Skip to main content

Salinity Tolerance in Rice

  • Chapter
  • First Online:
Modern Techniques of Rice Crop Production

Abstract

Rice is the main staple food crop across the globe. Among abiotic stresses, salinity stress is increasing at an alarming rate. It inhibits rice growth and yield as rice is a sensitive crop to salinity. It influences various physiological functioning of the rice, which results in retarded growth and ultimately gives poor yield. In this chapter, we highlighted influence of physiological changes and effect on rice grain in response to salinity stress and their adaptation strategies. Moreover, currently numerous studies have explored the molecular response/changes in rice to cope with salinity stress. In this regard, we explained the abscisic acid and signaling under salinity stress along with the functions of transcription factors. Final part of this chapter covers the importance of modern breeding techniques to screen and develop salt tolerant cultivars within a short period of time as compared to conventional breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Wahab MA (2006) The efficiency of using saline and freshwater irrigation as alternating methods of irrigation on the productivity of Foeniculum vulgare mill subsp. Vulgare var. vulgare under North Sinai conditions. Res J Agric Biol Sci 2:571–577

    Google Scholar 

  • Abdelgadir EM, Oka M, Fujiyama H (2005) Nitrogen nutrition of rice plants under salinity. Biol Plant 49:99–104

    Article  CAS  Google Scholar 

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci 187:25–32

    Article  Google Scholar 

  • Abdur RM, Talukderb NM, Tofazzal IM, Duttad RK (2011) Salinity effect on mineral nutrient distribution along roots and shoots of rice (Oryza sativa L.) genotypes differing in salt tolerance. Arch Agron Soil Sci 57:33–45

    Article  CAS  Google Scholar 

  • Ahmad A, Ashfaq M, Rasul G, Wajid SA, Khaliq T, Rasul F, Saeed U, Rahman MH, Hussain J, Baig IA, Naqvi AA, Bokhari SAA, Ahmad S, Naseem W, Hoogenboom G, Valdivia RO (2015) Impact of climate change on the rice–wheat cropping system of Pakistan. In: Hillel D, Rosenzweig C (eds.), Handbook of Climate Change and Agro-ecosystems: The Agricultural Modeling Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments, Published by Imperial College Press and the American Society of Agronomy, pp. 219–258

    Google Scholar 

  • Ahmad S, Abbas G, Ahmed M, Fatima Z, Anjum MA, Rasul G, Khan MA, Hoogenboom G (2019) Climate warming and management impact on the change of rice-wheat phenology in Punjab, Pakistan. Field Crops Res 230:46–61

    Article  Google Scholar 

  • Ahmad S, Ahmad A, Ali H, Hussain A, Garcia A, Khan MA, Zia-Ul-Haq M, Hasanuzzaman M, Hoogenboom G (2013) Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrig Sci 31(3):491–506

    Article  Google Scholar 

  • Ahmad S, Ahmad A, Soler CMT, Ali H, Zia-Ul-Haq M, Anothai J, Hussain A, Hoogenboom G, Hasanuzzaman M (2012) Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precis Agric 13(2):200–218

    Article  Google Scholar 

  • Ahmad S, Ahmad A, Zia-ul-Haq M, Ali H, Khaliq T, Anjum MA, Khan MA, Hussain A, Hoogenboom G (2009) Resources use efficiency of field grown transplanted rice (Oryza sativa L.) under irrigated semiarid environment. J Food Agric Environ 7(2):487–492

    Google Scholar 

  • Ahmad S, Hasanuzzaman M (2012) Integrated effect of plant density, N rates and irrigation regimes on the biomass production, N content, PAR use efficiencies and water productivity of rice under irrigated semiarid environment. Not Bot Horti Agrobot Cluj-Napoca 40(1):201–211

    Article  CAS  Google Scholar 

  • Ahmad S, Zia-ul-Haq M, Ali H, Shad SA, Ammad A, Maqsood M, Khan MB, Mehmood S, Hussain A (2008) Water and radiation use efficiencies of transplanted rice (Oryza sativa L.) at different plant densities and irrigation regimes under semi-arid environment. Pak J Bot 40(1):199–209

    Google Scholar 

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Hasanuzzaman M (ed.), Agronomic crops; volume 2 Springer Nature Singapore Pte ltd., pp. 31–46

    Google Scholar 

  • Ahmed M, Ahmad S (2020) Systems modeling. In: Ahmed M (ed.), Systems modeling, Springer Nature Singapore Pte Ltd. pp. 1–44

    Google Scholar 

  • Ahmed N, Khalil A, Gulshan AB, Bashir S, Saleem M, Hussain R, Ali MA, Iqbal J, Bashir S (2020) The efficiency of magnesium (Mg) on rice growth, biomass partitioning and chlorophyll contents in alkaline soil condition. Pure Appl Biol 10:325–333

    Google Scholar 

  • Akita S, Cabuslay GS (1990) Physiological basis of differential response to salinity in rice cultivars. Plant Soil 123:277–294

    Article  CAS  Google Scholar 

  • Ali MN, Yeasmin L, Gantait S, Goswami R, Chakraborty S (2014) Screening of rice landraces for salinity tolerance at seedling stage through morphological and molecular markers. Physiol Mol Biol Plants 20(4):411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali A, Raddatz N, Pardo JM, Yun DJ (2021) HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. Physiol Plant 171:546–558

    Article  CAS  PubMed  Google Scholar 

  • Amanullah I (2016) Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci 23:78–87

    Article  Google Scholar 

  • Amirjani MR (2010) Effect of NaCl on some physiological parameters of rice. Eurpoean Journal of Biological Science 3:6–16

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WS, Blumwald E (1999) Salt tolerance conferred by overexpres Sion of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Asch F, Wopereis MCS (2001) Responses of field grown irrigated rice cultivars to varying levels of flood water salinity in a semi-arid environment. Field Crops Res 70:127–137

    Article  Google Scholar 

  • Asim A, Gökçe ZNÖ, Bakhsh A, Çayli IT, Aksoy E, Çalişkan S, Çalişkan ME, Demirel U (2021) Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p. Turk J Agric For 45:651–668

    Article  CAS  Google Scholar 

  • Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63(16):5727–5740

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MA (2005) Efficiency in evaluating salt tolerance in rice using phenotypic and marker assisted selection. Mymensingh, Bangladesh

    Google Scholar 

  • Bizimana JB, Luzi-Kihupi A, Murori RW, Singh RK (2017) Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population. J Genet 96:571–582

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Poole RJ (1987) Salt tolerance in suspension cultures of sugar beet: induction of Na+/H+ antiport activity at the tonoplast by growth in salt. Plant Physiol 83:884–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohn HL, Brain LM, O’Connor GA (1985) Soil chemistry, 2nd edn. John Wiley and Sons, New York, pp 234–248. Graham W (1994) Water Resources Manager, Jefferson County PU#1, MS Geology, Easton Washington University, 133–147

    Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AN, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants. An integrated view from breeding to genomics. Field Crops Res 105:1–14

    Article  Google Scholar 

  • Chakrabarti N, Mukherji S (2003) Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biol Plant 46:63–66

    Article  CAS  Google Scholar 

  • Chaudhry UK, Gökçe ZN, Gökçe AF (2020) Effects of salinity and drought stresses on the physio-morphological attributes of onion cultivars at bulbification stage. Int J Agri Biol 24:1681–1689

    CAS  Google Scholar 

  • Chaudhry UK, Junaid MD, Gökçe AF (2021a) Influence of environmental adversities on physiological changes in plants. In: Developing climate-resilient crops. CRC Press, pp 853–110

    Google Scholar 

  • Chaudhry UK, Gökçe ZN, Gökçe AF (2021b) Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia 76:3107–3121

    Article  CAS  Google Scholar 

  • Chen HC, Cheng WH, Hong CY, Chang YS, Chang MC (2018) The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J (2013) Polyamines and ethylene interact in rice grains in response to soul drying during grain filling. J Exp Bot 64:2523–2538

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cothren JT, Chen D, Amir MH, Ibrahim LL (2014) Effect of 1-MCP on cotton plants under abiotic stress caused by ethephon. Am J Plant Sci 5:3005–3016

    Article  CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55(395):225–236

    Article  CAS  PubMed  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) The molecular basis of ABA-mediated plant response to drought. In: Abiotic stress-plant responses and applications in agriculture. IntechOpen, pp 103–134

    Google Scholar 

  • Dionisio-Sese ML, Tobita S (2000) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud A, Hassan S, Shan D, Khan F, Ullah N, Faiq M, Khan MR, Tareen AK, Khan A, Ullah A, Ullah N, Huang JL (2014) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404

    Article  CAS  Google Scholar 

  • Farshid A, Hassan ER (2012) Physiological characterization of rice under salinity stress during vegetative and reproductive stages. Indian J Sci Technol 5:2578–2586

    Google Scholar 

  • Flowers TJ, Koyama ML, Flowers SA, Sudhakar C, Singh KP, Yeo AR (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51:99–106

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol 88:363–373

    Article  CAS  Google Scholar 

  • Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S (2018) Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Frukh A, Siddiqi TO, Khan MIR, Ahmad A (2020) Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol Biochem 146:55–70

    Article  CAS  PubMed  Google Scholar 

  • Garcia MS, Tellez LI, Merino FCG, Caldana C, Victoria ED, Cabrera HEB (2012) Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Sci Agron 34:317–324

    Google Scholar 

  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34(6):788–801

    Article  PubMed  Google Scholar 

  • Gholipoor M, Soltani A, Shekari F, Shekari FB (2002) Effects of salinity on water use efficiency and its components in chickpea (Cicer arietinum L.). Acta Agron Hung 50:127–134

    Article  Google Scholar 

  • Gökçe AF, Chaudhry UK (2020) Use of QTL in developing stress tolerance in agronomic crops. In: Hasanuzzaman M (ed) Agronomic crops. Springer Publishing, Singapore pp, pp 527–556

    Chapter  Google Scholar 

  • Gökçe AF, Junaid MD, Chaudhry UK (2021) Mapping QTLs for abiotic stress. In: Developing climate-resilient crops. CRC Press, pp 175–201

    Chapter  Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  CAS  Google Scholar 

  • Gregorio GB, Dharmawansa S, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI discussion paper series NO.22, international rice research institute, Manila, Philippines, pp. 2–23

    Google Scholar 

  • Hasanuzzaman M, Fujita M, Nahar K, Biswas JK (2018) Advances in rice research for abiotic stress tolerance. Woodhead Publishing

    Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 103(35):12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics, and management. Adv Agron 148:231–287

    Article  Google Scholar 

  • Islam M, Ontoy J, Subudhi PK (2019) Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants 8:33

    Google Scholar 

  • Islam MR, Hassan L, Salam MA, Collard BCY, Singh RK, Gregorio GB (2011) QTL mapping for salinity tolerance at seedling stage in rice. Emir J Food Agr:137–146

    Google Scholar 

  • Islam, M.M., 2004. Mapping salinity tolerance genes in rice (Oryza sativa L.) at reproduction stage

    Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jamil M, Bae LD, Yong JK, Ashraf M, Chun LS, Shik RE (2006) Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. J Cent Eur Agric 7:273–282

    Google Scholar 

  • Jampeetong A, Brix H (2009) Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquat Bot 91:181–186

    Article  CAS  Google Scholar 

  • Javid MG, Ali S, Foad M, Seyed AMMS, Iraj A (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jiang J, Zhuang JY, Fan YY, Bo SHEN (2009) Mapping of QTLs for leaf malondialdehyde content associated with stress tolerance in rice. Rice Sci 16(1):72–74

    Article  Google Scholar 

  • Jiang XJ, Zhang S, Miao L, Tong T, Liu Z, Sui Y (2010) Effect of salt stress on rice seedling characteristics, effect of salt stress on root system at seedling stage of rice. North Rice 40:21–24

    CAS  Google Scholar 

  • Junaid MD, Chaudhry UK, Gökçe AF (2021) Climate change and plant growth–South Asian perspective. In: Climate Change and plants: biodiversity, growth and interactions. CRC Press, pp 37–53

    Chapter  Google Scholar 

  • Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57(15):4257–4268

    Article  CAS  PubMed  Google Scholar 

  • Karp A, Seberg OLE, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78(2):143–149

    Article  CAS  Google Scholar 

  • Kazemi K, Eskandari H (2011) Effects of salt stress on germination and early seedling growth of rice (Oryza sativa) cultivars in Iran. Afr J Biotechnol 10(77):17789–17792

    CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995) Effects of salinity on seed set in rice. Plant Cell Environ 18:61–67

    Article  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12(5):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker JK, Britto TD (2011) Sodium transport in plants: acritical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kumar M, Seong-Ryong K, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:6–27

    Article  Google Scholar 

  • Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21(2):192–196

    CAS  PubMed  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y (2012) Duallevel regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8:1002767

    Article  CAS  Google Scholar 

  • Li Q, Zhao H, Wang X, Kang J, Lv B, Dong Q, Li C, Chen H, Wu Q (2020) Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2. 6, can improve salt/drought resistance in transgenic Arabidopsis. Int J Mol Sci 21(3):1123

    Google Scholar 

  • Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260

    Article  CAS  PubMed  Google Scholar 

  • Mazumder SR, Hoque H, Sinha B, Chowdhury WR, Hasan MN, Prodhan SH (2020) Genetic variability analysis of partially salt tolerant local and inbred rice (Oryza sativa L.) through molecular markers. Heliyon 6(8):e04333

    Google Scholar 

  • Ming-zhe Y, Jian-fei W, Hong-you C, Hu-qu Z, Hong-sheng Z (2005) Inheritance and QTL mapping of salt tolerance in rice. Rice Sci 12:25–32

    Google Scholar 

  • Mohammadi R, Mendioro MS, Diaz GQ, Gregorio GB, Singh RK (2013) Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.). J Genet 92(3):433–443

    Article  CAS  PubMed  Google Scholar 

  • Momayezi MR, Zaharah AR, Hanafi MM, Mohd Razi I (2009) Agronomic characteristics and proline accumulation of Iranian rice genotypes at early seedling stage under sodium salts stress. Malaysian J Soil Sci 13:59–75

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Naeem M, Demirel U, Yousaf MF, Caliskan S, Caliskan ME (2021) Overview on domestication, breeding, genetic gain and improvement of tuber quality traits of potato using fast forwarding technique (GWAS): a review. Plant Breed 140:519–542

    Article  Google Scholar 

  • Nagata T, Iizumi S, Satoh K, Kikuchi S (2008) Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol Biol 66:565–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Cha-um S, Takagaki M, Ohyama K (2011) Survival percentage, photosynthetic abilities and growth characters of two indica rice (Oryza sativa L. spp. indica) cultivars in response to isosmotic stress. Span J Agric Res 9:262–270

    Article  Google Scholar 

  • Nounjan N, Theerakulpisut P (2012) Effect of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 58:308–315

    Article  Google Scholar 

  • Ochiai K, Matoh T (2002) Characterization of the Na+ delivery from roots to shoots in rice under saline stress: excessive salt enhances apoplastic transport in rice plants. Soil Sci Plant Nutr 48:371–378

    Article  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci 78(2):162–164

    CAS  Google Scholar 

  • Quijano-Guerta C, Kirk GJD (2002) Tolerance of rice germplasm to salinity and other soil chemical stresses in tidal wetlands. Field Crops Res 76(2–3):111–121

    Article  Google Scholar 

  • Ramezani M, Seghatoleslami M, Mousavi G, Sayyari-Zahan MH (2012) Effect of salinity and foliar application of iron and zinc on yield and water use efficiency of Ajowan (Carum copticum). Int J Agric Crop Sci 4:421–426

    Google Scholar 

  • Sabouri H, Rezai AM, Moumeni A, Kavousi A, Katouzi M, Sabouri A (2009) QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biol Plant 53:657–662

    Article  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86(3):407–421

    CAS  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, de Coo IF, Leube MP, Mendizabal I, Pascual A, Zamora-Ros R, Montesinos C, Proft M (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036

    Article  CAS  Google Scholar 

  • Shah WH, Rasool A, Saleem S, Mushtaq NU, Tahir I, Hakeem KR, Rehman RU (2021) Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress. Int J Gen 2021:5578727

    Google Scholar 

  • Shahzad AN, Ahmad S (2019) Tools and techniques for nitrogen management in cereals. In: Hasanuzzaman M (ed.), agronomic crops; volume 2 springer nature Singapore Pte ltd., pp. 111–126

    Google Scholar 

  • Shahzad S, Khan MY, Zahir ZA, Asghar HN, Chaudhry UK (2017) Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions. Pak J Bot 49:1523–1530

    CAS  Google Scholar 

  • Shereen A, Mumtaz S, Raza S, Khan MA, Solangi S (2005) Salinity effects on seedling growth and yield components of different inbred rice lines. Pak J Bot 37:131–139

    Google Scholar 

  • Smet ID, White PJ, Bengough AG, Dupuy L, Parizot B, Casimiro I, Heidstra R, Laskowski M, Lepetit M, Hochholdinger F, Draye X, Zhang H, Broadley MR, Peret B, Hammond JP, Fukaki H, Mooney S, Lynch JP, Nacry P, Schurr U, Laplaze L, Benfey P, Beeckman T, Bennett M (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Tahjib-Ul-Arif M, Sayed MA, Islam MM, Siddiqui MN, Begum SN, Hossain MA (2018) Screening of rice landraces (Oryza sativa L.) for seedling stage salinity tolerance using morpho-physiological and molecular markers. Acta Physiol plant 40(4):70

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 9:503–527

    Article  CAS  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Tomaz A, Palma P, Alvarenga P, Gonçalves MC (2020) Soil salinity risk in a climate change scenario and its effect on crop yield. In: Climate Change and Soil Interactions. Elsevier, pp. 351–396

    Google Scholar 

  • Tu Y, Jiang A, Gan L, Hossain M, Zhang J, Bo P, Xiong Y, Song Z, Cai D, Xu W, Zhang J, He Y (2014) Genome duplication improves rice root resistance to salt stress. Rice 7:2–15

    Article  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant response to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wassan GM, Khanzada H, Zhou Q, Mason AS, Keerio AA, Khanzada S, Solangi AM, Faheem M, Fu D, He H (2021) Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Mol Genet Genomics 296:391–408

    Article  CAS  PubMed  Google Scholar 

  • Welsch R, Wust F, Bar C, Babili SA, Beyer P (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimmer MA, Muehling KH, Lauchli A, Brown PH, Goldbach HE (2001) Interaction of salinity and boron toxicity in wheat (Triticum aestivum L.). In: Horst WJ, Schenk MK, Burkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs HW, Romheld V (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Springer, Netherlands, pp 426–427

    Chapter  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(suppl 1):S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236(2–3):331–340

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong MT, Solis CA, Rabbi B, Huda S, Liu R, Zhou M, Shabala L, Venkataraman G, Shabala S, Chen ZH (2020) Leaf mesophyll K+ and Cl fluxes and reactive oxygen species production predict rice salt tolerance at reproductive stage in greenhouse and field conditions. Plant Growth Regul 92:53–64

    Article  CAS  Google Scholar 

  • Yousaf MF, Demirel U, Naeem M, Çalışkan ME (2021) Association mapping reveals novel genomic regions controlling some root and stolon traits in tetraploid potato (Solanum tuberosum L.). 3 Biotech 11:1–16

    Article  Google Scholar 

  • Zang J, Sun Y, Wang Y, Yang J, Li F, Zhou Y, Zhu L, Jessica R, Mohammadhosein F, Xu J, Li Z (2008) Dissection of genetic overlap of salt tolerance QTLs at the seedling and tillering stages using backcross introgression lines in rice. Sci China Life Sci 51(7):583–591

    Article  Google Scholar 

  • Zeinolabedin J (2012) The effects of salt stress on plant growth. Tech J Eng Appl Sci 2:7–10

    Google Scholar 

  • Zheng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affecting rice growth and yield components. Agric Water Manag 48:191–206

    Article  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhu GY, Kinet JM, Lutts S (2001) Characterization of rice (Oryza sativa L.) F3 populations selected for salt resistance. I. Physiological behaviour during vegetative growth. Euphytica 121:251–263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhry, U.K. et al. (2022). Salinity Tolerance in Rice. In: Sarwar, N., Atique-ur-Rehman, Ahmad, S., Hasanuzzaman, M. (eds) Modern Techniques of Rice Crop Production . Springer, Singapore. https://doi.org/10.1007/978-981-16-4955-4_16

Download citation

Publish with us

Policies and ethics