Skip to main content

Implementing Life Cycle Sustainability Assessment in Building and Energy Retrofit Design—An Investigation into Challenges and Opportunities

  • Chapter
  • First Online:
Life Cycle Sustainability Assessment (LCSA)

Abstract

The built environment is known as a major contributor to both sustainability problems and solutions. Life Cycle Sustainability Assessment (LCSA) which is a promising approach to evaluating the environmental, economic, and social dimensions of building performance, is progressively drawing the building researcher’s attention. This chapter aims to review the roots and evolution of building sustainability assessment and discusses the associated challenges of LCSA in building and energy retrofit design. Through a critical review, different assumptions and limitations will be reviewed, and the main challenges of integrating LCSA into building energy retrofit design will be classified and discussed. In the end, the new research lines such as developing integrated LCSA models, application of optimization methods, and Building Information Modeling (BIM) in LCSA will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amini Toosi H, Lavagna M, Leonforte F, Del Pero C, Aste N (2020) Life cycle sustainability assessment in building energy retrofitting—a review. Sustain Cities Soc 60:102248, Sep. 01, 2020. Elsevier Ltd. https://doi.org/10.1016/j.scs.2020.102248

  2. Du Pisani JA (2006) Sustainable development—historical roots of the concept. Environ Sci 3(2):83–96. https://doi.org/10.1080/15693430600688831

    Article  Google Scholar 

  3. Komeily A, Srinivasan RS (2015) A need for balanced approach to neighborhood sustainability assessments: a critical review and analysis. Sustain Cities Soc 18:32–43. https://doi.org/10.1016/j.scs.2015.05.004

    Article  Google Scholar 

  4. Clark WC, Dickson NM (2003) Sustainability science: the emerging research program. Proc Natl Acad Sci 100(14):8059–8061. https://doi.org/10.1073/pnas.1231333100

    Article  CAS  Google Scholar 

  5. Mensah J (2019) Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc Sci 5(1). https://doi.org/10.1080/23311886.2019.1653531

  6. Aste N, Caputo P, Buzzetti M, Fattore M (2016) Energy efficiency in buildings: what drives the investments? the case of lombardy region. Sustain Cities Soc 20:27–37. https://doi.org/10.1016/J.SCS.2015.09.003

    Article  Google Scholar 

  7. Mirabella N et al (2018) Strategies to Improve the energy performance of buildings: a review of their life cycle impact. Buildings 8(8):105. https://doi.org/10.3390/buildings8080105

    Article  Google Scholar 

  8. Song K, Ahn Y, Ahn J, Kwon N (2019) Development of an energy saving strategy model for retrofitting existing buildings: a Korean case study. Energies 12(9). https://doi.org/10.3390/en12091626

  9. Mebratu D (1998) Sustainability and sustainable development: historical and conceptual review. Environ Impact Assess Rev 18(6):493–520. https://doi.org/10.1016/S0195-9255(98)00019-5

    Article  Google Scholar 

  10. Roostaie S, Nawari N, Kibert CJ (2019) Sustainability and resilience : a review of definitions, relationships, and their integration into a combined building assessment framework. Build Environ 154(March):132–144. https://doi.org/10.1016/j.buildenv.2019.02.042

    Article  Google Scholar 

  11. Hartwick JM (1974) Price sustainability of location assignments. J Urban Econ 1(2):147–160. https://doi.org/10.1016/0094-1190(74)90014-X

    Article  Google Scholar 

  12. Shi L, Han L, Yang F, Gao L (2019) The evolution of sustainable development theory: types, goals, and research prospects. Sustain 11(24):1–16. https://doi.org/10.3390/su11247158

    Article  CAS  Google Scholar 

  13. Development (2020) “Development,” Oxford online dictionary. https://www.oxfordlearnersdictionaries.com/definition/english/development

  14. UN (1972) United Nations conference on the human environment (Stockholm Conference). United Nation. https://sustainabledevelopment.un.org/milestones/humanenvironment

  15. United_Nations (1972) Report of the United Nations Conference on the Human Environment. New York

    Google Scholar 

  16. Our_Common_Future (1987) Report of the world commission on environment and development: our common future. New York

    Google Scholar 

  17. UN (1992) United Nations Conference on Environment and Development (UNCED), Earth Summit (Rio de Janeiro, Brazil). https://sustainabledevelopment.un.org/milestones/unced

  18. Rio_Conference (1992) Report of the united nations conference on environment and development. New York

    Google Scholar 

  19. Johannesburg_Conference (2002). Report of the World Summit on Sustainable Development (WSSD), Johannesburg Summit. New York

    Google Scholar 

  20. UN (2012) United Nations Conference on Sustainable Development, Rio+20. https://sustainabledevelopment.un.org/rio20

  21. Rio+20 (2012) Resolution adopted by the General Assembly on 27 July 2012, (The future we want). New York

    Google Scholar 

  22. UN (2013) Millennium Development Goals (MDGs). https://www.un.org/millenniumgoals/bkgd.shtml

  23. UNSDS (2015) Resolution adopted by the General Assembly on 25 September 2015, Transforming our world: the 2030 Agenda for Sustainable Development. New York

    Google Scholar 

  24. UN (2015) The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

  25. Mattoni B, Guattari C, Evangelisti L, Bisegna F, Gori P, Asdrubali F (2018) Critical review and methodological approach to evaluate the differences among international green building rating tools. Renew Sustain Energy Rev 82(October 2017):950–960. https://doi.org/10.1016/j.rser.2017.09.105

  26. Lim YS et al (2015) Education for sustainability in construction management curricula. Int J Constr Manag 15(4):321–331. https://doi.org/10.1080/15623599.2015.1066569

    Article  Google Scholar 

  27. UNEP (2018) Global alliance for buildings and construction, 2018 global status report, p 325. https://doi.org/10.1038/s41370-017-0014-9

  28. Mateus R, Silva SM, De Almeida MG (2019) Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings. Renew Energy 137:82–92. https://doi.org/10.1016/j.renene.2018.04.036

    Article  Google Scholar 

  29. Janjua SY, Sarker PK, Biswas WK (2020) Development of triple bottom line indicators for life cycle sustainability assessment of residential bulidings, 264(November 2019)

    Google Scholar 

  30. United Nations Environmental Program (UNEP) (2011) Note 12: Towards a L ife C ycle S ustainability A ssessment

    Google Scholar 

  31. Kamali M, Hewage K, Milani AS (2018) Life cycle sustainability performance assessment framework for residential modular buildings: aggregated sustainability indices. Build Environ 138(March):21–41. https://doi.org/10.1016/j.buildenv.2018.04.019

    Article  Google Scholar 

  32. Doan DT, Ghaffarianhoseini A, Naismith N, Zhang T, Ghaffarianhoseini A, Tookey J (2017) A critical comparison of green building rating systems. Build Environ 123:243–260. https://doi.org/10.1016/j.buildenv.2017.07.007

    Article  Google Scholar 

  33. Visentin C, William A, Braun AB (2020) Life cycle sustainability assessment : a systematic literature review through the application perspective , indicators, and methodologies 270. https://doi.org/10.1016/j.jclepro.2020.122509

  34. Lippiatt B (2007) BEES 4.0: Building for environmental and economic sustainability, technical manual and user guide, director, p. 307, 2007, doi: 860108

    Google Scholar 

  35. CEN/TC-350 CEN/TC-350 (European Committee for Standardization (CEN)) (2010) EN 15643-1:2010, Sustainability of construction works—sustainability assessment of buildings—Part 1: General framework

    Google Scholar 

  36. CEN/TC-350 CEN/TC-350 (European Committee for Standardization (CEN)) (2011) EN 15643-2:2011 Sustainability of construction works—assessment of buildings—Part 2: Framework for the assessment of environmental performance

    Google Scholar 

  37. CEN/TC-350 CEN/TC-350 (European Committee for Standardization (CEN)) (2012) EN 15643-3:2012 Sustainability of construction works—assessment of buildings—Part 3: Framework for the assessment of social performance

    Google Scholar 

  38. CEN/TC-350 (European Committee for Standardization (CEN)), “EN 15643-4:2012 Sustainability of construction works - Assessment of buildings - Part 4: Framework for the assessment of economic performance,” 2012.

    Google Scholar 

  39. EN_15978 (2011) EN 15978:2011, Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method

    Google Scholar 

  40. EN_16627 (2015) EN 16627:2015 Sustainability of construction works. Assessment of economic performance of buildings. Calculation methods

    Google Scholar 

  41. EN_16309:2014+A1:2014 (2014) EN 16309:2014+A1:2014, Sustainability of construction works. Assessment of social performance of buildings. Calc Methodol

    Google Scholar 

  42. Valentin A, Spangenberg JH (2000) A guide to community sustainability indicators 20:381–392

    Google Scholar 

  43. Shari A, Murayama A (2014) Neighborhood sustainability assessment in action: Cross-evaluation of three assessment systems and their cases from the US , the UK, and Japan,” vol 72. https://doi.org/10.1016/j.buildenv.2013.11.006

  44. Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress ( part 2), pp 1686–1697. https://doi.org/10.1007/s11367-012-0509-5

  45. Frankel J (1959) Towards a decision-making model in foreign polICY. Polit Stud 7(1):1–11. https://doi.org/10.1111/j.1467-9248.1959.tb00888.x

    Article  Google Scholar 

  46. Reynolds PA (1959) A comment on Mr. Frankel’s article towards a decision-making model in foreign policy. Polit Stud 7(3):302–304

    Article  Google Scholar 

  47. Gong B, Liu R, Zhang X (2020) Market acceptability assessment of electric vehicles based on an improved stochastic multicriteria acceptability analysis-evidential reasoning approach. J Clean Prod 269:121990.https://doi.org/10.1016/j.jclepro.2020.121990

  48. Medineckiene M, Zavadskas EK, Björk F, Turskis Z (2015) Multi-criteria decision-making system for sustainable building assessment/certification. Arch Civ Mech Eng 15(1):11–18. https://doi.org/10.1016/j.acme.2014.09.001

    Article  Google Scholar 

  49. VillarinhoRosa L, Haddad AN (2013) Building Sustainability Assessment throughout Multicriteria Decision Making. J Constr Eng 2013:1–9. https://doi.org/10.1155/2013/578671

    Article  Google Scholar 

  50. Karjalainen TP et al (2013) A decision analysis framework for stakeholder involvement and learning in groundwater management. Hydrol Earth Syst Sci 17(12):5141–5153. https://doi.org/10.5194/hess-17-5141-2013

    Article  Google Scholar 

  51. Hannouf M, Assefa G (2018) A life cycle sustainability assessment-based decision-analysis framework. Sustain 10(11). https://doi.org/10.3390/su10113863

  52. Aspegren G, Hellström H, Olsson B (1997) The urban water system—a future Swedish perspective. Water Sci Technol 35(9):33–43.https://doi.org/10.1016/S0273-1223(97)00182-0

  53. Diaz-balteiro L, González-pachón J, Romero C (2017) Measuring systems sustainability with multi-criteria methods: a critical review. Eur J Oper Res 258(2):607–616.https://doi.org/10.1016/j.ejor.2016.08.075

  54. Zarte M, Pechmann A, Nunes IL (2019) Decision support systems for sustainable manufacturing surrounding the product and production life cycle e A literature review. J Clean Prod 219:336–349. https://doi.org/10.1016/j.jclepro.2019.02.092

    Article  Google Scholar 

  55. Siksnelyte I, Zavadskas EK, Streimikiene D, Sharma D (2018) An overview of multi-criteria decision-making methods in dealing with sustainable energy development issues. Energies 11(10). https://doi.org/10.3390/en11102754

  56. Chandrakumar C, Kulatunga A, Mathavan S (2018) A multi-criteria decision-making model to evaluate sustainable product designs based on the principles of Design for Sustainability and Fuzzy Analytic Hierarchy Process A multi-criteria decision-making model to evaluate sustainable product designs based o. Sustain Des Manuf 2017. SDM 2017. Smart Innov. Syst. Technol. Springer, Cham, vol 68, no June, pp 347–354, 2018, doi: https://doi.org/10.1007/978-3-319-57078-5_34

  57. Bakhoum ES, Brown DC (2013) A hybrid approach using AHP-TOPSIS—entropy methods for sustainable ranking of structural materials. Int J Sustain Eng Taylor Fr 6(3):212–224. https://doi.org/10.1080/19397038.2012.719553

    Article  Google Scholar 

  58. Saaty TL (1980) The analytical hierarchical process. Wiley, New York

    Google Scholar 

  59. Saaty TL (2008) Decision making with the analytic hierarchy process, 1(1)

    Google Scholar 

  60. Walling E (2020) Developing successful environmental decision support systems: challenges and best practices 264 no(April, 2020). https://doi.org/10.1016/j.jenvman.2020.110513.

  61. Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Indic 46:138–148. https://doi.org/10.1016/j.ecolind.2014.06.011

    Article  Google Scholar 

  62. Liu S, Qian S (2019) Towards sustainability—oriented decision making : Model development and its validation via a comparative case study on building construction methods, no. June 2018, pp 860–872, 2019. https://doi.org/10.1002/sd.1946

  63. Alireza Ahmadian FF, Rashidi TH, Akbarnezhad A, Waller ST (2015) BIM-enabled sustainability assessment of material supply decisions. doi: https://doi.org/10.1108/ECAM-12-2015-0193

  64. Arroyo P, Tommelein ID, Ballard G, Rumsey P (2015) Choosing by advantages: a case study for selecting an HVAC system for a net zero energy museum Choosing by advantages: a case study for selecting an HVAC system for a net zero energy museum. Energy Build 111(October):26–36. https://doi.org/10.1016/j.enbuild.2015.10.023

    Article  Google Scholar 

  65. Medineckiene M, Monitoring HE, Centre A, Turskis Z, Zavadskas EK (2011) Life-cycle analysis of a sustainable building , aplying multi-criteria decision making method, no. October 2014

    Google Scholar 

  66. Wang N, Chang Y, Nunn C (2010) Lifecycle assessment for sustainable design options of a commercial building in Shanghai. Build Environ 45(6):1415–1421. https://doi.org/10.1016/j.buildenv.2009.12.004

    Article  CAS  Google Scholar 

  67. Hwang K, Yoon CL (1981) Multiple attribute decisionmaking: methods and applications. Springer, New York

    Google Scholar 

  68. Velasquez M, Hester P (2013) An analysis of multi-criteria decision making methods. Int J Oper Res 10(2):56–66

    Google Scholar 

  69. Anand CK, Amor B (2017) Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew Sustain Energy Rev 67:408–416. https://doi.org/10.1016/j.rser.2016.09.058

    Article  Google Scholar 

  70. Assiego de Larriva R, Calleja Rodríguez G, Cejudo López JM, Raugei M, Fullana i Palmer P (2014) A decision-making LCA for energy refurbishment of buildings: Conditions of comfort. Energy Build 70:333–342. https://doi.org/10.1016/J.ENBUILD.2013.11.049

  71. García-Pérez S, Sierra-Pérez J, Boschmonart-Rives J (2018) Environmental assessment at the urban level combining LCA-GIS methodologies: a case study of energy retrofits in the Barcelona metropolitan area. Build Environ 134:191–204. https://doi.org/10.1016/J.BUILDENV.2018.01.041

    Article  Google Scholar 

  72. Ghose A, McLaren SJ, Dowdell D, Phipps R (2017) Environmental assessment of deep energy refurbishment for energy efficiency-case study of an office building in New Zealand. Build Environ, 117:274–287, May 2017, Accessed: Dec. 05, 2018. https://www.sciencedirect.com/science/article/pii/S0360132317301105

  73. Beccali M, Cellura M, Fontana M, Longo S, Mistretta M (2013) Energy retrofit of a single-family house: Life cycle net energy saving and environmental benefits. Renew Sustain Energy Rev 27:283–293. https://doi.org/10.1016/j.rser.2013.05.040

    Article  Google Scholar 

  74. Anand CK, Amor B (2017) Recent developments, future challenges and new research directions in LCA of buildings: a critical review. Renew Sustain Energy Rev 67:408–416. https://doi.org/10.1016/j.rser.2016.09.058

    Article  Google Scholar 

  75. Bin G, Parker P (2012) Measuring buildings for sustainability: comparing the initial and retrofit ecological footprint of a century home—the REEP House. Appl Energy 93:24–32. https://doi.org/10.1016/j.apenergy.2011.05.055

    Article  Google Scholar 

  76. Mangan SD, Koçlar Oral G (2016) Life cycle assessment of energy retrofit strategies for an existing residential building in Turkey. A/Z ITU J Fac Archit 13(2):143–156. https://doi.org/10.5505/itujfa.2016.26928

  77. Valančius K, Vilutienė T, Rogoža A (2018) Analysis of the payback of primary energy and CO2 emissions in relation to the increase of thermal resistance of a building. Energy Build. 179:39–48. https://doi.org/10.1016/J.ENBUILD.2018.08.037

    Article  Google Scholar 

  78. Mangan SD, Oral GK (2015) A study on life cycle assessment of energy retrofit strategies for residential buildings in Turkey. Energy Procedia 78:842–847. https://doi.org/10.1016/J.EGYPRO.2015.11.005

    Article  Google Scholar 

  79. Marique A-F, Rossi B (2018) Cradle-to-grave life-cycle assessment within the built environment: comparison between the refurbishment and the complete reconstruction of an office building in Belgium. J Environ Manage 224:396–405. https://doi.org/10.1016/J.JENVMAN.2018.02.055

    Article  Google Scholar 

  80. Oregi X, Hernandez P, Hernandez R (2017) Analysis of life-cycle boundaries for environmental and economic assessment of building energy refurbishment projects. Energy Build. 136:12–25. https://doi.org/10.1016/j.enbuild.2016.11.057

    Article  Google Scholar 

  81. Nydahl H, Andersson S, Åstrand A, Olofsson T (2019) Environmental performance measures to assess building refurbishment from a life cycle perspective. Energies 12(2):299. https://doi.org/10.3390/en12020299

    Article  Google Scholar 

  82. Oregi X, Hernandez P, Gazulla C, Isasa M (2015) Integrating simplified and full life cycle approaches in decision making for building energy refurbishment: benefits and barriers. Buildings 5(2):354–380. https://doi.org/10.3390/buildings5020354

    Article  Google Scholar 

  83. Tadeu S, Rodrigues C, Tadeu A, Freire F, Simões N (2015) Energy retrofit of historic buildings: Environmental assessment of cost-optimal solutions. J Build Eng 4:167–176. https://doi.org/10.1016/J.JOBE.2015.09.009

    Article  Google Scholar 

  84. Ouyang J, Lu M, Li B, Wang C, Hokao K (2011) Economic analysis of upgrading aging residential buildings in China based on dynamic energy consumption and energy price in a market economy. Energy Policy 39(9):4902–4910. https://doi.org/10.1016/J.ENPOL.2011.06.025

    Article  Google Scholar 

  85. Toosi HA, Balador Z, Gjerde M, Vakili-Ardebili A (2018) A life cycle cost analysis and environmental assessment on the photovoltaic system in buildings: two case studies in Iran. J Clean Energy Technol 6(2):134–138. https://doi.org/10.18178/jocet.2018.6.2.448

    Article  Google Scholar 

  86. Jafari A, Valentin V, Russell M (2016) Sensitivity analysis of factors affecting decision-making for a housing energy retrofit: a case study, no. May 2016, pp 1254–1263. https://doi.org/10.1061/9780784479827.126

  87. Copiello S, Gabrielli L, Bonifaci P (2017) Evaluation of energy retrofit in buildings under conditions of uncertainty: the prominence of the discount rate. Energy 137:104–117. https://doi.org/10.1016/j.energy.2017.06.159

    Article  Google Scholar 

  88. Lucchi E, Tabak M, Troi A (2017) The ‘cost optimality’ approach for the internal insulation of historic buildings. Energy Procedia 133:412–423. https://doi.org/10.1016/J.EGYPRO.2017.09.372

    Article  Google Scholar 

  89. Yuan J, Nian V, Su B (2019) Evaluation of cost-effective building retrofit strategies through soft-linking a metamodel-based Bayesian method and a life cycle cost assessment method. Appl Energy 253: 113573, 2019. https://doi.org/10.1016/j.apenergy.2019.113573

  90. Liu L, Rohdin P, Moshfegh B (2016) LCC assessments and environmental impacts on the energy renovation of a multi-family building from the 1890s. Energy Build. 133:823–833. https://doi.org/10.1016/J.ENBUILD.2016.10.040

    Article  Google Scholar 

  91. Copiello S, Gabrielli L, Bonifaci P (2017) Evaluation of energy retrofit in buildings under conditions of uncertainty: the prominence of the discount rate. Energy 137:104–117, Oct. 2017. https://doi.org/10.1016/J.ENERGY.2017.06.159

  92. Bleyl JW et al (2019) Office building deep energy retrofit: life cycle cost benefit analyses using cash flow analysis and multiple benefits on project level. Energy Effic 12(1):261–279. https://doi.org/10.1007/s12053-018-9707-8

    Article  Google Scholar 

  93. Van De Moortel E et al (2019) Energy Renovation of Social Housing : Finding a Balance Between Increasing Insulation and Improving Heating System Efficiency Energy Renovation of Social Housing : Finding a Balance Between Increasing Insulation and Improving Heating System Efficiency,” IOP Conf. Ser. Earth Environ Sci Cent Eur Towar Sustain Build. doi: https://doi.org/10.1088/1755-1315/290/1/012137

  94. Ruparathna R, Hewage K, Sadiq R (2017) Economic evaluation of building energy retrofits: a fuzzy based approach. Energy Build. 139:395–406. https://doi.org/10.1016/j.enbuild.2017.01.031

    Article  Google Scholar 

  95. Zheng D, Yu L, Wang L, Tao J (2019) A screening methodology for building multiple energy retrofit measures package considering economic and risk aspects. J Clean Prod 208:1587–1602. https://doi.org/10.1016/J.JCLEPRO.2018.10.196

    Article  Google Scholar 

  96. Lohse R, Staller H, Riel M (2016) The economic challenges of deep energy renovation—differences, similarities, and possible solutions in central Europe: Austria and Germany. ASHRAE Conf. 122:69–87

    Google Scholar 

  97. Fregonara E, Lo Verso VRM, Lisa M, Callegari G (2017) Retrofit scenarios and economic sustainability. A case-study in the italian context. Energy Procedia, vol. 111, pp. 245–255, Mar. 2017, doi: https://doi.org/10.1016/J.EGYPRO.2017.03.026.

  98. D’Orazio M, Di Giuseppe E, Esposti R, Coderoni S, Baldoni E (2018) A probabilistic tool for evaluating the effectiveness of financial measures to support the energy improvements of existing buildings.In: IOP Conf. Ser. Mater. Sci. Eng., vol 415, p 012003, Nov. 2018https://doi.org/10.1088/1757-899X/415/1/012003

  99. Seghezzi R-CE, Masera G (2019) Decision Support for existing buildings : an LCC-based proposal for facade retrofitting technological choices Decision Support for existing buildings : an LCC-based proposal for facade retrofitting technological choices. In: IOP Conf. Ser. Earth Environ Sci 296, 2019, doi: https://doi.org/10.1088/1755-1315/296/1/012032

  100. Krarti M, Dubey K (2017) Energy productivity evaluation of large scale building energy efficiency programs for Oman. Sustain Cities Soc 29:12–22. https://doi.org/10.1016/J.SCS.2016.11.009

    Article  Google Scholar 

  101. Brás A, Rocha A, Faustino P (2015) Integrated approach for school buildings rehabilitation in a Portuguese city and analysis of suitable third party financing solutions in EU. J. Build. Eng. 3:79–93. https://doi.org/10.1016/J.JOBE.2015.05.003

    Article  Google Scholar 

  102. Gustafsson S-I, Karlsson BG (1989) Insulation and bivalent heating system optimization: Residential housing retrofits and time-of-use tariffs for electricity. Appl Energy 34(4):303–315. https://doi.org/10.1016/0306-2619(89)90035-4

    Article  Google Scholar 

  103. S. Gustafsson, “Energy conservation and optimal retrofits in multifamily buildings,” Energy Syst. Policy, ISSN 0090–8347, Vol. 14, p. 37–49, pp. 1–13, 1990.

    Google Scholar 

  104. Gustafsson S-I, Karlsson BG (1991) Window retrofits: Interaction and life-cycle costing. Appl Energy 39(1):21–29. https://doi.org/10.1016/0306-2619(91)90060-B

    Article  Google Scholar 

  105. Gustafsson S-I, Andersson S, Karlsson BG (1994) Factorial design for energy-system models. Energy 19(8):905–910. https://doi.org/10.1016/0360-5442(94)90043-4

    Article  Google Scholar 

  106. Gustafsson S-I (1998) Sensitivity analysis of building energy retrofits. Appl Energy 61(1):13–23. https://doi.org/10.1016/S0306-2619(98)00032-4

    Article  Google Scholar 

  107. V. Mili, K. Ekelöw, and B. Moshfegh, “On the performance of LCC optimization software OPERA-MILP by comparison with building energy simulation software IDA ICE,” vol. 128, no. July 2017, pp. 305–319, 2018, doi: https://doi.org/10.1016/j.buildenv.2017.11.012.

  108. C. Nägeli, A. Farahani, M. Österbring, J. Dalenbäck, and H. Wallbaum, “A service-life cycle approach to maintenance and energy retrofit planning for building portfolios,” Build. Environ., vol. 160, no. June, p. 106212, 2019, doi: https://doi.org/10.1016/j.buildenv.2019.106212.

  109. La Fleur L, Rohdin P, Moshfegh B (2019) Energy Renovation versus Demolition and Construction of a New Building — A Comparative Analysis of a Swedish Multi-Family Building. Energies 12:12–15. https://doi.org/10.3390/en12112218

    Article  Google Scholar 

  110. Koo C, Kim H, Hong T (2014) Framework for the analysis of the low-carbon scenario 2020 to achieve the national carbon Emissions reduction target: Focused on educational facilities. Energy Policy 73:356–367. https://doi.org/10.1016/j.enpol.2014.05.009

    Article  Google Scholar 

  111. Koo C, Hong T, Kim J, Kim H (2015) An integrated multi-objective optimization model for establishing the low-carbon scenario 2020 to achieve the national carbon emissions reduction target for residential buildings. Renew Sustain Energy Rev 49:410–425. https://doi.org/10.1016/J.RSER.2015.04.120

    Article  CAS  Google Scholar 

  112. S. D. Mangan and G. Koçlar Oral, “A study on determining the optimal energy retrofit strategies for an existing residential building in Turkey,” A/Z ITU J. Fac. Archit., vol. 11, no. 2, pp. 307–333, 2014.

    Google Scholar 

  113. E. S. Umdu, “Methodological approach for performance assessment of historical buildings based on seismic , energy and cost performance : A Mediterranean,” J. Build. Eng., vol. 31, no. March, 2020, doi: https://doi.org/10.1016/j.jobe.2020.101372.

  114. Y. Yılmaz and G. Koçlar Oral, “An approach for an educational building stock energy retrofits through life-cycle cost optimization,” Archit. Sci. Rev., vol. 61, no. 3, pp. 122–132, May 2018, doi: https://doi.org/10.1080/00038628.2018.1447438.

  115. Jafari A, Valentin V (2015) Decision-making life-cycle cost analysis model for energy-efficient housing retrofits. Int J Sustain Build Technol Urban Dev 6(3):173–187. https://doi.org/10.1080/2093761X.2015.1074948

    Article  Google Scholar 

  116. A. Jafari and V. Valentin, “An Investment Allocation Approach for Building Energy Retrofits,” no. May 2016, pp. 1061–1070, 2016, doi: https://doi.org/10.1061/9780784479827.107.

  117. Mostavi E, Asadi S, Boussaa D (2017) Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy 121:606–615. https://doi.org/10.1016/J.ENERGY.2017.01.049

    Article  Google Scholar 

  118. Kušar M, Šubic M, Šelih J (2013) Selection of Efficient Retrofit Scenarios for Public Buildings. Procedia Eng. 57:651–656. https://doi.org/10.1016/j.proeng.2013.04.082

    Article  Google Scholar 

  119. Holopainen R, Milandru A, Ahvenniemi H, Häkkinen T (2016) Feasibility Studies of Energy Retrofits – Case Studies of Nearly Zero-energy Building Renovation. Energy Procedia 96:146–157. https://doi.org/10.1016/J.EGYPRO.2016.09.116

    Article  Google Scholar 

  120. Assiego de Larriva R, Calleja Rodríguez G, Cejudo López JM, Raugei M, Fullana i Palmer P (2014) A decision-making LCA for energy refurbishment of buildings: conditions of comfort,” Energy Build 70:333–342, Feb. 2014. https://doi.org/10.1016/J.ENBUILD.2013.11.049

  121. Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science : lessons learnt from current methodologies for sustainability assessment : Part 1,” pp 1653–1672. https://doi.org/10.1007/s11367-012-0508-6.

  122. C. Llatas, B. Soust-verdaguer, and A. Passer, “Implementing Life Cycle Sustainability Assessment during design stages in Building Information Modelling : From systematic literature review to a methodological approach,” Build. Environ., vol. 182, no. July, p. 107164, 2020, doi: https://doi.org/10.1016/j.buildenv.2020.107164.

  123. Messerli P et al (2019) Expansion of sustainability science needed for the SDGs. Nat. Sustain. 2(10):892–894. https://doi.org/10.1038/s41893-019-0394-z

    Article  Google Scholar 

  124. Pauliuk S (2020) Making sustainability science a cumulative effort. Nat. Sustain. 3(1):2–4. https://doi.org/10.1038/s41893-019-0443-7

    Article  Google Scholar 

  125. J. Fariña-tojo and J. Rajaniemi, Urban Ecology, Emerging Patterns and Social-Ecological Systems, (Chapter 19 - Challenges in assessing urban sustainability), no. July. Elsevier Inc., 2020.

    Google Scholar 

  126. Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119:314–325. https://doi.org/10.1016/j.ecolecon.2015.09.015

    Article  Google Scholar 

  127. A. Zamagni, H. Pesonen, and T. Swarr, “From LCA to Life Cycle Sustainability Assessment : concept , practice and future directions,” pp. 1637–1641, 2013, doi: https://doi.org/10.1007/s11367-013-0648-3.

  128. A. Lehmann, E. Zschieschang, and M. Traverso, “Social aspects for sustainability assessment of technologies — challenges for social life cycle assessment ( SLCA ),” pp. 1581–1592, 2013, doi: https://doi.org/10.1007/s11367-013-0594-0.

  129. I. Huertas-valdivia, A. M. Ferrari, D. Settembre-blundo, and F. E. Garc, “Social Life-Cycle Assessment : A Review by Bibliometric Analysis,” pp. 1–25, 2020.

    Google Scholar 

  130. Contestabile M (2020) Measuring for sustainability. Nat. Sustain. 3(8):576. https://doi.org/10.1038/s41893-020-0570-1

    Article  Google Scholar 

  131. D. S. Zachary, “On the sustainability of an activity,” Sci. Rep., vol. 4, 2014, doi: https://doi.org/10.1038/srep05215.

  132. Moallemi EA et al (2020) Perspective Achieving the Sustainable Development Goals Requires Transdisciplinary Innovation at the Local Scale. One Earth 3(3):300–313. https://doi.org/10.1016/j.oneear.2020.08.006

    Article  Google Scholar 

  133. O. Tokede and M. Traverso, “Implementing the guidelines for social life cycle assessment : past , present , and future,” pp. 1910–1929, 2020.

    Google Scholar 

  134. R. J. Bonilla-alicea and K. Fu, “Systematic Map of the Social Impact Assessment Field,” 2019.

    Google Scholar 

  135. Alexander SM et al (2020) Qualitative data sharing and synthesis for sustainability science. Nat. Sustain. 3(2):81–88. https://doi.org/10.1038/s41893-019-0434-8

    Article  Google Scholar 

  136. A. Zamagni, “Life cycle sustainability assessment,” pp. 373–376, 2012, doi: https://doi.org/10.1007/s11367-012-0389-8.

  137. Matthews NE, Stamford L, Shapira P (2019) Aligning sustainability assessment with responsible research and innovation : Towards a framework for Constructive Sustainability Assessment. Sustain. Prod. Consum. 20:58–73. https://doi.org/10.1016/j.spc.2019.05.002

    Article  Google Scholar 

  138. J. Pedro, C. Silva, and M. Duarte, “Scaling up LEED-ND sustainability assessment from the neighborhood towards the city scale with the support of GIS modeling : Lisbon case study,” Sustain. Cities Soc., vol. 41, no. May 2017, pp. 929–939, 2018, doi: https://doi.org/10.1016/j.scs.2017.09.015.

  139. H. H. Dang and U. Serajuddin, “Tracking the sustainable development goals: Emerging measurement challenges and further reflections,” World Dev., vol. 127, p. 104570, 2020https://doi.org/10.1016/j.worlddev.2019.05.024

  140. R. Phillips, L. Troup, D. Fannon, and M. J. Eckelman, “Triple bottom line sustainability assessment of window-to-wall ratio in US office buildings,” Build. Environ., vol. 182, no. January, p. 107057, 2020, doi: https://doi.org/10.1016/j.buildenv.2020.107057.

  141. C. Galvão and W. Viegas, “Inquiry in higher education for sustainable development : crossing disciplinary knowledge boundaries,” vol. 2020, 2020, doi: https://doi.org/10.1108/IJSHE-02-2020-0068.

  142. S. Huysveld, S. E. Taelman, S. Sfez, and J. Dewulf, “A framework for using the handprint concept in attributional life cycle ( sustainability ) assessment,” vol. 265, pp. 1–9, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121743.

  143. Partelow S (2016) Coevolving Ostrom ’ s social – ecological systems ( SES ) framework and sustainability science : four key co-benefits. Sustain Sci 11(3):399–410. https://doi.org/10.1007/s11625-015-0351-3

    Article  Google Scholar 

  144. L. Wan, E. Ng, L. Wan, and E. Ng, “Evaluation of the social dimension of sustainability in the built environment in poor rural areas of China Evaluation of the social dimension of sustainability in the built environment in poor rural areas of China,” vol. 8628, 2018, doi: https://doi.org/10.1080/00038628.2018.1505595.

  145. P. Verma and A. S. Raghubanshi, “Urban sustainability indicators : Challenges and opportunities,” vol. 93, no. May, pp. 282–291, 2018, doi: https://doi.org/10.1016/j.ecolind.2018.05.007.

  146. Andreas R, Serenella S, Jungbluth N (2020) Normalization and weighting: the open challenge in LCA. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-020-01790-0

    Article  Google Scholar 

  147. N. Pelletier, N. Bamber, and M. Brandão, “Interpreting life cycle assessment results for integrated sustainability decision support : can an ecological economic perspective help us to connect the dots ?,” pp. 1580–1586, 2019.

    Google Scholar 

  148. Pizzol M, Laurent A, Sala S, Weidema B, Verones F, Koffler C (2017) Normalisation and weighting in life cycle assessment: quo vadis? Int J Life Cycle Assess 22(6):853–866. https://doi.org/10.1007/s11367-016-1199-1

    Article  Google Scholar 

  149. M. Abubakr, A. T. Abbas, I. Tomaz, M. S. Soliman, M. Luqman, and H. Hegab, “Sustainable and Smart Manufacturing : An Integrated Approach,” 2020.

    Google Scholar 

  150. P. Halla, V. Superti, A. Boesch, and C. R. Binder, “Indicators for urban sustainability : Key lessons from a systematic analysis of 67 measurement initiatives,” Ecol. Indic., vol. 119, no. April, p. 106879, 2020, doi: https://doi.org/10.1016/j.ecolind.2020.106879.

  151. Krarti M, Dubey K (2018) Review analysis of economic and environmental benefits of improving energy efficiency for UAE building stock. Renew Sustain Energy Rev 82:14–24. https://doi.org/10.1016/J.RSER.2017.09.013

    Article  Google Scholar 

  152. Ruparathna R, Hewage K, Sadiq R (2017) Rethinking investment planning and optimizing net zero emission buildings. Clean Technol Environ Policy 19(6):1711–1724. https://doi.org/10.1007/s10098-017-1359-4

    Article  CAS  Google Scholar 

  153. H. Amini Toosi and M. Lavagna, “Life Cycle Sustainability Assessment (LCSA) and Optimization Techniques. A conceptual framework for integrating LCSA into designing energy retrofit scenarios of existing buildings,” in The 12th Italian LCA network conference. Life cycle thinking in decision making for sustainability: from public policies to private business. University of Messina, Italy 11–12 JUNE 2018, 2018, pp. 276–284, doi: ISBN: 978–88–8286–372–2.

    Google Scholar 

  154. H. Amini Toosi and M. Lavagna, “Optimization and LCSA-based design method for energy retrofitting of existing buildings,” in Designing Sustainability for All, Proceedings of the 3rd LeNS World Distributed Conference, Milano, Mexico City, Beijing, Bangalore, Curitiba, Cape Town, 3–5 April 2019, VOL.1, 2019, pp. 1107–1111, doi: ISBN: 978–88–95651–26–2.

    Google Scholar 

  155. V. Machairas, A. Tsangrassoulis, and K. Axarli, “Algorithms for optimization of building design : A review,” vol. 31, no. 1364, pp. 101–112, 2014, doi: https://doi.org/10.1016/j.rser.2013.11.036.

  156. Chantrelle FP, Lahmidi H, Keilholz W, El Mankibi M, Michel P (2011) Development of a multicriteria tool for optimizing the renovation of buildings. Appl Energy 88(4):1386–1394. https://doi.org/10.1016/J.APENERGY.2010.10.002

    Article  Google Scholar 

  157. Risholt B, Time B, Grete A (2013) Sustainability assessment of nearly zero energy renovation of dwellings based on energy, economy and home quality indicators. Energy Build. 60:217–224. https://doi.org/10.1016/j.enbuild.2012.12.017

    Article  Google Scholar 

  158. Gustafsson M, Swing M, Are J, Bales C, Holmberg S (2016) Techno-economic analysis of energy renovation measures for a district heated multi-family house. Appl Energy 177:108–116. https://doi.org/10.1016/j.apenergy.2016.05.104

    Article  Google Scholar 

  159. Pal SK, Takano A, Alanne K, Siren K (2017) A life cycle approach to optimizing carbon footprint and costs of a residential building. Build Environ 123:146–162. https://doi.org/10.1016/j.buildenv.2017.06.051

    Article  Google Scholar 

  160. Ramin H, Hanafizadeh P, Ehterami T, AkhavanBehabadi MA (2017) Life cycle-based multi-objective optimization of wall structures in climate of Tehran. Adv. Build. Energy Res. 2549:1–14. https://doi.org/10.1080/17512549.2017.1344137

    Article  Google Scholar 

  161. Moschetti R, Brattebø H (2017) Combining Life Cycle Environmental and Economic Assessments in Building Energy Renovation Projects. Energies. https://doi.org/10.3390/en10111851

    Article  Google Scholar 

  162. Ylmén P, Mjörnell K, Berlin J, Arfvidsson J (2017) The influence of secondary effects on global warming and cost optimization of insulation in the building envelope. Build Environ 118:174–183. https://doi.org/10.1016/J.BUILDENV.2017.03.019

    Article  Google Scholar 

  163. Gustafsson M et al (2017) Economic and environmental analysis of energy renovation packages for European office buildings. Energy Build. 148:155–165. https://doi.org/10.1016/j.enbuild.2017.04.079

    Article  Google Scholar 

  164. Mauro G et al (2017) A Multi-Step Approach to Assess the Lifecycle Economic Impact of Seismic Risk on Optimal Energy Retrofit. Sustainability 9(6):989. https://doi.org/10.3390/su9060989

    Article  Google Scholar 

  165. Almeida M, Ferreira M (2017) Cost effective energy and carbon emissions optimization in building renovation (Annex 56). Energy Build. 152:718–738. https://doi.org/10.1016/j.enbuild.2017.07.050

    Article  Google Scholar 

  166. M. Almeida, “Relevance of Embodied Energy and Carbon Emissions on Assessing Cost Effectiveness in Building Renovation — Contribution from the Analysis of Case Studies in Six European Countries,” pp. 1–18, 2018, doi: https://doi.org/10.3390/buildings8080103.

  167. J. Jokisalo, P. Sankelo, J. Vinha, K. Sirén, and R. Kosonen, “Cost optimal energy performance renovation measures in a municipal service building in a cold climate,” in E3S Web of Conferences 111, CLIMA 2019, 2019, vol. 3022, no. 201 9, doi: https://doi.org/10.1051/e3sconf/201911103022.

  168. S. Amirhosain and A. Hammad, “Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption , LCC and LCA,” J. Build. Eng., vol. 25, no. April, p. 100790, 2019, doi: https://doi.org/10.1016/j.jobe.2019.100790.

  169. J. Hirvonen, J. Jokisalo, J. Heljo, and R. Kosonen, “Optimization of emission reducing energy retrofits in Finnish apartment buildings,” E3S Web Conf. 111, CLIMA 2019, vol. 2, no. 2019, 2019, doi: https://doi.org/10.1051/e3sconf/2019111030.

  170. Conci M, Konstantinou T, Van Den Dobbelsteen A, Schneider J (2019) Trade-off between the economic and environmental impact of different decarbonisation strategies for residential buildings. Build Environ 155(January):137–144. https://doi.org/10.1016/j.buildenv.2019.03.051

    Article  Google Scholar 

  171. R. Mateus, S. M. Silva, and M. G. De Almeida, “Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings,” Renew. Energy, vol. 137, pp. 82–92, 2019, doi: https://doi.org/10.1016/j.renene.2018.04.036.

  172. A. Dalla Valle, A. Campioli, and M. Lavagna, “Life cycle BIM-oriented data collection: A framework for supporting practitioners,” in Research for Development, Springer, 2020, pp. 49–59.

    Google Scholar 

  173. Lu Y, Wu Z, Chang R, Li Y (2017) Building Information Modeling (BIM) for green buildings: A critical review and future directions. Autom Constr 83:134–148. https://doi.org/10.1016/J.AUTCON.2017.08.024

    Article  Google Scholar 

  174. Najjar M, Figueiredo K, Palumbo M, Haddad A (2017) Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. J. Build. Eng. 14:115–126. https://doi.org/10.1016/J.JOBE.2017.10.005

    Article  Google Scholar 

  175. Shadram F, Johansson TD, Lu W, Schade J, Olofsson T (2016) An integrated BIM-based framework for minimizing embodied energy during building design. Energy Build. 128:592–604. https://doi.org/10.1016/j.enbuild.2016.07.007

    Article  Google Scholar 

  176. Hollberg A, Ruth J (2016) LCA in architectural design—a parametric approach. Int J Life Cycle Assess 21(7):943–960. https://doi.org/10.1007/s11367-016-1065-1

    Article  Google Scholar 

  177. Antón LÁ, Díaz J (2014) Integration of life cycle assessment in a BIM environment. Procedia Eng. 85:26–32. https://doi.org/10.1016/j.proeng.2014.10.525

    Article  Google Scholar 

  178. Eleftheriadis S, Mumovic D, Greening P (2017) Life cycle energy efficiency in building structures: A review of current developments and future outlooks based on BIM capabilities. Renew Sustain Energy Rev 67:811–825. https://doi.org/10.1016/J.RSER.2016.09.028

    Article  Google Scholar 

  179. Barlish K, Sullivan K (2012) How to measure the benefits of BIM — A case study approach. Autom Constr 24:149–159. https://doi.org/10.1016/J.AUTCON.2012.02.008

    Article  Google Scholar 

  180. Bryde D, Broquetas M, Volm JM (2013) The project benefits of Building Information Modelling (BIM). Int J Proj Manag 31(7):971–980. https://doi.org/10.1016/J.IJPROMAN.2012.12.001

    Article  Google Scholar 

  181. Kota S, Haberl JS, Clayton MJ, Yan W (2014) Building Information Modeling (BIM)-based daylighting simulation and analysis. Energy Build. 81:391–403. https://doi.org/10.1016/J.ENBUILD.2014.06.043

    Article  Google Scholar 

  182. Soust-Verdaguer B, Llatas C, García-Martínez A (2017) Critical review of bim-based LCA method to buildings. Energy Build. 136:110–120. https://doi.org/10.1016/J.ENBUILD.2016.12.009

    Article  Google Scholar 

  183. Malmqvist T et al (2011) Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. Energy 36(4):1900–1907. https://doi.org/10.1016/J.ENERGY.2010.03.026

    Article  Google Scholar 

  184. Peng C (2016) Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J Clean Prod 112:453–465. https://doi.org/10.1016/J.JCLEPRO.2015.08.078

    Article  Google Scholar 

  185. N. Shafiq, M. F. Nurrudin, S. S. S. Gardezi, and A. Bin Kamaruzzaman, “Carbon footprint assessment of a typical low rise office building in Malaysia using building information modelling (BIM),” Int. J. Sustain. Build. Technol. Urban Dev., vol. 6, no. 3, pp. 157–172, Jul. 2015, doi: https://doi.org/10.1080/2093761X.2015.1057876.

  186. Basbagill J, Flager F, Lepech M, Fischer M (2013) Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Build Environ 60:81–92. https://doi.org/10.1016/J.BUILDENV.2012.11.009

    Article  Google Scholar 

  187. Ajayi SO, Oyedele LO, Ceranic B, Gallanagh M, Kadiri KO (2015) Life cycle environmental performance of material specification: a BIM-enhanced comparative assessment. Int J Sustain Build Technol Urban Dev 6(1):14–24. https://doi.org/10.1080/2093761X.2015.1006708

    Article  Google Scholar 

  188. Jalaei F, Jrade A (2014) An Automated BIM Model to Conceptually Design, Analyze, Simulate, and Assess Sustainable Building Projects. J Constr Eng 2014:1–21. https://doi.org/10.1155/2014/672896

    Article  Google Scholar 

  189. Lee S, Tae S, Roh S, Kim T (2015) Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact. Sustainability 7(12):16498–16512. https://doi.org/10.3390/su71215830

    Article  CAS  Google Scholar 

  190. J. Basbagill, F. Flager, M. Lepech, and M. Fischer, “Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts,” Build. Environ., vol. 60, pp. 81–92, Feb. 2013, doi: https://doi.org/10.1016/J.BUILDENV.2012.11.009.

  191. A. Houlihan Wiberg et al., “A net zero emission concept analysis of a single-family house,” Energy Build., vol. 74, pp. 101–110, May 2014, doi: https://doi.org/10.1016/J.ENBUILD.2014.01.037.

  192. B. Berg, “Using Bim To Calculate Accurate Building Material Quantities for Early Design Phase Life Cycle Assessment,” 2014.

    Google Scholar 

  193. Dupuis M, April A, Lesage P, Forgues D (2017) Method to enable LCA analysis through each level of development of a BIM model. Procedia Eng. 196:857–863. https://doi.org/10.1016/J.PROENG.2017.08.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Amini Toosi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amini Toosi, H., Lavagna, M., Leonforte, F., Del Pero, C., Aste, N. (2021). Implementing Life Cycle Sustainability Assessment in Building and Energy Retrofit Design—An Investigation into Challenges and Opportunities. In: Muthu, S.S. (eds) Life Cycle Sustainability Assessment (LCSA). Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-16-4562-4_6

Download citation

Publish with us

Policies and ethics