Skip to main content

Thiazolidinediones (TZDs)

  • Chapter
  • First Online:
Stroke Revisited: Diabetes in Stroke

Part of the book series: Stroke Revisited ((STROREV))

Abstract

Insulin resistance is essential pathophysiology of type 2 diabetes mellitus (T2DM). And unsuppressed lipolysis in adipocytes with increased free fatty acids (FFAs) concentration and deposit in various tissues contribute to develop insulin resistance. Thiazolidinediones (TZDs) were developed by chance to explore potent fibrate hypolipidemic drugs since mid-1970s. The mechanism by which TZDs reduce insulin resistance involves binding to the peroxisome proliferator-activated receptor (PPAR) γ, a transcription factor that regulates the expression of specific genes, especially in adipose tissue. The most significant advantage of TZDs (pioglitazone, lobeglitazone, and rosiglitazone) is that they do not cause hypoglycemia as monotherapy and are not contraindicated in patients with renal disease. By terms of efficacy, TZDs effectively reduce glycated hemoglobin A1c as a mono- or combination therapy and showed beneficial effects on lipid profiles (molecular specific). And TZDs are well known to be effective in the prevention of diabetes in subjects with high risk and to maintain the durability of insulin sensitivity. However, fluid retention, edema, and the risk of aggravating heart failure are the major adverse effects of TZD. And unresolved critical issues are remained Cardiovascular safety, association with certain cancers (i.e., bladder cancer), macular edema, and osteoporosis in women. Therefore, clinical judgments are needed in the use of TZDs with a balance of their strengths and weakness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lalloyer F, Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol. 2010;30(5):894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347(6294):645–50.

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J Biol Chem. 1995;270(22):12953–6.

    Article  CAS  PubMed  Google Scholar 

  4. H-i K, Y-h A. Role of peroxisome proliferator-activated receptor-γ in the glucose-sensing apparatus of liver and β-cells. Diabetes. 2004;53(suppl 1):S60–S5.

    Google Scholar 

  5. Soccio RE, Chen ER, Lazar MA. Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes. Cell Metab. 2014;20(4):573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article  CAS  PubMed  Google Scholar 

  7. Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 1989;84(1):205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  9. Hsueh W, Law RE, Saad M, Dy J, Feener E, King G. Insulin resistance and macrovascular disease. Curr Opin Endocrinol Diabetes Obes. 1996;3(4):346–54.

    Article  Google Scholar 

  10. Bikkad MD, Ugle SS. Diabetic dyslipidemia insulin resistance may be one of the causes of microalbuminuria.

    Google Scholar 

  11. Trovati M, Anfossi G. Insulin, insulin resistance and platelet function: similarities with insulin effects on cultured vascular smooth muscle cells. Diabetologia. 1998;41(6):609–22.

    Article  CAS  PubMed  Google Scholar 

  12. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101(15):1780–4.

    Article  CAS  PubMed  Google Scholar 

  13. Osei K, Gaillard T, Kaplow J, Bullock M, Schuster D. Effects of rosglitazone on plasma adiponectin, insulin sensitivity, and insulin secretion in high-risk African Americans with impaired glucose tolerance test and type 2 diabetes. Metabolism. 2004;53(12):1552–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliterator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol. 1997;8(3):159–66.

    Article  CAS  PubMed  Google Scholar 

  15. Miyazaki Y, Glass L, Triplitt C, Matsuda M, Cusi K, Mahankali A, et al. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type II diabetic patients. Diabetologia. 2001;44(12):2210–9.

    Article  CAS  PubMed  Google Scholar 

  16. Yki-Järvinen H. Thiazolidinediones. N Engl J Med. 2004;351(11):1106–18.

    Article  PubMed  Google Scholar 

  17. Yamasaki Y. Pioglitazone enhances splanchnic glucose uptake as well as peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract. 1998;1(41):35–43.

    Google Scholar 

  18. Lehrke M, Lazar MA. The many faces of PPARγ. Cell. 2005;123(6):993–9.

    Article  CAS  PubMed  Google Scholar 

  19. Arnold SV, Inzucchi SE, Echouffo-Tcheugui JB, Tang F, Lam CSP, Sperling LS, et al. Understanding contemporary use of Thiazolidinediones. Circ Heart Fail. 2019;12(6):e005855.

    Article  PubMed  Google Scholar 

  20. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  21. Tucker ME. FDA panel advises easing restrictions on rosiglitazone. BMJ. 2013;346:f3769.

    Article  PubMed  Google Scholar 

  22. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metabol. 2004;89(2):463–78.

    Article  CAS  Google Scholar 

  23. Matthews D, Charbonnel B, Hanefeld M, Brunetti P, Schernthaner G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of gliclazide to metformin in patients with type 2 diabetes: a randomized, comparative study. Diabetes Metab Res Rev. 2005;21(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  24. Scheen A, Tan M, Betteridge D, Birkeland K, Schmitz O, Charbonnel B, et al. Long-term glycaemic effects of pioglitazone compared with placebo as add-on treatment to metformin or sulphonylurea monotherapy in PROactive (PROactive 18). Diabet Med. 2009;26(12):1242–9.

    Article  CAS  PubMed  Google Scholar 

  25. Viberti G, Kahn SE, Greene DA, Herman WH, Zinman B, Holman RR, et al. A diabetes outcome progression trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care. 2002;25(10):1737–43.

    Article  CAS  PubMed  Google Scholar 

  26. Eldor R, DeFronzo RA, Abdul-Ghani M. In vivo actions of peroxisome proliferator–activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care. 2013;36(Supplement 2):S162–S74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes. 2002;51(9):2796–803.

    Article  CAS  PubMed  Google Scholar 

  28. Investigators DT. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368(9541):1096–105.

    Article  CAS  Google Scholar 

  29. DeFronzo R, Tripathy D, Schwenke D, Banerji M, Bray G, Buchanan T, et al. ACT NOW study. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.

    Article  CAS  PubMed  Google Scholar 

  30. Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care. 2001;24(7):1226–32.

    Article  CAS  PubMed  Google Scholar 

  31. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The pioglitazone 001 study group. Diabetes Care. 2000;23(11):1605–11.

    Article  CAS  PubMed  Google Scholar 

  32. Maloney A, Rosenstock J, Fonseca V. A model-based meta-analysis of 24 antihyperglycemic drugs for type 2 diabetes: comparison of treatment effects at therapeutic doses. Clin Pharmacol Ther. 2019;105(5):1213–23.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SG, Kim DM, Woo J-T, Jang HC, Chung CH, Ko KS, et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLoS One. 2014;9(4):e92843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Buchanan T, Meehan W, Jeng Y, Yang D, Chan T, Nadler J, et al. Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest. 1995;96(1):354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dormandy J. PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in mcro-vascular events): a randomized controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  36. Ferrannini E, Betteridge D, Dormandy J, Charbonnel B, Wilcox R, Spanheimer R, et al. High-density lipoprotein-cholesterol and not HbA1c was directly related to cardiovascular outcome in PROactive. Diabetes Obes Metab. 2011;13(8):759–64.

    Article  CAS  PubMed  Google Scholar 

  37. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016;164(11):740–51.

    Article  PubMed  Google Scholar 

  38. Yoon J-H, Min SH, Ahn CH, Cho YM, Hahn S. Comparison of non-insulin antidiabetic agents as an add-on drug to insulin therapy in type 2 diabetes: a network meta-analysis. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  39. Chilton RJ, Dungan KM, Shubrook JH, Umpierrez GE. Cardiovascular risk and the implications for clinical practice of cardiovascular outcome trials in type 2 diabetes. Prim Care Diabetes. 14(3):193–212. https://doi.org/10.1016/j.pcd.2019.09.008. Epub 2019 Nov 6

  40. Loke YK, Kwok CS, Singh S. Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies. BMJ. 2011;342:d1309. https://doi.org/10.1136/bmj.d1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wallach JD, Wang K, Zhang AD, Cheng D, Nardini HKG, Lin H, et al. Updating insights into rosiglitazone and cardiovascular risk through shared data: individual patient and summary level meta-analyses. BMJ. 2020;368:l7078. https://doi.org/10.1136/bmj.l7078.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  43. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374:1321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vaccaro O, Masulli M, Nicolucci A, Bonora E, Del Prato S, Maggioni AP, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA. IT): a randomised, multicentre trial. The lancet Diabetes & endocrinology. 2017;5(11):887–97.

    Article  Google Scholar 

  45. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: a meta-analysis. JAMA Intern Med. 2017;177(5):633–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep. 2013;13(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  47. Abbas A, Blandon J, Rude J, Elfar A, Mukherjee D. PPAR-γ agonist in treatment of diabetes: cardiovascular safety considerations. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents). 2012;10(2):124–34.

    Article  CAS  Google Scholar 

  48. Wilcox R, Bousser M-G, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S, et al. Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone clinical trial in macroVascular events 04). Stroke. 2007;38(3):865–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hong G, Lockhart A, Davis B, Rahmoune H, Baker S, Ye L, et al. PPARγ activation enhances cell surface ENaCα via up-regulation of SGK1 in human collecting duct cells. FASEB J. 2003;17(13):1–17.

    Article  CAS  Google Scholar 

  50. Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation. 2003;108(23):2941–8.

    Article  PubMed  Google Scholar 

  51. Karalliedde J, Buckingham R, Starkie M, Lorand D, Stewart M, Viberti G. Effect of various diuretic treatments on rosiglitazone-induced fluid retention. J Am Soc Nephrol. 2006;17(12):3482–90.

    Article  CAS  PubMed  Google Scholar 

  52. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest. 1997;100(12):3149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dormandy J, Bhattacharya M. de Bruyn A-RvT, Investigators P. safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes. Drug Saf. 2009;32(3):187–202.

    Article  CAS  PubMed  Google Scholar 

  54. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann M Jr, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143(6):2376–84.

    Article  CAS  PubMed  Google Scholar 

  55. Bazelier MT, De Vries F, Vestergaard P, Herings R, Gallagher AM, Leufkens HG, et al. Risk of fracture with thiazolidinediones: an individual patient data meta-analysis. Front Endocrinol. 2013;4:11.

    Google Scholar 

  56. Scheen A. Thiazolidinediones and liver toxicity. Diabetes and Metabolism. 2001;27(3):305–13.

    CAS  PubMed  Google Scholar 

  57. Al-Salman J, Arjomand H, Kemp DG, Mittal M. Hepatocellular injury in a patient receiving rosiglitazone: a case report. Ann Intern Med. 2000;132(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  58. Maeda K. Hepatocellular injury in a patient receiving pioglitazone. Ann Intern Med. 2001;135(4):306.

    Article  CAS  PubMed  Google Scholar 

  59. Baldwin S, Clarke S, Chenery R. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol. 1999;48(3):424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Chul Won .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Won, J.C. (2021). Thiazolidinediones (TZDs). In: Lee, SH., Kang, DW. (eds) Stroke Revisited: Diabetes in Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-16-5123-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5123-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5122-9

  • Online ISBN: 978-981-16-5123-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics