Skip to main content

Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications

  • Chapter
  • First Online:
3D printable Gel-inks for Tissue Engineering

Abstract

Self-healing property is the most important inherent quality of the living system. For the synthetic materials used as tissue engineering scaffolds, in addition to the basic supportive structure, added self-healing capability is also necessary. If the structure is having self-healing property the patient will bet the benefit of a quick recovery and these supports reduce the need for revision surgery. For tissue engineering applications, polymer scaffolds were highly suitable for the incorporation of cells and growth-stimulating hormones in the native tissue. Even though hydrogels were the first man-made biomaterial, the material optimization was much restricted for tissue engineering applications. With the discoveries of supramolecular chemistry, a lot of self-assembled structuring was explored. And also, by understanding the systems chemistry, bioinspired polymerization-based self-healing hydrogels were being explored. The field of supramolecular chemistry is old as 50 decades, however, the application of polymerization by non-covalent interaction of biomedical applications was explored lesser compare to other optoelectronic and mechanical applications. This book chapter will be give details about the need for self-healing scaffolds, prepared by supramolecular polymerization for 3D structuring towards tissue engineering applications is discussed in detail. The discussion of supramolecular bonding includes hydrogen bonding, electrostatic interaction, metal–ligand, host–guest interaction and π–π interaction. Also, a comparative outline of the need for tissue-engineering scaffolds properties in terms of rheology, mechanical property and shape memory effect of these polymerization interactions was amended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pleasant A, Rudd RE, O'Leary C, Paasche-Orlow MK, Allen MP, Alvarado-Little W, Myers L, Parson K, Rosen S (2016) Considerations for a new definition of health literacy. National Academy of Medicine Washington, DC

    Google Scholar 

  2. Sachot N, Mateos-Timoneda MA, Planell JA, Velders AH, Lewandowska M, Engel E, Castano O (2015) Towards 4th generation biomaterials: a covalent hybrid polymer–ormoglass architecture. Nanoscale 7:15349–15361

    Article  CAS  Google Scholar 

  3. Tiniakos DG, Kandilis A, Geller S (2010) Tityus: a forgotten myth of liver regeneration. J Hepatol 53:357–361

    Article  Google Scholar 

  4. Park J, Lakes RS (2007) Biomaterials: an introduction. Springer Science & Business Media

    Google Scholar 

  5. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2013) Biomaterials science: an evolving, multidisciplinary endeavor. Elsevier

    Google Scholar 

  6. Ning C, Zhou L, Tan G (2016) Fourth Gener Biomed Mater 19:2–3

    Google Scholar 

  7. Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310

    Article  CAS  Google Scholar 

  8. Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press

    Google Scholar 

  9. Hron P (2003) Hydrophilisation of silicone rubber for medical applications. Polym Int 52:1531–1539

    Article  CAS  Google Scholar 

  10. Pedley DG, Skelly PJ, Tighe B (1980) Hydrogels in biomedical applications. Adv Drug Deliv Rev 12:99–110

    CAS  Google Scholar 

  11. Lehn JM (1993) Supramolecular chemistry. Science 260:1762–1764

    Article  CAS  Google Scholar 

  12. Korevaar PA, George SJ, Markvoort AJ, Smulders MM, Hilbers PA, Schenning AP, De Greef TF, Meijer E (2012) Pathway complexity in supramolecular polymerization. Nature 481:492–496

    Article  CAS  Google Scholar 

  13. Lichtenthaler FW (1995) 100 Years “Schlüssel-Schloss-Prinzip”: what made emil fischer use this analogy? Angew Chem Int Ed 33:2364–2374

    Article  Google Scholar 

  14. Huang F, Anslyn EV (2015) Introduction: supramolecular chemistry. Chem Rev

    Google Scholar 

  15. Bosshard HR (2001) Molecular recognition by induced fit: how fit is the concept? News Physiol Sci 16:171–173

    CAS  Google Scholar 

  16. Nikolova MP, Chavali MS (2019) Recent advances in biomaterials for 3D scaffolds: a review. Bioact Mater 4:271–292

    Article  Google Scholar 

  17. Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  CAS  Google Scholar 

  18. Spicer CD (2020) Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 11:184–219

    Article  CAS  Google Scholar 

  19. Cai P, Hu B, Leow WR, Wang X, Loh XJ, Wu YL, Chen X (2018) Biomechano-interactive materials and interfaces. Adv Mater 30:1800572

    Article  CAS  Google Scholar 

  20. Abdulghani S, Mitchell GR (2019) Biomaterials for in situ tissue regeneration: a review. Biomolecules 9:750

    Article  CAS  Google Scholar 

  21. Whitesides G, Mathias J, Seto CJS (1991) Science 254:1312. [Crossref], [PubMed], [CAS], [Google Scholar]. (b) Whitesides GM, Grzybowski B (2002) 295:2418

    Google Scholar 

  22. Fazzalari N (2011) Bone fracture and bone fracture repair. Osteoporos Int 22:2003–2006

    Article  CAS  Google Scholar 

  23. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60:150–162

    Article  Google Scholar 

  24. Ulstrup AK (2008) Biomechanical concepts of fracture healing in weight-bearing long bones. Acta Orthop Belg 74:291

    Google Scholar 

  25. Cowin SC (1986) Wolff’s law of trabecular architecture at remodeling equilibrium. J Biomech Eng

    Google Scholar 

  26. Frost HM (1994) Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 64:175–188

    CAS  Google Scholar 

  27. du Noüy PL (1916) Cicatrization of wounds, III. J Exp Med 24:461

    Article  Google Scholar 

  28. Du Noüy PL (1916) Cicatrization of wounds: II mathematical expression of the curve representing cicatrisation. J Exp Med 24:451–460

    Article  Google Scholar 

  29. du Noüy PL (1919) Cicatrization of wounds: X a general equation for the law of cicatrization of surface wounds. J Exp Med 29:329

    Article  Google Scholar 

  30. Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314–321

    Article  CAS  Google Scholar 

  31. Hager MD (2017) Self‐healing materials. In: Handbook of solid state chemistry, pp 201–225

    Google Scholar 

  32. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  33. Bargavi P, Ramya R, Chitra S, Vijayakumari S, Chandran RR, Durgalakshmi D, Rajashree P, Balakumar S (2020) Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomater Sci 8:4003–4025

    Article  CAS  Google Scholar 

  34. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods Phys Res Sec B Beam Interact Mater Atoms 151:56–64

    Google Scholar 

  35. Kumar A, Matari IAI, Choi H, Kim A, Suk YJ, Kim JY, Han SS (2019) Development of halloysite nanotube/carboxylated-cellulose nanocrystal-reinforced and ionically-crosslinked polysaccharide hydrogels. Mater Sci Eng C 104:109983

    Google Scholar 

  36. Voorhaar L, Hoogenboom R (2016) Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev 45:4013–4031

    Article  CAS  Google Scholar 

  37. Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31

    Google Scholar 

  38. Moura MJ, Faneca H, Lima MP, Gil MH, Figueiredo MM (2011) In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Biomacromol 12:3275–3284

    Article  CAS  Google Scholar 

  39. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci 57:414–433

    Google Scholar 

  40. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041

    Article  CAS  Google Scholar 

  41. Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G (2019) Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv Sci 6:1801664

    Article  CAS  Google Scholar 

  42. Durgalakshmi D, Balakumar S (2015) Analysis of solvent induced porous PMMA–Bioglass monoliths by the phase separation method–mechanical and in vitro biocompatible studies. Phys Chem Chem Phys 17:1247–1256

    Article  CAS  Google Scholar 

  43. Kang J, Tok JB-H, Bao Z (2019) Self-healing soft electronics. Nat Electr 2:144–150

    Article  Google Scholar 

  44. Someya T, Bao Z, Malliaras GG (2016) The rise of plastic bioelectronics. Nature 540:379–385

    Article  CAS  Google Scholar 

  45. Babu SS, Prasanthkumar S, Ajayaghosh A (2012) Self-assembled gelators for organic electronics. Angew Chem Int Ed 51:1766–1776

    Article  CAS  Google Scholar 

  46. Zhu DY, Rong MZ, Zhang MQ (2015) Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog Polym Sci 49:175–220

    Article  CAS  Google Scholar 

  47. Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323

    Article  CAS  Google Scholar 

  48. Brunsveld L, Folmer B, Meijer EW, Sijbesma R (2001) Supramolecular polymers. Chem Rev 101:4071–4098

    Article  CAS  Google Scholar 

  49. Steed JW, Turner DR, Wallace K (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley

    Google Scholar 

  50. Kumar A, Han SS (2017) PVA-based hydrogels for tissue engineering: A review. Int J Polym Mater Polym Biomater 66:159–182

    Article  CAS  Google Scholar 

  51. Chen J, Zou X (2019) Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater 4:120–131

    Article  Google Scholar 

  52. Kumar A, Rao KM, Han SS (2017) Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem Eng J 317:119–131

    Article  CAS  Google Scholar 

  53. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 14:149–165

    Article  CAS  Google Scholar 

  54. Annabi N, Nichol J, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the this article is licensed under a creative commons attribution-noncommercial 3.0 unported licence. Porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng. Part B 16:371–383

    Google Scholar 

  55. Zhang W, Zhang K, Yan S, Wu J, Yin J (2018) A tough and self-healing poly (L-glutamic acid)-based composite hydrogel for tissue engineering. J Mater Chem B 6:6865–6876

    Article  CAS  Google Scholar 

  56. Reakasame S, Boccaccini AR (2018) Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromol 19:3–21

    Article  CAS  Google Scholar 

  57. Dhiman S, Sarkar A, George SJ (2018) Bioinspired temporal supramolecular polymerization. RSC Adv 8:18913–18925

    Article  CAS  Google Scholar 

  58. Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, Dolatshahi-Pirouz A (2017) Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29:1603612

    Article  CAS  Google Scholar 

  59. Rao KM, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int J Biol Macromol 101:165–171

    Article  CAS  Google Scholar 

  60. Majumder S, Ranjan Dahiya U, Yadav S, Sharma P, Ghosh D, Rao GK, Rawat V, Kumar G, Kumar A, Srivastava CM (2020) Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing. Biomolecules 10:710

    Google Scholar 

  61. Liu Y, Hsu S-H (2018) Synthesis and biomedical applications of self-healing hydrogels. Front Chem 6:449

    Article  CAS  Google Scholar 

  62. Kumar A, Matari IAI, Han SS (2020) 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication 12:025029

    Google Scholar 

  63. Eom Y, Kim S-M, Lee M, Jeon H, Hwang SY, Park J, Oh D (2020) Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat Res

    Google Scholar 

  64. Dankers PY, Boomker JM, Huizinga-van der Vlag A, Wisse E, Appel WP, Smedts FM, Harmsen MC, Bosman AW, Meijer W, van Luyn MJ (2011) Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials 32:723–733

    Article  CAS  Google Scholar 

  65. Ye X, Li X, Shen Y, Chang G, Yang J, Gu Z (2017) Self-healing pH-sensitive cytosine-and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 108:348–360

    Article  CAS  Google Scholar 

  66. Liu B, Wang Y, Miao Y, Zhang X, Fan Z, Singh G, Zhang X, Xu K, Li B, Hu Z (2018) Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 171:83–96

    Article  CAS  Google Scholar 

  67. Yang S, Wang S, Du X, Du Z, Cheng X, Wang H (2020) Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem Eng J 391:123544

    Google Scholar 

  68. Wahid F, Zhou Y-N, Wang H-S, Wan T, Zhong C, Chu L-Q (2018) Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int J Biol Macromol 114:1233–1239

    Article  CAS  Google Scholar 

  69. Wahid F, Zhou YN, Wang HS, Wan T, Zhong C, Chu LQ (2018) Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int J Biol Macromol 114:1233–1239

    Google Scholar 

  70. Wei Z, Zhao J, Chen YM, Zhang P, Zhang Q (2016) Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep 6:37841

    Article  CAS  Google Scholar 

  71. Hussain I, Ma X, Luo Y, Luo Z (2020) Fabrication and characterization of glycogen-based elastic, self-healable, and conductive hydrogels as a wearable strain-sensor for flexible e-skin. Polymer, 122961

    Google Scholar 

  72. Balkenende DW, Winkler SM, Messersmith PB (2019) Marine-inspired polymers in medical adhesion. Eur Polym J 116:134–143

    Article  CAS  Google Scholar 

  73. Janarthanan G, Noh I (2020) Recent trends in metal ion based hydrogel biomaterials for tissue engineering and other biomedical applications. J Mater Sci Technol

    Google Scholar 

  74. Shi L, Ding P, Wang Y, Zhang Y, Ossipov D, Hilborn J (2019) Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design fabrication, and biomedical applications. Macromol Rapid Commun 40:1800837

    Article  CAS  Google Scholar 

  75. Tran NB, Moon JR, Jeon YS, Kim J, Kim J-H (2017) Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid Polym Sci 295:655–664

    Article  CAS  Google Scholar 

  76. Huang W-C, Ali F, Zhao J, Rhee K, Mou C, Bettinger CJ (2017) Ultrasound-mediated self-healing hydrogels based on tunable metal–organic bonding. Biomacromol 18:1162–1171

    Article  CAS  Google Scholar 

  77. Shi L, Wang F, Zhu W, Xu Z, Fuchs S, Hilborn J, Zhu L, Ma Q, Wang Y, Weng X (2017) Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach. J Adv Funct Mater 27:1700591

    Article  CAS  Google Scholar 

  78. Yan K, Xu F, Wang C, Li Y, Chen Y, Li X, Lu Z, Wang D (2020) A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater Sci

    Google Scholar 

  79. Zhang H, Kang L, Zou Q, Xin X, Yan X (2019) Coordination-assembled supramolecular nanoplatforms: structural modulation and theranostic applications. Curr Opin Biotechnol 58:45–52

    Article  CAS  Google Scholar 

  80. Wang X-H, Song F, Xue J, Qian D, Wang X-L, Wang Y-Z (2018) Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. Polymer 153:637–642

    Article  CAS  Google Scholar 

  81. Wu S, Fang S, Tang Z, Liu F, Guo B (2020) Design bioinspired design of elastomeric vitrimers with sacrificial metal-ligand interactions leading to supramechanical robustness and retentive malleability. Mater Sci, 108756

    Google Scholar 

  82. Li S, Wang L, Yu X, Wang C, Wang Z (2018) Synthesis and characterization of a novel double cross-linked hydrogel based on Diels-Alder click reaction and coordination bonding. Mater Sci Eng C 82:299–309

    Article  CAS  Google Scholar 

  83. Liu K, Zang S, Xue R, Yang J, Wang L, Huang J, Yan Y (2018) Coordination-triggered hierarchical folate/zinc supramolecular hydrogels leading to printable biomaterials. ACS Appl Mater Interfaces 10:4530–4539

    Article  CAS  Google Scholar 

  84. Moon JR, Jeon YS, Kim YJ, Kim J-H (2019) Adhesive, self-healing and antibacterial properties of Cu-coordinated soft gel based on histamine-conjugated polyaspartamide. J Polym Res 26:12

    Article  CAS  Google Scholar 

  85. Shi L, Zhao Y, Xie Q, Fan C, Hilborn J, Dai J, Ossipov DA (2018) Moldable hyaluronan hydrogel enabled by dynamic metal–bisphosphonate coordination chemistry for wound healing. J Adv Healthc Mater 7:1700973

    Article  CAS  Google Scholar 

  86. Tran NB, Moon JR, Jeon YS, Kim J, Kim JH (2017) Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Coll Polym Sci 295:655–664

    Google Scholar 

  87. Nita LE, Chiriac AP, Rusu AG, Bercea M, Ghilan A, Dumitriu RP, Mititelu-Tartau L (2019) New self-healing hydrogels based on reversible physical interactions and their potential applications. Eur Polymer J 118:176–185

    Article  CAS  Google Scholar 

  88. Hussain I, Sayed SM, Liu S, Oderinde O, Kang M, Yao F, Fu G (2018) Enhancing the mechanical properties and self-healing efficiency of hydroxyethyl cellulose-based conductive hydrogels via supramolecular interactions. Eur Polym J 105:85–94

    Article  CAS  Google Scholar 

  89. Song R, Zheng J, Liu Y, Tan Y, Yang Z, Song X, Yang S, Fan R, Zhang Y, Wang Y (2019) A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties. Int J Biol Macromol 134:91–99

    Article  CAS  Google Scholar 

  90. Huang J, Deng Y, Ren J, Chen G, Wang G, Wang F, Wu X (2018) Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery. Carbohyd Polym 186:54–63

    Article  CAS  Google Scholar 

  91. Ding C, Yang Q, Tian M, Guo C, Deng F, Dang Y, Zhang M (2020) Novel collagen‐based hydrogels with injectable, self‐healing, wound‐healing properties via a dynamic crosslinking interaction. Polym Int

    Google Scholar 

  92. Chen H, Cheng J, Ran L, Yu K, Lu B, Lan G, Dai F, Lu F (2018) An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohyd Polym 201:522–531

    Article  CAS  Google Scholar 

  93. Zhang Y, Chen M, Dai Z, Cao H, Li J, Zhang W (2020) Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater Sci 8:682–693

    Article  CAS  Google Scholar 

  94. Tallia F (2018) co-workers, Mater, Horiz

    Google Scholar 

  95. Song R, Zheng J, Liu Y, Tan Y, Yang Z, Song X, Yang S, Fan R, Zhang Y, Wang Y (2019) A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties. Int J Biol Macromol 134:91–99

    Google Scholar 

  96. Wen H, Chen S, Ge Z, Zhuo H, Ling J, Liu Q (2017) Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Adv 7:31525–31534

    Article  CAS  Google Scholar 

  97. Bai L, Jiang X, Sun Z, Pei Z, Ma A, Wang W, Chen H, Yang H, Yang L, Wei D (2019) Self-healing nanocomposite hydrogels based on modified cellulose nanocrystals by surface-initiated photoinduced electron transfer ATRP. Cellulose 26:5305–5319

    Article  CAS  Google Scholar 

  98. Jing X, Mi H-Y, Napiwocki BN, Peng X-F, Turng L-S (2017) Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 125:557–570

    Article  CAS  Google Scholar 

  99. Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41:6195–6214

    Article  CAS  Google Scholar 

  100. Loh XJ (2014) Supramolecular host–guest polymeric materials for biomedical applications. Mater Horiz 1:185–195

    Article  CAS  Google Scholar 

  101. Rodell CB, Mealy JE, Burdick JA (2015) Supramolecular guest–host interactions for the preparation of biomedical materials. Bioconjug Chem 26:2279–2289

    Article  CAS  Google Scholar 

  102. Dorishetty P, Dutta NK, Choudhury NR (2020) Bioprintable tough hydrogels for tissue engineering applications. Adv Coll Interface Sci, 102163

    Google Scholar 

  103. Wang Z, Ren Y, Zhu Y, Hao L, Chen Y, An G, Wu H, Shi X, Mao C (2018) A rapidly self-healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility. Angew Chem 130:9146–9150

    Article  Google Scholar 

  104. Sisso AM, Boit MO, DeForest CA (2020) Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery. J Biomed Mater Res, Part A 108:1112–1121

    Article  CAS  Google Scholar 

  105. Xu Y, Cui M, Patsis PA, Günther M, Yang X, Eckert K, Zhang Y (2019) Reversibly assembled electroconductive hydrogel via a host-guest interaction for 3D cell culture. ACS Appl Mater Interfaces 11:7715–7724

    Article  CAS  Google Scholar 

  106. Hu T, Wu Y, Zhao X, Wang L, Bi L, Ma PX, Guo B (2019) Micropatterned, electroactive, and biodegradable poly (glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. Chem Eng J 366:208–222

    Article  CAS  Google Scholar 

  107. Grimme S (2008) Do special noncovalent π–π stacking interactions really exist? Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

  108. Jeffrey GA, Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  109. Thakuria R, Nath NK, Saha BK (2019) Design, the nature and applications of π–π interactions: a perspective. Crystal Growth 19:523–528

    Article  CAS  Google Scholar 

  110. Hunter CA, Sanders JK (1990) The nature of pi-pi. Interactions. J Am Chem Soc 112:5525–5534

    Google Scholar 

  111. Claesson H, Malmström E, Johansson M, Hult A (2002) Synthesis and characterisation of star branched polyesters with dendritic cores and the effect of structural variations on zero shear rate viscosity. Polymer 43:3511–3518

    Article  CAS  Google Scholar 

  112. Martinez CR, Iverson BL (2012) Rethinking the term “pi-stacking.” Chem Sci 3:2191–2201

    Article  CAS  Google Scholar 

  113. Cabaleiro-Lago EM, Rodríguez-Otero JS (2018) On the nature of σ–σ, σ–π, and π–π stacking in extended systems. ACS Omega 3:9348–9359

    Google Scholar 

  114. Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J Am Chem Soc 132:12051–12058

    Article  CAS  Google Scholar 

  115. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJ, Hayes W, Mackay ME, Rowan SJ (2009) A self-repairing, supramolecular polymer system: healability as a consequence of donor–acceptor π–π stacking interactions. Chem Commun, 6717–6719

    Google Scholar 

  116. Cremaldi JC, Bhushan B (2018) Bioinspired self-healing materials: lessons from nature. Beilstein J Nanotechnol 9:907–935

    Article  CAS  Google Scholar 

  117. Ashkenasy G, Hermans TM, Otto S, Taylor AF (2017) Systems chemistry. Chem Soc Rev 46:2543–2554

    Article  CAS  Google Scholar 

  118. Ogi S, Sugiyasu K, Manna S, Samitsu S, Takeuchi M (2014) Living supramolecular polymerization realized through a biomimetic approach. Nat Chem 6:188

    Article  CAS  Google Scholar 

  119. Dhiman S, Sarkar A (2018) RSC Adv 8:18913–18925; (b) Dhiman S, George SJ (2018) Bull Chem Soc Jpn 91:687–699

    Google Scholar 

  120. Sorrenti A, Leira-Iglesias J, Markvoort AJ, de Greef TF, Hermans TM (2017) Non-equilibrium supramolecular polymerization. Chem Soc Rev 46:5476–5490

    Article  CAS  Google Scholar 

  121. Mukhopadhyay RD, Ajayaghosh A (2015) Living supramolecular polymerization. Science 349:241–242

    Article  CAS  Google Scholar 

  122. Würthner F (2014) Living it up. Nat Chem 6:171–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors D. Durgalakshmi gratefully acknowledges DST-INSPIRE Faculty Fellowship under the sanction DST/INSPIRE/04/2016/000845 for their funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhinasekaran, D., Jagannathan, M., Kumar, A. (2021). Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications. In: Kumar, A., Voicu, S.I., Thakur, V.K. (eds) 3D printable Gel-inks for Tissue Engineering. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4667-6_4

Download citation

Publish with us

Policies and ethics