  Google Scholar 

  • Lau W, Fischbach MA, Osbourn A, Sattely ES (2014) Key applications of plant metabolic engineering. PLoS ONE 12:e1001879

    Article  Google Scholar 

  • Lazado CC, Caipang CMA (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39:78–89

    Article  CAS  PubMed  Google Scholar 

  • Li P, Mai K, Trushenski J, Wu G (2009) New developments in fish amino acid nutrition: towards functional and environmentally orientated aquafeeds. Amino Acids 37:43–53

    Article  PubMed  CAS  Google Scholar 

  • Li W, Wei QW, Luo H (2014) Special collector and count method in a recirculating aquaculture system for calculation of feed conversion ratio in fish. Aquacult Eng 60:63–67

    Article  Google Scholar 

  • Liu H, Xue M, Wang J et al (2014) Tissue deposition and residue depletion in rainbow trout following continuous voluntary feeding with various levels of melamine or a blend of melamine and cyanuric acid. Comp Biochem Physiol C 166:51–58

    CAS  Google Scholar 

  • Mæhre HK, Hamre K, Elvevoll EO (2013) Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquac Nutr 19:301–311

    Article  CAS  Google Scholar 

  • Malisch R, Kotz A (2014) Dioxins and PCBs in feed and food—review from European perspective. Sci Total Environ 491–492:2–10

    Article  PubMed  CAS  Google Scholar 

  • McKevith B (2005) Nutritional aspects of oilseeds. Nutr Bull 30:13–26

    Article  Google Scholar 

  • McLarney W (2013) Freshwater aquaculture: a handbook for small scale fish culture in North America. Echo Point Books and Media, Brattleboro

    Google Scholar 

  • Merrifield D, Ringø E (eds) (2014) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley, Chichester

    Google Scholar 

  • Montory M, Barra R (2006) Preliminary data on polybrominated diphenyl ethers (PBDEs) in farmed fish tissues (Salmo salar) and fish feed in Southern Chile. Chemosphere 63:1252–1260

    Article  CAS  PubMed  Google Scholar 

  • Moore JC, DeVries JW, Lipp M et al (2010) Total protein methods and their potential utility to reduce the risk of food protein adulteration. Compr Rev Food Sci Food Saf 9:330–357

    Article  CAS  Google Scholar 

  • Moore JC, Spink J, Lipp M (2012) Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J Food Sci 77:R118–R126

    Article  CAS  PubMed  Google Scholar 

  • Nash CE (2011) The history of aquaculture. Wiley, Ames

    Book  Google Scholar 

  • Nayak SK (2010a) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  • Nayak SK (2010b) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14

    Article  CAS  PubMed  Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP et al (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newaj-Fyzul A, Austin B (2014) Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases. J Fish Dis. doi:10.1111/jfd.12313

    PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  • NRC (National Research Council) (1973) Nutrient requirements of domestic animals; 11 Nutrient requirements of trout, salmon and catfish. National Research Council, Washington

    Google Scholar 

  • NRC (National Research Council) (1993) Nutrient requirements of fish. National Academy Press, Washington

    Google Scholar 

  • NRC (National Research Council) (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington

    Google Scholar 

  • Nunes AJP, Sá MVC, Browdy CL, Vazquez-Anon M (2014) Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture 431:20–27

    Article  CAS  Google Scholar 

  • Olsen Y, Evjemo JO, Kjørsvik E et al (2014) DHA content in dietary phospholipids affects DHA content in phospholipids of cod larvae and larval performance. Aquaculture 428–429:203–214

    Article  CAS  Google Scholar 

  • Otter DE (2012) Standardised methods for amino acid analysis of food. Br J Nutr 108:S230–S237

    Article  CAS  PubMed  Google Scholar 

  • Pang S-C, Wang H-P, Li K-Y et al (2014) Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in zebrafish model. Mar Biotechnol 16:580–593

    Article  CAS  PubMed  Google Scholar 

  • Perugini M, Manera M, Tavoloni T et al (2013) Temporal trends of PCBs in feed and dietary influence in farmed rainbow trout (Oncorhynchus mykiss). Food Chem 141:2321–2327

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Shrestha P, Zhou X-R et al (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 7:e49165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie JR, Shrestha P, Belide S et al (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 9:e85061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips AM Jr (1969) Nutrition, digestion and energy utilization. In: Hoar WS, Randall DJ (eds) Fish physiology, vol I. Academic Press, Orlando, pp 391–432

    Google Scholar 

  • Rasala BA, Chao S-S, Pier M et al (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS ONE 9:e94028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasdi NW, Qin JG (2014) Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquac Res. doi:10.1111/are.12471

    Google Scholar 

  • Rasmussen RS, Morrissey MT (2008) DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food Saf 7:280–294

    Article  CAS  Google Scholar 

  • Rasmussen RS, Morrissey MT (2009) Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr Rev Food Sci Food Saf 8:118–154

    Article  CAS  Google Scholar 

  • Raubenheimer D, Simpson SJ, Mayntz D (2009) Nutrition, ecology and nutritional ecology: toward an integrated framework. Funct Ecol 23:4–16

    Article  Google Scholar 

  • Reverter M, Bontemps N, Lecchini D et al (2014) Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433:50–61

    Article  Google Scholar 

  • Richard N, Fernández I, Wulff T et al (2014) Dietary supplementation with vitamin K affects transcriptome and proteome of Senegalese sole, improving larval performance and quality. Mar Biotechnol 16:522–537

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Olsen RE, Gifstad TØ et al (2010) Prebiotics in aquaculture: a review. Aquac Nutr 16:117–136

    Article  CAS  Google Scholar 

  • Ringø E, Olsen RE, Jensen I et al (2014) Application of vaccines and dietary supplements in aquaculture: possibilities and challenges. Rev Fish Biol Fish 24:1005–1032

    Article  Google Scholar 

  • Rodrigues PM, Silva TS, Dias J, Jessen F (2012) Proteomics in aquaculture: applications and trends. J Proteomics 75:4325–4345

    Article  CAS  PubMed  Google Scholar 

  • Røjbek MC, Støttrup JG, Jacobsen C et al (2014) Effects of dietary fatty acids on the production and quality of eggs and larvae of Atlantic cod (Gadus morhua L.). Aquac Nutr 20:654–666

    Article  CAS  Google Scholar 

  • Ronald PC (2014) Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS ONE 12:e1001878

    Article  CAS  Google Scholar 

  • Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2003) Macronutrient selection through postingestive signals in sea bass fed on gelatine capsules. Physiol Behav 78:795–803

    Article  CAS  PubMed  Google Scholar 

  • Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2005) Fish macronutrient selection through post-ingestive signals: effect of selective macronutrient deprivation. Physiol Behav 84:651–657

    Article  CAS  PubMed  Google Scholar 

  • Rubio VC, Sánchez-Vázquez FJ, Madrid JA (2006) Oral serotonin administration affects the quantity and the quality of macronutrients selection in European sea bass Dicentrarchus labrax L. Physiol Behav 87:7–15

    Article  CAS  PubMed  Google Scholar 

  • Rubio VC, Boluda Navarro D, Madrid JA, Sánchez-Vázquez FJ (2009) Macronutrient self-selection in Solea senegalenis fed macronutrient diets and challenged with dietary protein dilutions. Aquaculture 291:95–100

    Article  CAS  Google Scholar 

  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R et al (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  PubMed  Google Scholar 

  • Salze GP, Davis DA (2015) Taurine: a critical nutrient for future fish feeds. Aquaculture 437:215–229

    Article  CAS  Google Scholar 

  • Sánchez-Vázquez FJ, Yamamoto T, Akiyama T et al (1998) Selection of macronutrients by goldfish operating self-feeders. Physiol Behav 65:211–218

    Article  PubMed  Google Scholar 

  • Sánchez-Vázquez FJ, Yamamoto T, Akiyama T et al (1999) Macronutrient self-selection through demand-feeders in rainbow trout. Physiol Behav 66:45–51

    Article  PubMed  Google Scholar 

  • Semba RD (2012) The discovery of the vitamins. Int J Vitam Nutr Res 82:310–315

    Article  CAS  PubMed  Google Scholar 

  • Shearer KD (2000) Experimental design, statistical analysis and modelling of dietary nutrient requirement studies for fish: a critical review. Aquac Nutr 6:91–102

    Article  CAS  Google Scholar 

  • Shepherd J, Bachis E (2014) Changing supply and demand for fish oil. Aquac Econ Manag 18:395–416

    Article  Google Scholar 

  • Simpson SJ, Raubenheimer D (2001) A framework for the study of macronutrient intake in fish. Aquac Res 32:421–432

    Article  CAS  Google Scholar 

  • Sissener NH, Julshamn K, Espe M et al (2013) Surveillance of selected nutrients, additives and undesirables in commercial Norwegian fish feeds in the years 2000–2010. Aquac Nutr 19:555–572

    Article  CAS  Google Scholar 

  • Song SK, Beck BR, Kim D et al (2014) Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 40:40–48

    Article  CAS  PubMed  Google Scholar 

  • Støttrup J, McEvoy L (eds) (2002) Live feeds in marine aquaculture. Blackwell Science, Oxford

    Google Scholar 

  • Sundell K, Power D (eds) (2008) Special issue: functional genomics in sustainable aquaculture. Rev Fish Sci 16(Supplement 1):1–166

  • Swiatkiewicz S, Swiatkiewicz M, Arczewska-Wlosek A, Jozefiak D (2014) Genetically modified feeds and their effect on the metabolic parameters of food-producing animals: a review of recent studies. Anim Feed Sci Technol 198:1–19

    Article  CAS  Google Scholar 

  • Tacchi L, Bickerdike R, Douglas A et al (2011) Transcriptomic responses to functional feeds in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 31:704–715

    Article  CAS  PubMed  Google Scholar 

  • Tacchi L, Secombes CJ, Bickerdike R et al (2012) Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genom 13:363

    Article  CAS  Google Scholar 

  • Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158

    Article  CAS  Google Scholar 

  • Takeuchi T (2014) Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: a review. Fish Sci 80:389–403

    Article  CAS  Google Scholar 

  • Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible applications. Rev Fish Biol Fish 19:265–293

    Article  Google Scholar 

  • Tena N, Pierna JAF, Boix A et al (2014) Differentiation of meat and bone meal from fishmeal by near-infrared spectroscopy: extension of scope to defatted samples. Food Control 43:155–162

    Article  Google Scholar 

  • Thomas LV, Ockhuizen T, Suzuki K (2014) Exploring the influence of the gut microbiota and probiotics on health: a symposium report. Br J Nutr 112(S1):S1–S18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tocher DR (2010) Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res 41:717–732

    Article  CAS  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  • Turchini GM, Ng W-K, Tocher DR (eds) (2011) Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca Raton

    Google Scholar 

  • Van Eenennaam AL, Young AE (2014) Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J Anim Sci 92:4255–4278

    Article  PubMed  CAS  Google Scholar 

  • Venegas-Caleron M, Sayanova O, Napier JA (2010) An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog Lipid Res 49:108–119

    Article  CAS  PubMed  Google Scholar 

  • Vivas M, Rubio VC, Sánchez-Vázquez FJ et al (2006) Dietary self-selection in sharpsnout seabream (Diplodus puntazzo) fed paired macronutrient feeds and challenged with protein dilution. Aquaculture 251:430–437

    Article  CAS  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS ONE 12:e1001877

    Article  Google Scholar 

  • Wang J, Wu G, Zhou H, Wang F (2009) Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 37:177–186

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Kiron V (1994) Prospects in larval fish dietetics. Aquaculture 124:223–251

    Article  Google Scholar 

  • Webster CD, Lim CE (eds) (2002) Nutrient requirements and feeding of finfish for aquaculture. CABI Publishing, Wallingford

    Google Scholar 

  • Wiegand MD (1996) Composition, accumulation and utilization of yolk lipids in teleost fish. Rev Fish Biol Fish 6:259–286

    Article  Google Scholar 

  • Wilson RP (ed) (1991) Handbook of nutrient requirements of finfish. CRC Press, Boca Raton

    Google Scholar 

  • Xue X, Feng CY, Hixson SM et al (2014) Characterization of the fatty acyl elongase (elovl) gene family, and hepatic elovl and delta-6 fatty acyl desaturase transcript expression and fatty acid responses to diets containing camelina oil in Atlantic cod (Gadus morhua). Comp Biochem Physiol B 175:9–22

    Article  CAS  PubMed  Google Scholar 

  • Yasumara F, Lemos D (2014) Species specific in vitro protein digestion (pH-stat) for fish: method development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture 426–427:74–84

    Article  CAS  Google Scholar 

  • Yearsley JM, Villalba JJ, Gordon IJ et al (2006) A theory associating food types with their postingestive consequences. Am Nat 167:705–716

    Article  PubMed  Google Scholar 

  • Yoshimatsu T, Hossain MA (2014) Recent advances in the high-density rotifer culture in Japan. Aquacult Int 22:1587–1603

    Article  Google Scholar 

  • Zdunczyk Z, Pareek CS (2008) Application of nutrigenomics tools in animal feeding and nutritional research. J Anim Feed Sci 17:3–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Jobling.

Additional information

Guest editors: Elena Mente & Aad Smaal / European Aquaculture Development since 1993: The benefits of aquaculture to Europe and the perspectives of European aquaculture production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jobling, M. Fish nutrition research: past, present and future. Aquacult Int 24, 767–786 (2016). https://doi.org/10.1007/s10499-014-9875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-014-9875-2

Keywords

Navigation