Skip to main content

Plant Phenolic Compounds for Abiotic Stress Tolerance

  • Chapter
  • First Online:
Managing Plant Production Under Changing Environment

Abstract

Abiotic stresses (drought, salinity, metal toxicity, heat, cold, extreme light, nutrient deficiency, UV radiation) are causing adverse climatic situations for plants survival. Eventually different physiological and metabolic alterations are induced in plants to loss their potentiality to survive and even cause death. However, plants are well equipped with coordinated and organized defense systems against abiotic stresses. As phytoprotectant, phenolic compounds (PCs) are promising group for inducing tolerance in plants against abiotic stresses. Plants synthesize these potential metabolites to modulate their defense mechanism when exposed to stresses. But their active actions including physiological, and signaling responses in stressed plants still scattered. Antioxidative nature of these compounds is also promising properties for gaining plant tolerance to adverse climatic conditions. The present review is an attempt to coordinate the significant informations about PCs and their contributions to sustain plants. We have summarized and critically evaluated the available literatures of PCs to strengthen the plant tolerance by their antioxidant natures. Finally, there is a vast hope for protecting plants by using this group as phytoprotectant under abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acidri R, Sawai Y, Sugimoto Y, Handa T, Sasagawa D, Masunaga T, Yamamoto S, Nishihara E (2020) Exogenous kinetin promotes the nonenzymatic antioxidant system and photosynthetic activity of coffee (Coffea arabica L.) plants under cold stress conditions. Plants 9(2):281. https://doi.org/10.3390/plants9020281

    Article  CAS  PubMed Central  Google Scholar 

  • Afanas’ev IB, Dcrozhko AI, BrodskiiA V, Kostyuk VA, Potapovitch AI (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38:1763–1769

    PubMed  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2020) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomol Ther 10:42. https://doi.org/10.3390/biom10010042

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77(1):36–44

    CAS  Google Scholar 

  • Al-Ghamdi AA, Elansary HO (2018) Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiol Biochem 129:273–284

    CAS  PubMed  Google Scholar 

  • Aloisi I, Parrotta L, Ruiz KB, Landi C, Bini L, Cai G, Biondi S, Del Duca S (2016) New insight into quinoa seed quality under salinity: changes in proteomic and amino acid profiles, phenolic content, and antioxidant activity of protein extracts. Front Plant Sci 7:656. https://doi.org/10.3389/fpls.2016.00656

    Article  PubMed  PubMed Central  Google Scholar 

  • An YQ, Sun L, Wang XJ, Sun R, Cheng ZY, Zhu ZK, Yan GG, Li YX, Bai JG (2019) Vanillic acid mitigates dehydration stress responses in blueberry plants. Russ J Plant Physiol 66:806–817

    CAS  Google Scholar 

  • Ancillotti C, Bogani P, Biricolti S, Calistri E, Checchini L, Ciofi L, Gonnelli C, Bubba MD (2015) Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdori Weinmann in response to water and heat stress. Plant Physiol Biochem 97:52–61

    CAS  PubMed  Google Scholar 

  • Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488

    Google Scholar 

  • Araniti F, Lupini A, Mauceri A, Zumbo A, Sunseri F, Abenavoli MR (2018) The allelochemical trans-cinnamic acid stimulates salicylic acid production and galactose pathway in maize leaves: a potential mechanism of stress tolerance. Plant Physiol Biochem 128:32–40

    CAS  PubMed  Google Scholar 

  • Arora A, Byrem TM, Nari MG, Strasburg GM (2000) Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373:102–109

    CAS  PubMed  Google Scholar 

  • Arora A, Nair MG, Strasburg GM (1998) Structure-activity relationships for antioxidant activities of a series of plavonoids in a liposomal system. Free Radic Biol Med 24:1355–1363

    CAS  PubMed  Google Scholar 

  • Babenko LM, Smirnov OE, Romanenko KO, Trunova OK, Kosakіvsk IV (2019) Phenolic compounds in plants: biogenesis and functions. Ukr Biochem J 91:41635484. https://doi.org/10.15407/ubj91.03.005

    Article  CAS  Google Scholar 

  • Ballizany WL, Hofmann RW, Jahufer MZZ, Barrett BA (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177

    CAS  PubMed  Google Scholar 

  • Bhuyan MHMB, Parvin K, Mohsin SM, Mahmud JA, Hasanuzzaman M, Fujita M (2020) Modulation of cadmium tolerance in rice: insight into vanillic acid-induced upregulation of antioxidant defense and glyoxalase systems. Plants 9:188. https://doi.org/10.3390/plants9020188

    Article  CAS  PubMed Central  Google Scholar 

  • Bistgani ZE, Hashemi M, DaCosta M, Craker L, Maggi F, Morshedloo MR (2019) Effect of salinity stress on the physiological characteristics, phenolic compounds and antioxidant activity of Thymus vulgaris L. and Thymus daenensis Celak. Ind Crop Prod 135:311–320

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    CAS  PubMed  Google Scholar 

  • Catarino MD, Silva AMS, Cardoso SM (2017) Fucaceae: a source of bioactive phlorotannins. Int J Mol Sci 18:1327. https://doi.org/10.3390/ijms18061327

    Article  CAS  PubMed Central  Google Scholar 

  • Chavoushi M, Najafi F, Salimi A, Angaji SA (2019) Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind Crop Prod 134:168–176

    CAS  Google Scholar 

  • Chavoushi M, Najafi F, Salimi A, Angaji SA (2020) Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Sci Hortic 259:108823. https://doi.org/10.1016/j.scienta.2019.108823

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019a) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    CAS  PubMed  Google Scholar 

  • Chen S, Wu F, Li Y, Qian Y, Pan X, Li F, Wang Y, Wu Z, Fu C, Lin H, Yang A (2019b) NtMYB4 and NtCHS1 are critical factors in the regulation of flavonoid biosynthesis and are involved in salinity responsiveness. Front Plant Sci 10:178. https://doi.org/10.3389/fpls.2019.00178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Xiao H, Zheng J, Liang G (2015) Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS One 10:e0121276. https://doi.org/10.1371/journal.pone.0121276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ma Y, Yang R, Gu Z, Wang P (2019c) Effects of exogenous Ca2+ on phenolic accumulation and physiological changes in germinated wheat (Triticum aestivum L.) under UV-B radiation. Food Chem 288:368–376

    CAS  PubMed  Google Scholar 

  • Cheng ZY, Sun L, Wang XJ, Sun R, An YQ, An BL, Zhu MX, Zhao CF, Bai JG (2018) Ferulic acid pretreatment alleviates heat stress in blueberry seedlings by inducing antioxidant enzymes, proline, and soluble sugars. Biol Plant 62:534–542

    CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    CAS  PubMed  Google Scholar 

  • Cohen SD, Kennedy JA (2010) Plant metabolism and the environment: implications for managing phenolics. Crit Rev Food Sci Nutr 50:620–643

    CAS  PubMed  Google Scholar 

  • Colak N, Torun H, Gruz J, Strnad M, Ayaz FA (2019) Exogenous N-acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defence systems in wheat roots. Ecotoxicol Environ Saf 181:49–59

    CAS  PubMed  Google Scholar 

  • Commisso M, Toffali K, Strazzer P, Stocchero M, Ceoldo S, Baldan B, Levi M, Guzzo F (2016) Impact of phenylpropanoid compounds on heat stress tolerance in carrot cell cultures. Front Plant Sci 7:1439. https://doi.org/10.3389/fpls.2016.01439

    Article  PubMed  PubMed Central  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet, 1. Blackwell, London

    Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Damalas CA (2019) Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci Hortic 246:360–365

    CAS  Google Scholar 

  • de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E (2019) Phenolic compounds. In: Elhadi MY (ed) Postharvest physiology and biochemistry of fruits and vegetables. Elsevier, Cambridge, pp 253–271

    Google Scholar 

  • Dias MI, Sousa MJ, Alves RC, Ferreira IC (2016) Exploring plant tissue culture to improve the production of phenolic compounds: a review. Ind Crop Prod 82:9–22

    CAS  Google Scholar 

  • Dixon RA, Pasinetti GM (2010) Flavonoids and isoflavonoids: from plant biology to agriculture and neuroscience. Plant Physiol 154:453–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dkhil BB, Denden M (2012) Effect of salt stress on growth, anthocyanins, membrane permeability and chlorophyll fluorescence of okra (Abelmoschus esculentus L.) seedlings. Am J Plant Physiol 7:174–183

    Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Stress protection by secondary metabolites. Gen Appl Plant Physiol 34(1–2):67–78

    CAS  Google Scholar 

  • El-Soud WA, Hegab MM, AbdElgawad H, Zinta G, Asard H (2013) Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings. Plant Physiol Biochem 71:173–183

    CAS  PubMed  Google Scholar 

  • Garcia-Calderon M, Pons-Ferrer T, Mrazova A, Pal’ove-Balang P, Vilkova M, Perez-Delgado CM, Vega JM, Eliasova A, Repcak M, Marquez AJ, Betti M (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760. https://doi.org/10.3389/fpls.2015.00760

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharibi S, Tabatabaei BES, Saeidi G, Talebi M, Matkowski A (2019) The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.F. Phytochemistry 162:90–98

    CAS  PubMed  Google Scholar 

  • Ghasemi S, Kumleh HH, Kordrostami M (2019) Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. Protoplasma 256:279–290

    CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Farhangi-Abriz S (2018) Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicol Environ Saf 166:18–25

    CAS  PubMed  Google Scholar 

  • Giada MDLR (2013) Food phenolic compounds: Main classes, sources and their antioxidant power. In: Morales-Gonzalez JA (ed) Oxidative stress and chronic degenerative diseases—a role for antioxidants. InTech, Rijeka, pp 87–112

    Google Scholar 

  • Golkar P, Taghizadeh M (2018) In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in saower (Carthamus tinctorius L.) under salinity stress. Plant Cell Tissue Org Cult 134:357–368

    CAS  Google Scholar 

  • Goyal A, Siddiqui S, Upadhyay N, Soni J (2014) Effects of ultraviolet irradiation, pulsed electric field, hot water and ethanol vapours treatment on functional properties of mung bean sprouts. J Food Sci Technol 51:708–714

    CAS  PubMed  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    CAS  PubMed  Google Scholar 

  • Ha K, Jo S, Mannam V, Kwon YI, Apostolisdis E (2016) Stimulation of phenolics, antioxidant and α-glucosidase inhibitory activities during barley (Hordeum vulgare L.) seed germination. Plant Foods Hum Nutr 71:211–217

    CAS  PubMed  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd Allah EF, Alqarawi AA, Ahmad P (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    CAS  Google Scholar 

  • Harborne JB (1980) Plant phenolics. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 8. Springer, Berlin, New York, pp 329–402

    Google Scholar 

  • Havsteen B (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    CAS  PubMed  Google Scholar 

  • Hodaei M, Rahimmalek M, Arzani A, Talebi M (2018) The effect of water stress on phytochemical accumulation, bioactive compounds and expression of key genes involved in flavonoid biosynthesis in Chrysanthemum morifolium L. Ind Crop Prod 120:295–304

    CAS  Google Scholar 

  • Huang X, Yao J, Zhao Y, Xie D, Jiang X, Xu Z (2016) Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn. Hairy root cultures with UV-B irradiation. Front Plant Sci 7:63. https://doi.org/10.3389/fpls.2016.00063

    Article  PubMed  PubMed Central  Google Scholar 

  • Hura T, Hura K, Dziurka K, Ostrowska A, Bączek-Kwinta R, Grzesiak M (2012) An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. J Plant Physiol 169:1728–1736

    CAS  PubMed  Google Scholar 

  • Ignatenko A, Talanova V, Repkina N, Titov A (2019) Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant 41(6):80. https://doi.org/10.1007/s11738-019-2872-3

    Article  CAS  Google Scholar 

  • Jaganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga CG (ed) Plant phenolics and human health. Wiley, New Jersey, Canada, pp 1–50

    Google Scholar 

  • Jaiswal A, Srivastava JP (2016) Nitric oxide mitigates waterlogging stress by regulating antioxidative defense mechanism in maize (Zea mays L.) roots. Bangladesh J Bot 45:517–524

    Google Scholar 

  • Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X, Gao L (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8(4):e62315. https://doi.org/10.1371/journal.pone.0062315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katerova Z, Todorova D, Tasheva K, Sergiev I (2012) Influence of ultraviolet radiation on plant secondary metabolite production. Genet Plant Physiol 2(3–4):113–144

    Google Scholar 

  • Kaur L, Zhawar VK (2015) Phenolic parameters under exogenous ABA, water stress, salt stress in two wheat cultivars varying in drought tolerance. Ind J Plant Physiol 20:151–156

    Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicol Environ Saf 145:466–475

    CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    CAS  PubMed  Google Scholar 

  • Khlestkina E (2013) The adaptive role of flavonoids: emphasis on cereals. Cereal Res Commun 41:185–198

    CAS  Google Scholar 

  • Kısa D, Elmastas M, Öztürk L, Kayır Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59:813–820

    Google Scholar 

  • Klein A, Keyster M, Ludidi N (2013) Caffeic acid decreases salinity-induced root nodule superoxide radical accumulation and limits salinity-induced biomass reduction in soybean. Acta Physiol Plant 35:3059–3066

    CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159–15173

    CAS  Google Scholar 

  • Konakci CO (2019) Does exogenously applied gallic acid regulate the enzymatic and non-enzymatic antioxidants in wheat roots exposed to cadmium stress? Celal Bayar Üniversitesi Fen Bilimleri Dergisi 15(3):279–285

    CAS  Google Scholar 

  • Kovaleva LV, Zakharova EV, Minkina YV (2007) Auxin and flavonoids in the progame phase of fertilization in petunia. Russ J Plant Physiol 54(3):396–401

    CAS  Google Scholar 

  • Kurepa J, Shull TE, Smalle JA (2016) Quercetin feeding protects plants against oxidative stress. F1000 Res 5:2430. https://doi.org/10.12688/f1000research.9659.1

    Article  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Merillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Heidelberg, pp 1543–1580

    Google Scholar 

  • Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J (2015) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:17749. https://doi.org/10.1038/srep17749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León-Chan RG, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas JA, Heredia JB, León-Félix J (2017) Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environ Exp Bot 139:143–151

    Google Scholar 

  • Li DM, Nie YX, Zhang J, Yin JS, Li Q, Wang XJ, Bai JG (2013) Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings. Biol Plant 57(4):711–717

    CAS  Google Scholar 

  • Linić I, Šamec D, Grúz J, Bok VV, Strnad M, Salopek-Sondi B (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among brassicaceae. Plan Theory 8(6):155. https://doi.org/10.3390/plants8060155

    Article  CAS  Google Scholar 

  • Ma D, Sun D, Wang C, Li Y, Guo T (2014) Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem 80:60–66

    CAS  PubMed  Google Scholar 

  • Ma Y, Wang P, Gu Z, Tao Y, Shen C, Zhou Y, Han Y, Yang R (2019) Ca2+ involved in GABA signal transduction for phenolics accumulation in germinated hulless barley under NaCl stress. Food Chem:X 2:100023. https://doi.org/10.1016/j.fochx.2019.100023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838. https://doi.org/10.3389/fpls.2016.00838

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekawy AMM, Abdelaziz MN, Ueda A (2018) Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol Biochem 130:94–104

    CAS  PubMed  Google Scholar 

  • Merewitz EB, Liu S (2019) Improvement in heat tolerance of creeping bentgrass with melatonin, rutin, and silicon. J Am Soc Hort Sci 144(2):141–148

    CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Millic BL, Djilas SM, Canadanovic-Brunet JM (1998) Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61:443–447

    Google Scholar 

  • Minatel IO, Borges CV, Ferreira MI, Gomez HAG, Chen CYO, Lima GPP (2017) Phenolic compounds: functional properties, impact of processing and bioavailability. In: Soto-Hernandez M, Palma-Tenango M, del Rosario G-MM (eds) Phenolic compounds—biological activity. Intech, Rijeka

    Google Scholar 

  • Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    CAS  PubMed  Google Scholar 

  • Mishra B, Sangwan NS (2019) Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regul 87:403–412

    CAS  Google Scholar 

  • Moran-Palacio EF, Zamora-Álvarez LA, Stephens-Camacho NA, Yáñez-Farías GA, Virgen-Ortiz A, Martínez-Cruz O, Rosas-Rodríguez JA (2014) Antioxidant capacity, radical scavenging kinetics and phenolic profile of methanol extracts of wild plants of southern Sonora, Mexico. Trop J Pharm Res 13(9):1487–1493

    Google Scholar 

  • Moravcová Š, Tůma J, Dučaiová ZK, Waligórski P, Kula M, Saja D, Słomka A, Bąba W, Libik-Konieczny M (2018) Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem 122:19–30

    PubMed  Google Scholar 

  • Murkovic M (2003) Phenolic compounds. In: Caballero B, Trugo C, Finglas PM (eds) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Amsterdam, pp 4507–4514

    Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In: Khan MIR, Ferrante A, Reddy PS, Khan NA (eds) Plant signaling molecules: role and regulation under stressful environments. Elsevier, Amsterdam, pp 157–168

    Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379

    CAS  PubMed  Google Scholar 

  • Navarro M, Kontoudakis N, Canals JM, Garcıa-Romero E, Gomez-Alonso S, Zamora F, Hermosın-Gutierrez I (2017) Improved method for the extraction and chromatographic analysis on a fused-core column of ellagitannins found in oak-aged wine. Food Chem 226:23–31

    CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168(8):807–815

    CAS  PubMed  Google Scholar 

  • Nduche MU, Otaka CL (2019) Phytochemical screening and antimicrobial activity of Talinium triangulare (JACQ) Willd, Ocimum gratissimum L., Chromoleana odorata L., and Aloe vera (L.) Burm. F. Int J Res Pharm Biosci 6:1–12

    Google Scholar 

  • Nichols SN, Hofmann RW, Williams WM (2015) Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. Environ Exp Bot 119:40–47

    CAS  Google Scholar 

  • Nkomo M, Gokul A, Keyster M, Klein A (2019) Exogenous p-Coumaric acid improves Salvia hispanica L. seedling shoot growth. Plan Theory 8:546. https://doi.org/10.3390/plants8120546

    Article  CAS  Google Scholar 

  • Ozfidan-Konakci C, Yildiztugay E, Yildiztugay A, Kucukoduk M (2019) Cold stress in soybean (Glycine max L.) roots: exogenous gallic acid promotes water status and increases antioxidant activities. Bot Serb 43:59–71

    Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Lee EJ (2019) Waterlogging induced oxidative stress and the mortality of the Antarctic plant, Deschampsia antarctica. J Ecol Environ 43(1):29. https://doi.org/10.1186/s41610-019-0127-2

    Article  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80:985–1012

    CAS  Google Scholar 

  • Parvin K, Hasanuzzaman M, Bhuyan MHM, Mohsin SM, Fujita M (2019) Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plan Theory 8:247. https://doi.org/10.3390/plants8080247

    Article  CAS  Google Scholar 

  • Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, Fujita M (2020) Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiol Biochem 150:109–120

    CAS  PubMed  Google Scholar 

  • Perin EC, Da Silva MR, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526

    CAS  PubMed  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    PubMed  PubMed Central  Google Scholar 

  • Quan NT, Xuan TD (2018) Foliar application of vanillic and p-hydroxybenzoic acids enhanced drought tolerance and formation of phytoalexin momilactones in rice. Arch Agron Soil Sci 64:1831–1846

    Google Scholar 

  • Rahman A, Hossain MS, Mahmud JA, Nahar K, Hasanuzzaman M, Fujita M (2016) Manganese-induced salt stress tolerance in rice seedlings: regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiol Mol Biol Plants 22(3):291–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rani R, Arora S, Kaur J, Manhas RK (2018) Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC Complement Altern Med 18:82. https://doi.org/10.1186/s12906-018-2154-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Differential responses of phenolic compounds of Brassica napus under drought stress. Iran J Plant Physiol 8:2417–2425

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Google Scholar 

  • Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L (2016) Salt stress induces dierential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15

    CAS  PubMed  Google Scholar 

  • Saleh AM, Madany MMY (2015) Coumarin pretreatment alleviates salinity stress in wheat seedlings. Plant Physiol Biochem 88:27–35

    CAS  PubMed  Google Scholar 

  • Samadi S, Habibi G, Vaziri A (2019) Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Iran J Plant Physiol 9(2):2685–2694

    Google Scholar 

  • Sanchez-Rodriguez E, Moreno DA, Ferreres F, Rubio-WilhelmiMdel M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    CAS  PubMed  Google Scholar 

  • Santos EL, Maia BHLNS, Ferriani AP, Teixeira SD (2017) Flavonoids: classification, biosynthesis and chemical ecology. In: Justino GC (ed) Flavonoids from biosynthesis to human health, vol 6. InTech, Rijeka, p 482

    Google Scholar 

  • Santra HK, Banerjee D (2020) Natural products as fungicide and their role in crop protection. In: Singh J, Yadav A (eds) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Sarker U, Oba S (2018a) Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep 8:12349. https://doi.org/10.1038/s41598-018-30897-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarker U, Oba S (2018b) Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor. Appl Biochem Biotechnol 186(4):999–1016

    CAS  PubMed  Google Scholar 

  • Selmar D (2008) Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode 58:139–144

    Google Scholar 

  • Shahid MA, Balal RM, Khan N, Rossi L, Rathinasabapathi B, Liu G, Khan J, Cámara-Zapata JM, Martínez-Nicolas JJ, Garcia-Sanchez F (2018) Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environ Exp Bot 156:248–260

    CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed Central  Google Scholar 

  • Simaei M, Khavari-Nejad RA, Bernard F (2012) Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. Am J Plant Sci 3:1495–1503

    Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    CAS  PubMed  Google Scholar 

  • Smirnov OE, Kosyan AM, Kosyk OI, Taran NY (2015) Response of phenolic metabolism induced by aluminium toxicity in Fagopyrum esculentum moench. Plants. Ukr Biochem J 87:129–135

    CAS  PubMed  Google Scholar 

  • Tanase C, Coșarcă S, Muntean DL (2019) A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 24:1182. https://doi.org/10.3390/molecules24061182

    Article  CAS  PubMed Central  Google Scholar 

  • Tsimogiannis D, Oreopoulou V (2019) Classification of phenolic compounds in plants. In: Watson RR (ed) Polyphenols in plants, 2nd edn. Elsevier, Amsterdam, pp 263–284

    Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varela MC, Arslan I, Reginato MA, Cenzano AM, Luna MV (2016) Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina). Plant Physiol Biochem 104:81–91

    CAS  PubMed  Google Scholar 

  • Vermerris W, Nicholson R (2008) Families of phenolic compounds and means of classification. Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  • Verstraeten SV, Keen CL, Schmitz HH, Fraga CG, Oteiza PI (2003) Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic Biol Med 34:84–92

    CAS  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2–20

    CAS  PubMed  Google Scholar 

  • Wan YY, Zhang Y, Zhang L, Zhou ZQ, Li X, Shi Q, Wang XJ, Bai JG (2015) Caffeic acid protects cucumber against chilling stress by regulating antioxidant enzyme activity and proline and soluble sugar contents. Acta Physiol Plant 37(1):1706. https://doi.org/10.1007/s11738-014-1706-6

    Article  CAS  Google Scholar 

  • Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 125(2):387–398

    CAS  Google Scholar 

  • Wang J, Yuan B, Huang B (2019a) Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. Crop Sci 59:667–674

    CAS  Google Scholar 

  • Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y (2019b) Glycine betaine reduces chilling injury in peachfruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538

    CAS  PubMed  Google Scholar 

  • Waśkiewicz A, Muzolf-Panek M, Goliński P (2013) Phenolic content changes in plants under salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 283–314

    Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    CAS  PubMed  Google Scholar 

  • Xuan T, Khang D (2018) Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 23(3):620. https://doi.org/10.3390/molecules23030620

    Article  CAS  PubMed Central  Google Scholar 

  • Yan J, Wang B, Jiang Y, Cheng L, Wu T (2014) GmFNSII-controlled soybean flavone metabolism responds to abiotic stresses and regulates plant salt tolerance. Plant Cell Physiol 55:74–86

    CAS  PubMed  Google Scholar 

  • Yang ZC, Wu N, Tang L, Yan XH, Yuan M, Zhang ZW, Yuan S, Zhang HY, Chen YE (2019) Exogenous salicylic acid alleviates the oxidative damage of Arabidopsis thaliana by enhancing antioxidant defense systems under high light. Biol Plant 63:474–483

    CAS  Google Scholar 

  • Yildiztugay E, Ozfidan-Konakci C, Karahan H, Kucukoduk M, Turkan I (2019) Ferulic acid confers tolerance against excess boron by regulating ROS levels and inducing antioxidant system in wheat leaves (Triticum aestivum). Environ Exp Bot 161:193–202

    CAS  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    CAS  PubMed  Google Scholar 

  • Zaprometov MN, Nikolaeva TN (2003) Chloroplasts isolated from kidney bean leaves are capable of phenolic compound biosynthesis. Russ J Plant Physiol 50(5):623–626

    CAS  Google Scholar 

  • Zhang Z, Lan M, Han X, Wu J, Wang-Pruski G (2020) Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Regul 39:133–146. https://doi.org/10.1007/s00344-019-09969-y

    Article  CAS  Google Scholar 

  • Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Chen A, Wang S (2018) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct Plant Biol 46:30–43

    PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge Dr. Iqbal R. Khan, Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India for reviewing of the draft. We also thankful to Md. Rakib Hossain Raihan, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh for his critical reading and formatting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parvin, K., Nahar, K., Mohsin, S.M., Al Mahmud, J., Fujita, M., Hasanuzzaman, M. (2022). Plant Phenolic Compounds for Abiotic Stress Tolerance. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5059-8_8

Download citation

Publish with us

Policies and ethics