Skip to main content

Plant Secondary Metabolites: Their Food and Therapeutic Importance

  • Chapter
  • First Online:
Plant Secondary Metabolites

Abstract

Plant secondary metabolites (PSMs) are produced in the form of phytochemicals in various plant parts as a natural defense system against attack of various microorganisms and environmental stresses. The role of these compounds is beyond providing protection, as they are linked to many biochemical pathways inside and outside the plants and possess various well-known therapeutic applications. The extraordinary biological activities of plant secondary metabolites lead to their extensive use as an ingredient in medicines and for therapeutic and other culinary purposes since ages. The minimum effective concentration and effect (positive or negative) of plant secondary metabolites on particular metabolic pathways are the concerns which are still under a trial phase. They occur in very minute quantities within the plant cells, while the purity issues have resulted in manufacturing of their chemical derivatives and their industrial applications as well. Environmental, morphogenetic, and genetic factors and ultimately the processing affect the biosynthesis and the concentration of these PSM present. However, the plants are always in contact with changing conditions of light, water, temperature, pH, insect pest infestation, etc. which may adversely affect the accumulation of secondary metabolites. The present chapter has been compiled to give the readers an in-hand information about the plant secondary metabolites with primary objective of their food and functional repute. The overall contents will focus on broad classification of PSMs, various methods adopted for their extraction with their potential advantages and disadvantages, and effect of various methods of food processing on the bioavailability and bioactivity of the PSMs with proposed future research opportunities in their potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal A, Shen H, Agarwal S, Rao AV (2001) Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties. J Med Food 4(1):9–15

    CAS  PubMed  Google Scholar 

  • Akinwumi BC, Bordun KAM, Anderson HD (2018) Biological activities of stilbenoids. Int J Mol Sci 19(3):792

    PubMed Central  Google Scholar 

  • Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab 13(1):27

    Google Scholar 

  • Al-Okbi SY, Mohamed DA, Hamed TE, Esmail RS, Donya SM (2014) Plant food extracts as a source of bioactive compounds for prevention of cisplatin-induced kidney dysfunction in rats. Polish J Food Nutr Sci 64(1):49–57

    CAS  Google Scholar 

  • Alves N, Valdes S, Silveira C, Duarte-Martino H, Milagro-Yoldi FI, Moreno-Aliaga MJ, Ribeiro S (2012) Studies on mechanistic role of natural bioactive compounds in the management of obesity an overview

    Google Scholar 

  • Astuti SM, Sakinah MA, Andayani RB, Risch A (2011) Determination of saponin compound from Anredera cordifolia (Ten) Steenis plant (binahong) to potential treatment for several diseases. J Agric Sci 3(4):224

    Google Scholar 

  • Auger C, Al-Awwadi N, Bornet A, Rouanet JM, Gasc F, Cros G, Teissedre PL (2004) Catechins and procyanidins in Mediterranean diets. Food Res Int 37(3):233–245

    CAS  Google Scholar 

  • Balentine DA, Wiseman SA, Bouwens LC (1997) The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37(8):693–704

    CAS  PubMed  Google Scholar 

  • Barba FJ, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3:24

    PubMed  PubMed Central  Google Scholar 

  • Baron EP (2018) Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: an update on current evidence and cannabis science. Headache 58(7):1139–1186

    PubMed  Google Scholar 

  • Bazzano LA, He J, Ogden LG, Loria CM, Whelton PK (2003) Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch Intern Med 163(16):1897–1190

    PubMed  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besancon E, Guos Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and death in stroke. Trends Pharm Sci 29:268–267

    CAS  PubMed  Google Scholar 

  • Blondeau N, Lipsky RH, Bourourou M, Duncan MW, Gorelick PB, Marini AM (2015) Alpha-linolenic acid: an omega-3 fatty acid with neuroprotective properties—ready for use in the stroke clinic? Biomed Res Int 2015. https://doi.org/10.1155/2015/519830

  • Böttger A, Vothknecht U, Bolle C, Wolf A (2018) Secondary metabolites in plants: general introduction. In: Lessons on caffeine, Cannabis & Co. Springer, Cham, pp 143–152

    Google Scholar 

  • Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21(7):901

    PubMed Central  Google Scholar 

  • Burnham BS, Gupton JT, Krumpe K, Webb T, Shuford J, Bowers B, Warren AE, Barnes C, Hall IH (1998) Cytotoxicity of substituted Alkyl-3, 4-bis (4-methoxyphenyl) pyrrole-2-carboxylates in L1210 Lymphoid Leukemia Cells. Archiv der Pharmazie: Int J Pharm Med Chem 331(11):337–341

    CAS  Google Scholar 

  • Catarino MD, Silva AMS, Cruz MT, Cardoso SM (2017) Antioxidant and anti-inflammatory

    Google Scholar 

  • Chapman KD, Moore TS Jr (1993) Catalytic properties of a newly discovered acyltransferase that synthesizes N-acylphosphatidylethanolamine in cottonseed (Gossypium hirsutum L.) microsomes. Plant Physiol 102(3):761–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chemat F, Rombaut N, Meullemiestre A, Turk M, Perino S, Fabiano-Tixier AS, Abert-Vian M (2017a) Review of green food processing techniques. Preservation, transformation, and extraction. Innovative Food Sci Emerg Technol 41:357–377

    CAS  Google Scholar 

  • Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017b) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    CAS  PubMed  Google Scholar 

  • Chen G, Wang H, Zhang X, Yang ST (2014) Nutraceuticals and functional foods in the management of hyperlipidemia. Crit Rev Food Sci Nutr 54(9):1180–1201

    CAS  PubMed  Google Scholar 

  • Cheung SS, Hasman D, Khelifi D, Tai J, Smith RW, Warnock GL (2019) Devil’s Club falcarinol-type polyacetylenes inhibit pancreatic cancer cell proliferation. Nutr Cancer 71(2):301–311

    CAS  PubMed  Google Scholar 

  • Chew YL, Goh JK, Lim YY (2009) Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem 116:13–18

    CAS  Google Scholar 

  • Christensen LP (2011) Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family. Recent Pat Food Nutr Agric 3:64–77

    CAS  PubMed  Google Scholar 

  • Cirkovic Velickovic TD, Stanic-Vucinic DJ (2018) The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr Rev Food Sci Food Saf 17(1):82–103

    CAS  PubMed  Google Scholar 

  • Colle IJ, Lemmens L, Van Buggenhout S, Met K, Van Loey AM, Hendrickx ME (2013) Processing tomato pulp in the presence of lipids: the impact on lycopene bioaccessibility. Food Res Int 51(1):32–38

    CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79

    CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. Courier Companies, Inc, pp 1250–1318

    Google Scholar 

  • da Silva LLD, Nascimento M, Silva DHS, Furlan M, da Silva Bolzani V (2002) Antibacterial activity of a stearic acid derivative from Stemodia foliosa. Planta Med 68(12):1137–1139

    Google Scholar 

  • Davis HR Jr, Zhu LJ, Hoos LM, Tetzloff G, Maguire M, Liu J et al (2004) NiemannPick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem 279:33586–33592

    CAS  PubMed  Google Scholar 

  • Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. AJP-Regu Physiol 296:1071–1077

    Google Scholar 

  • de Almeida Alvarenga L, de Oliveira Leal V, Borges NA, de Aguiar AS, Faxén-Irving G, Stenvinkel P, Lindholm B, Mafra D (2018) Curcumin-A promising nutritional strategy for chronic kidney disease patients. J Funct Foods 40:715–721

    Google Scholar 

  • De Castro ML, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217(16):2383–2389

    Google Scholar 

  • De Smet E, Mensink RP, Boekschoten MV, de Ridder R, Germeraad WT, Wolfs TG et al (2015) An acute intake of plant stanol esters alters immune-related pathways in the jejunum of healthy volunteers. Br J Nutr 113:794–802

    PubMed  Google Scholar 

  • Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72

    CAS  Google Scholar 

  • Del Rio D, Stewart AJ, Mullen W et al (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52:2807–2815

    PubMed  Google Scholar 

  • Delgoda R, Murray JE (2017) Evolutionary perspectives on the role of plant secondary metabolites. In: Pharmacognosy. Academic Press, pp 93–100

    Google Scholar 

  • Dell’Eva R, Pfeffer U, Vené R, Anfosso L, Forlani A, Albini A, Efferth T (2004) Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol 68:2359–2366

    PubMed  Google Scholar 

  • Duke JA, Beckstrom-Sternberg SM (2000) Apigenin. Dr. Duke’s phytochemical and ethnobotanical databases. http://www.ars-grin.gov/cig-bin/duke

  • Ekezie FGC, Sun DW, Han Z, Cheng JH (2017) Microwave-assisted food processing technologies for enhancing product quality and process efficiency: a review of recent developments. Trends Food Sci Technol 67:58–69

    Google Scholar 

  • El Barky AR, Hussein SA, Alm-Eldeen AA, Hafez YA, Mohamed TM (2016) Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother 84:1472–1487

    PubMed  Google Scholar 

  • Eric Y (2002) Botanical medicines for the urinary tract. World J Urol 20(5):285–293

    Google Scholar 

  • Evans WC (2009) Pharmacognosy, 16th edn, Edinburgh

    Google Scholar 

  • Furu K, Skurtveit S, Langhammer A, Nafstad P (2007) Use of anti-asthmatic medications as a proxy for prevalence of asthma in children and adolescents in Norway: a nationwide prescription database analysis. Eur J Clin Pharmacol 63:7693–7698

    Google Scholar 

  • García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, Rios JJ, Fernández-Bolaños J (2016) Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem 197:554–561

    PubMed  Google Scholar 

  • Ghanem C, Taillandier P, Rizk Z, Nehme N, Souchard JP, El Rayess Y (2019) Evolution of polyphenols during Syrah grapes maceration: time versus temperature effect. Molecules 24(15):2845

    CAS  PubMed Central  Google Scholar 

  • Gideon MP (2003) Protein and non-protein protease inhibitors from plants. Stud Nat Prod Chem 29:567–641

    Google Scholar 

  • Goławska S, Sprawka I, Łukasik I, Goławski A (2014) Are naringenin and quercetin useful chemicals in pest-management strategies? J Pest Sci 87(1):173–180

    Google Scholar 

  • Gorji N, Moeini R, Memariani Z (2018) Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: a neuropharmacological review of their bioactive constituents. Pharmacol Res 129:115–127

    CAS  PubMed  Google Scholar 

  • Gu L, House SE, Wu X, Ou B, Prior RL (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J Agric Food Chem 54(11):4057–4061

    CAS  PubMed  Google Scholar 

  • Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G (2017) Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 67:220–235

    Google Scholar 

  • Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, Maldonado-Frías S (2006) Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur J Pharmacol 541:95–105

    PubMed  Google Scholar 

  • Gylling H, Plat J, Turley S, Ginsberg HN, Ellegard L, Jessup W et al (2014) Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 232:346–360

    CAS  PubMed  Google Scholar 

  • Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Antiinflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm 2007:45673

    Google Scholar 

  • Hoffmann D (2003) Medical herbalism: the science and practice of herbal medicine. Healing Arts Press One Park Street, Rochester, Varmont. ISBN: 978-089281749-8

    Google Scholar 

  • Hur SJ, Park GB, Joo ST (2007) Biological activities of conjugated linoleic acid (CLA) and effects of CLA on animal products. Livest Sci 110(3):221–229

    Google Scholar 

  • IiD II, Kumar S, Shukla S, Kumar V, Sharma R (2020) Putative antidiabetic herbal food ingredients: nutra/functional properties, bioavailability and effect on metabolic pathways. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.01.017

  • Jayakumar K, Murugan K (2016) Solanum alkaloids and their pharmaceutical roles: a review. J Anal Pharm Res 3(6):00075

    Google Scholar 

  • Jiang F, Dusting GJ (2003) Natural phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Curr Vasc Pharmacol 1(2):135–156

    CAS  PubMed  Google Scholar 

  • Johann S, Mendes BG, Missau FC, Resende MAD, Pizzolatti MG (2011) Antifungal activity of five species of Polygala. Braz J Microbiol 42:1065–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Kaur S, Kumar S, Singh P (2010) Rubia cordifolia L. and Glycyrrhiza glabra L. medicinal plants as potential source of COX-2 inhibitors. Am J Biomed Sci 2:108–120

    Google Scholar 

  • Kendall CWC, Esfahani A, Jenkins DJA (2010) The link between dietary fibre and human health. Food Hydrocoll 24(1):42–48

    CAS  Google Scholar 

  • Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T (2019) Benefits of hesperidin in central nervous system disorders: a review. Anat Cell Biol 52(4):369–377

    PubMed  PubMed Central  Google Scholar 

  • Klingberg S, Andersson H, Mulligan A, Bhaniani A, Welch A, Bingham S et al (2008) Food sources of plant sterols in the EPIC Norfolk population. Eur J Clin Nutr 62:695–703

    CAS  PubMed  Google Scholar 

  • Ko WC, Shih CM, Leu IJ, Chen TT, Chang JP (2005) Mechanisms of relaxant action of luteolin in isolated guinea pig trachea. Planta Med 71:406–411

    CAS  PubMed  Google Scholar 

  • Kobæk-Larsen M, Christensen LP, Vach W, Ritskes-Hoitinga J, Brandt K (2005) Inhibitory effects of feeding with carrots or (−)-falcarinol on development of azoxymethane-induced preneoplastic lesions in the rat colon. J Agric Food Chem 53:1823–1827

    PubMed  Google Scholar 

  • Krishnamurthy VMR, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL et al (2012) High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 81(3):300–306

    CAS  PubMed  Google Scholar 

  • Kumar PV, Bhopal AKP (2012) Formulation design and evaluation of rutin loaded self-emulsifying drug delivery system (SEDDs) using edible oil. Asian J Pharm Clin Res 5(1):76–78

    Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJA, Soundharrajan I, Govindan N (2014) Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 4(3):173–181

    PubMed  PubMed Central  Google Scholar 

  • Lane JD, Adcock RA, Williams RB, Kuhn CM (1990) Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption. Psychosom Med 52:320–336

    CAS  PubMed  Google Scholar 

  • Lane JD, Pieper CF, Phillips-Bute BG, Bryant JE, Kuhn CM (2002) Caffeine affects cardiovascular and neuroendocrine activation at work and home. Psychosom Med 64(4):595–603

    CAS  PubMed  Google Scholar 

  • Larson AJ, Symons JD, Thunder J (2010) Quercetin: a treatment for hypertension? A review of efficacy and mechanisms. Pharmaceuticals 3:237–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Lim KT, Jang YS (2002) Identification of Rhus verniciflua Stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Biochim Biophys Acta 1570:181–191

    CAS  PubMed  Google Scholar 

  • Lee WJ, Wu LF, Chenb WK, Wang CJ, Tseng TH (2006) Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K–Akt pathways. Chem Biol Interact 160:123–133

    CAS  PubMed  Google Scholar 

  • Lin S, Tsai SC, Lee CC, Wang BW, Liou JW, Shyu KG (2004) Berberine inhibits HIF-1α expression via enhanced proteolysis. Mol Pharmacol 66(3):612–619

    CAS  PubMed  Google Scholar 

  • Liu WK, Xu SX, Che CT (2000) Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 67:1297–1306

    CAS  PubMed  Google Scholar 

  • Lucchesi ME, Chemat F, Smadja J (2004) Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A 1043(2):323–327

    CAS  PubMed  Google Scholar 

  • Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Pharmacognosy. Academic Press, pp 233–266

    Google Scholar 

  • Malaguti M, Angeloni C, Hrelia S (2015) Nutraceutical bioactive compounds promote healthspan counteracting cardiovascular diseases. J Am Coll Nutr 34(sup1):22–27

    PubMed  Google Scholar 

  • Mazumder A, Dwivedi A, Du Plessis J (2016) Sinigrin and its therapeutic benefits. Molecules 21(4):416

    PubMed  PubMed Central  Google Scholar 

  • Montanher AB, Zucolotto SM, Schenkel EP, Fröde TS (2007) Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. J Ethnopharmacol 109(2):281–288

    PubMed  Google Scholar 

  • Moreau RA, Nystrom L, Whitaker BD, Winkler-Moser JK, Baer DJ, Gebauer SK et al (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61

    CAS  PubMed  Google Scholar 

  • Moudi M, Go R, Yong Seok Yien C, Nazre M (2013) Vinca alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  • Mustafa A, Turner C (2011) Pressurized liquid extraction as a green approach in food and herbal plants extraction: a review. Anal Chim Acta 703(1):8–18

    CAS  PubMed  Google Scholar 

  • Mustapha N, Mokdad-Bzeouich I, Maatouk M, Ghedira K, Hennebelle T, Chekir-Ghedira L (2016) Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma. Melanoma Res 26:211–222

    CAS  PubMed  Google Scholar 

  • Nakase I, Lai H, Narendra PS, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354:28–33

    CAS  PubMed  Google Scholar 

  • Odontuya G, Hoult JRS, Houghton PJ (2005) Structure-activity relationship for antiinflammatory effect of luteolin and its derived glycosides. Phytother Res 19:782–786

    CAS  PubMed  Google Scholar 

  • Ong KC, Khoo HE (2000) Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 67:1695–1705

    CAS  PubMed  Google Scholar 

  • Parsaeimehr A, Sargsyan E, Javidnia K (2010) A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules 15:1668–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierpoint WS (2000) Why do plants make medicines. Biochemist 22:37–40

    CAS  Google Scholar 

  • Plat J, Hendrikx T, Bieghs V, Jeurissen ML, Walenbergh SM, van Gorp PJ et al (2014) Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans. PLoS One 9:e110758

    PubMed  PubMed Central  Google Scholar 

  • Puneet G, Aditi S, Vinayak K, Anant GN, Samir D, Nikhil M (2013) Camellia sinensis (tea): implications and role in preventing dental decay. Pharmacogn Rev 7(14):152–156. https://doi.org/10.4103/0973-7847.120515

    Article  CAS  Google Scholar 

  • Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30(1):37–44

    CAS  PubMed  Google Scholar 

  • Ranich T, Bhathena SJ, Velasquez MT (2001) Protective effects of dietary phytoestrogens in chronic renal disease. J Ren Nutr 11(4):183–193

    CAS  PubMed  Google Scholar 

  • Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730

    CAS  PubMed  Google Scholar 

  • Raventós M, Duarte S, Alarcón R (2002) Application and possibilities of supercritical CO2 extraction in food processing industry: an overview. Food Sci Technol Int 8(5):269–284

    Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75(3):588–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P (2018) Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit Rev Food Sci Nutr 58(15):2531–2548

    PubMed  Google Scholar 

  • Rochfort S, Ezernieks V, Neumann N, Panozzo J (2011) Pulses for human health: changes in isoflavone and saponin content with preparation and cooking. Aust J Chem 64(6):790–797

    CAS  Google Scholar 

  • Sandhar HK, Prasher S, Tiwari P, Salhan M, Sharma P (2011) A review of phytochemistry and pharmacology of flavonoids. Internationale Pharmaceutica Sciencia 1:25–41

    CAS  Google Scholar 

  • Schulz M, Biluca FC, Gonzaga LV, Borges GDSC, Vitali L, Micke GA et al (2017) Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chem 228:447–454

    CAS  PubMed  Google Scholar 

  • Sen Z, Weida W, Jie M, Li S, Dongming Z, Xiaoguang C (2019) Coumarin glycosides from Hydrangea paniculata slow down the progression of diabetic nephropathy by targeting Nrf2 anti-oxidation and smad2/3-mediated profibrosis. Phytomedicine 57:385–395

    PubMed  Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(3):273–278. https://doi.org/10.1017/S002966511000162X)

    Article  CAS  PubMed  Google Scholar 

  • Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider YJ (2012) Phenolic compounds and plant extracts as potential natural anti-obesity substances. Food Chem 135(1):68–73

    CAS  Google Scholar 

  • Shahidi F, Chandrasekara A (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem Rev 9(1):147–170

    CAS  Google Scholar 

  • Sharma R, Singh RB (2010) Bioactive foods and nutraceutical supplementation criteria in cardiovascular protection. Open Nutraceuticals J 3(1)

    Google Scholar 

  • Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7(1):67–78

    CAS  PubMed  Google Scholar 

  • Sieniawska E (2015) Activities of tannins–from in vitro studies to clinical trials. Nat Prod Commun 10(11):1934578X1501001118

    CAS  Google Scholar 

  • Spiller F, Alves MK, Vieira SM, Carvalho TA, Leite CE, Lunardelli A, Poloni JA, Cunha FQ, de Oliveira JR (2008) Anti-inflammatory effects of red pepper (Capsicum baccatum) on carrageenan- and antigen-induced inflammation. J Pharm Pharmacol 60(4):473–478. https://doi.org/10.1211/jpp.60.4.0010

    Article  CAS  PubMed  Google Scholar 

  • Styrczewska M, Kulma A, Kostyn K, Hasiewicz-Derkacz K, Szopa J (2013) Flax terpenoid pathway as a source of health promoting compounds. Mini Rev Med Chem 13(3):353–364

    CAS  PubMed  Google Scholar 

  • Tang B, Bi W, Tian M, Row KH (2012) Application of ionic liquid for extraction and separation of bioactive compounds from plants. J Chromatogr B 904:1–21

    CAS  Google Scholar 

  • Tseng YT, Lin WJ, Chang WH, Lo YC (2019) The novel protective effects of loganin against 1-methyl-4-phenylpyridinium-induced neurotoxicity: enhancement of neurotrophic signaling, activation of IGF-1R/GLP-1R, and inhibition of RhoA/ROCK pathway. Phytother Res 33(3):690–701

    CAS  PubMed  Google Scholar 

  • Unno T, Sugimoto A, Kakuda T (2000) Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by hypoxanthine and xanthine oxidase. J Sci Food Agric 80:601–606

    CAS  Google Scholar 

  • US Department of Agriculture, Agricultural Research Service (2002) USDA-Iowa State University database on the isoflavone content of foods. Nutrient data laboratory web site. http://www.nal.usda.gov/fnic/foodcomp/Data/isoflav/isoflav.html

  • Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innovative Food Sci Emerg Technol 9(2):161–169

    CAS  Google Scholar 

  • Wagner KH, Elmadfa I (2003) Biological relevance of terpenoids. Ann Nutr Metab 47(3–4):95–106

    CAS  PubMed  Google Scholar 

  • Weng J (2013) The evolutionary paths towards complexity: a metabolic perspective. New Phytol 201:1141–1149

    PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Wu Y, Zhao X, Zhang W (2015) The study on biological and pharmacological activity of coumarins. In: Asia-Pacific Energy Equipment Engineering Research Conference; (AP3ER 2015). pp 135–138

    Google Scholar 

  • Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W (2015) Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 15:314–325

    CAS  Google Scholar 

  • Yi W, Fischer J, Krewer G, Akoh CC (2005) Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J Agric Food Chem 53(18):7320–7329

    CAS  PubMed  Google Scholar 

  • Zaker F, Oody A, Arjman A (2007) A study on the antitumoral and differentiation effects of Peganum harmala derivatives in combination with ATRA on leukaemic cell. Arch Pharm Res 30:844–849

    CAS  PubMed  Google Scholar 

  • Zbigniew S, Beata Ż, Kamil J, Roman F, Barbara K, Andrzej D (2014) Antimicrobial and antiradical activity of extracts obtained from leaves of three species of the genus Pyrus. Microb Drug Resist 20(4):337–343

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Saini, R., Suthar, P., Kumar, V., Sharma, R. (2022). Plant Secondary Metabolites: Their Food and Therapeutic Importance. In: Sharma, A.K., Sharma, A. (eds) Plant Secondary Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-16-4779-6_12

Download citation

Publish with us

Policies and ethics