Skip to main content

Steady-State Fluorescence Spectroscopy as a Tool to Monitor Protein/Ligand Interactions

  • Chapter
  • First Online:
Optical Spectroscopic and Microscopic Techniques

Abstract

Fluorescence spectroscopy is an ideal and powerful methodology for the potent and reliable study of protein–ligand interactions. Enhanced susceptibility accompanied with comparative easiness forms the prominent key factor for the application of fluorescence techniques in these studies. In fluorescence technique, protein–ligand interactions are often studied at very low concentrations compared to other optical methods with a thousandfold higher sensitivity. In this method, we measure the variation in quantum yield upon ligand binding, by observing variations in ligand fluorescence, intrinsic protein fluorescence, or fluorescence of covalently or noncovalently bound fluorescent probes that are sensitive to ligand binding. Sensitivity of a fluorescent ligand to the environment, energy transfer from protein to ligand producing reduction in protein fluorescence or amplification of ligand fluorescence, a conformational change in protein/ ligand on binding to the protein, etc., contribute to the changes in quantum yield upon ligand binding [1–3]. This chapter will outline a sketch of steady-state fluorescence techniques for defining molecular interactions and calculation of binding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (ed) (2013) Principles of fluorescence spectroscopy. Springer Science and Business media, Berlin

    Google Scholar 

  2. Demchenko AP, Lakowicz JR (eds) (1991) Topics in fluorescence spectroscopy: biochemical applications. Plenum, New York, pp 65–112

    Google Scholar 

  3. Lakowicz JR (2002) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academics/Plenum, NewYork, pp 445–486

    Book  Google Scholar 

  4. Saxena A, Udgaonkar JB, Krishnamoorthy G (2005) Protein dynamics and protein folding dynamics revealed by time-resolved fluorescence. In: Hof M, Hutterer R, Fidler V (eds) Fluorescence spectroscopy in biology, vol 3. Springer, Berlin, Heidelberg, pp 163–179

    Chapter  Google Scholar 

  5. Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66:482–501

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37(28):9976–9982

    Article  CAS  PubMed  Google Scholar 

  7. Demchenko AP, Mély Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96(9):3461–3470

    Article  CAS  PubMed  Google Scholar 

  8. Martin MM, Lindqvist L (1975) The pH dependence of fluorescein fluorescence. J Lumin 10:381–390

    Article  CAS  Google Scholar 

  9. Ma LY, Wang HY, Xie H, Xu LX (2004) A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor. Spectrochim Acta A Mol Biomol Spectrosc 60(89):1865–1872

    Article  PubMed  Google Scholar 

  10. Varlan A, Hillebrand M (2010) Study on the interaction of 2-carboxyphenoxathiine with bovine serum albumin and human serum albumin by fluorescence spectroscopy and circular dichroism. Rev Roum Chim 55:69–77

    CAS  Google Scholar 

  11. Khan SN, Islam B, Khan AU (2007) Probing midazolam interaction with human serum albumin and its effect on structural state of proteins. Int J Integr Biol 1(2):102–112

    CAS  Google Scholar 

  12. Alarcón E, Edwards AM, Aspée A, Borsarelli CD, Lissi EA (2009) Photophysics and photochemistry of Rose Bengal bound to human serum albumin. Photochem Photobiol Sci 8:933–943

    Article  PubMed  Google Scholar 

  13. Weljie AM, Vogel HJ (2002) Steady-state fluorescence spectroscopy. Methods Mol Biol 173:75–87

    CAS  PubMed  Google Scholar 

  14. Ward LD (1985) Measurement of ligand binding to proteins by fluorescence spectroscopy. Methods Enzymol 117:400–414

    Article  CAS  PubMed  Google Scholar 

  15. Mocz G, Ross JA (2013) Fluorescence techniques in analysis of protein-ligand interactions. Methods Mol Biol 1008:169–210

    Article  CAS  PubMed  Google Scholar 

  16. Yammine A, Gao J, Kwan AH (2019) Tryptophan fluorescence quenching assays for measuring protein-ligand binding affinities: principles and a practical guide. BioProtocol 9(11):e3253

    CAS  Google Scholar 

  17. Williams MA, Daviter T (eds) (2013) Protein-ligand interactions: methods and applications, methods in molecular biology. Springer Science Business Media, New York, p 1008

    Google Scholar 

  18. Chipman DM, Grisaro V, Sharon N (1967) The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmuramic acid to lysozyme. J Biol Chem 242:4388–4394

    Article  CAS  PubMed  Google Scholar 

  19. Roberts DD, Goldstein IJ (1982) Lectin from Lima beans (Phaseolus lunatus). J Biol Chem 257:11274–11277

    Article  CAS  PubMed  Google Scholar 

  20. Komath SS, Kenoth R, Swamy MJ (2001) Thermodynamic analysis of saccharide binding to snake gourd (Trichosanthesanguina) seed lectin fluorescence and absorption spectroscopic studies. Eur J Biochem 268:111–119

    Article  CAS  PubMed  Google Scholar 

  21. Khan MI, Mazumder T, Pain D, Gaur N, Surolia A (1981) Binding of 4-methylumbelliferyl b-d-galactopyranoside to Momordica charantia lectin. Eur J Biochem 113:471–476

    Article  CAS  PubMed  Google Scholar 

  22. Bessler W, Shafer J, Goldstein IJ (1974) Spectroscopic study of the carbohydrate binding site of con a. J Biol Chem 249:2819–2822

    Article  CAS  PubMed  Google Scholar 

  23. Kubista M, Sjöback R, Ericsson S, Albinsson B (1994) Experimental correction for the inner-filter effect in fluorescence spectra. Analyst 119:417–419

    Article  CAS  Google Scholar 

  24. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106(5):1769–1784

    Article  CAS  PubMed  Google Scholar 

  25. Cohen BE, McAnaney TB, Park ES, Jan YN, Boxer SG, Jan LY (2002) Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296:1700–1703

    Article  CAS  PubMed  Google Scholar 

  26. Abou-Zied OK, Al-Shini OIK (2008) Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J Am Chem Soc 130(32):10793–10801

    Article  CAS  PubMed  Google Scholar 

  27. Er JC, Vendrell M, Tang MK, Zhai D, Chang YT (2003) Fluorescent dye cocktail for multiplex drug-site mapping on human serum albumin. ACS Comb Sci 15(9):452–457

    Article  Google Scholar 

  28. Yamasaki K, Chuang VTG, Maruyama T, Otagiri M (2013) Albumin–drug interaction and its clinical implication. Biochim Biophys Acta 1830:5435–5443

    Article  CAS  PubMed  Google Scholar 

  29. Bagshaw C (2001) ATP analogues at a glance. J Cell Sci 114:459–460

    Article  CAS  PubMed  Google Scholar 

  30. Jameson DM, Eccleston JF (1997) Fluorescent nucleotide analogs: synthesis and applications. Methods Enzymol 278:363–390

    Article  CAS  PubMed  Google Scholar 

  31. Weisbrod SH, Marx A (2008) Novel strategies for the site-specific covalent labelling of nucleic acids. Chem Commun (Camb) 44:5675–5685

    Article  Google Scholar 

  32. Morris MC, Gondeau C, Tainer JA, Divita G (2002) Kinetic mechanism of activation of the Cdk2/cyclin a complex. Key role of the C-lobe of the Cdk. J Biol Chem 277(26):23847–23853

    Article  CAS  PubMed  Google Scholar 

  33. Heitz F, Morris MC, Fesquet D, Cavadore JC, Dorée M, Divita G (1997) Interactions of cyclins with cyclin-dependent kinases: a common interactive mechanism. Biochemistry 36(16):4995–5003

    Article  CAS  PubMed  Google Scholar 

  34. Creighton TE (2010) The biophysical chemistry of nucleic acids and proteins. Helvetian Press, Eastbourne

    Google Scholar 

  35. Divita G, Müller BU, Immendörfer U, Gautel M, Rittinger K, Restle T, Goody RS (1993) Kinetics of interaction of HIV reverse transcriptase with primer/template. Biochemistry 32(31):7966–7971

    Article  CAS  PubMed  Google Scholar 

  36. Liu S, Harada BT, Miller JT, Le Grice SFJ, Zhuang X (2010) Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription. Nat Struct Mol Biol 17:1453–1460

    Article  CAS  PubMed  Google Scholar 

  37. Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SFJ, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189

    Article  CAS  PubMed  Google Scholar 

  38. Agopian A, Depollier J, Lionne C, Divita G (2007) Trp24 and Phe61 are essential for accurate association of HIV-1 reverse transcriptase with primer/template. J Mol Biol 373(1):127–140

    Article  CAS  PubMed  Google Scholar 

  39. Kurzawa L, Morris MC (2010) Cell-cycle markers and biosensors. Chem Biochem 11(8):1037–1047

    CAS  Google Scholar 

  40. Kurzawa L, Pellerano M, Coppolani JB, Morris MC (2011) Fluorescent peptide biosensor for probing the relative abundance of cyclin-dependent kinases in living cells. PLoS One 6(10):e26555

    Article  CAS  PubMed  Google Scholar 

  41. Gondeau C, Gerbal-Chaloin S, Bello P, Aldrian-Herrada G, Morris MC, Divita G (2005) Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J Biol Chem 280(14):13793–13800

    Article  CAS  PubMed  Google Scholar 

  42. Pommier Y, Cherfils J (2005) Interfacial inhibition of macromolecular interactions: nature’s paradigm for drug discovery. Trends Pharmacol Sci 26(3):138–145

    Article  CAS  PubMed  Google Scholar 

  43. Bianchi G, Carafoli E, Scarpa A (1986) Membrane pathology. Ann N Y Acad Sci 488:1–153

    Google Scholar 

  44. Kamlekar RK, Gao Y, Kenoth R, Molotkovsky JG, Prendergast FG, Malinina L, Patel DJ, Wessels WS, Venyaminov SY, Brown RE (2010) Human GLTP: three distinct functions for the three Tryptophans in a novel peripheral amphitropic fold. Biophys J 99:2626–2635

    Article  CAS  PubMed  Google Scholar 

  45. Kenoth R, Zou X, Simanshu DK, Pike HM, Malinina L, Patel DJ, Brown RE, Kamlekar RK (2018) Functional evaluation of intrinsic Tryptophans in glycolipid binding and membrane interaction by HETC2, a fungal glycolipid transfer protein. Biochim Biophys Acta Biomembr 1860(5):1069–1076

    Article  CAS  PubMed  Google Scholar 

  46. Santra MK, Panda D (2003) Detection of an intermediate during unfolding of bacterial cell division protein FtsZ: loss of functional properties precedes the global unfolding of FtsZ. J Biol Chem 278:21336–21343

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava R, Ratheesh A, Gude RK, Rao KVK, Panda D, Subrahmanyam G (2005) Resveratrol inhibits type II phosphatidylinositol 4-kinase: a key component in pathways of phopsphoinositide turnover. Biochem Pharmacol 70:1048–1055

    Article  CAS  PubMed  Google Scholar 

  48. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  49. Eftink MR, Ghiron CA (1976) Exposure of tryptophyl residues in proteins. Quantitative determination by fluorescence quenching studies. Biochemistry 15:672–680

    Article  CAS  PubMed  Google Scholar 

  50. Eftink MR, Ghiron CA (1976) Fluorescence quenching of indole and model micelle systems. J Phys Chem 80:486–493

    Article  CAS  Google Scholar 

  51. Clift MJ, Stone V (2012) Quantum dots: an insight and perspective of their biological interaction and how this relates to their relevance for clinical use. Theranostics 2:668–680

    Article  CAS  PubMed  Google Scholar 

  52. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  PubMed  Google Scholar 

  53. Song ZL, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Mikrochim Acta 185:485

    Article  PubMed  Google Scholar 

  54. Kiran T, Vasavi CS, Munusami P, Pathak M, Balamurali MM (2017) Evaluation of DNA/protein interactions and cytotoxic studies of copper (II) complexes incorporated with N, N donor ligands and terpyridine ligand. Int J Biol Macromol 95:1254–1266

    Article  Google Scholar 

  55. Bulbul G, Hayat A, Mustafa F, Andreescu S (2018) DNA assay based on Nanoceria as fluorescence quenchers (NanoCeracQ DNA assay). Sci Rep 8:2426

    Article  PubMed  Google Scholar 

  56. Liu B, Liu J (2015) Comprehensive screen of metal oxide nanoparticles for DNA adsorption, fluorescence quenching, and anion discrimination. ACS Appl Mater Interfaces 7:24833–24838

    Article  CAS  PubMed  Google Scholar 

  57. Zhang L, Wang J, Deng J, Wang S (2020) A novel fluorescent “turn-on” aptasensor based on nitrogen-doped graphene quantum dots and hexagonal cobalt oxyhydroxide nanoflakes to detect tetracycline. Anal Bioanal Chem 412:1343–1351

    Article  CAS  PubMed  Google Scholar 

  58. Patra SK, Pal MK (1997) Red edge excitation shift emission spectroscopic investigation of serum albumins and serum albumin-bilirubin complexes. Sectrochim Acta Pt A Mol Biomol Spectrosc 53A(10):1609–1614

    Article  CAS  Google Scholar 

  59. Chattopadhyay A, Haldar S (2014) Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 47:12–19

    Article  CAS  PubMed  Google Scholar 

  60. Venkatraman RK, Orr-Ewing AJ (2019) Photochemistry of benzophenone in solution: a tale of two different solvent environments. J Am Chem Soc 141:15222–15229

    Article  CAS  PubMed  Google Scholar 

  61. Hitchner MA, Santiago-Ortiz LE, Necelis MR, Shirley DJ, Palmer TJ, Tarnawsky KE, Vaden TD, Caputo GA (2019) Activity and characterization of a pH-sensitive antimicrobial peptide. Biochim Biophys Acta Biomembr 1861:182984

    Article  CAS  PubMed  Google Scholar 

  62. Baghaee PT, Divsalar A, Jamshikhan CJ, Donya A (2019) Human serum albumin–malathion complex study in the presence of silver nanoparticles at different sizes by multi spectroscopic techniques. J Biomol Struct Dyn 37:2254–2264

    Article  CAS  PubMed  Google Scholar 

  63. Rubio S, Gomez-Hens A, Valcarcel M (1986) Analytical applications of synchronous fluorescence spectroscopy. Talanta 33:633–640

    Article  CAS  PubMed  Google Scholar 

  64. Lecrenier MC, Baeten V, Taira A, Abbas O (2018) Synchronous fluorescence spectroscopy for detecting blood meal and blood products. Talanta 189:166–173

    Article  CAS  PubMed  Google Scholar 

  65. Dankowska A, Malecka M, Kowalewski W (2015) Detection of plant oil addition to cheese by synchronous fluorescence spectroscopy. Dairy Sci Technol 95:413–424

    Article  CAS  PubMed  Google Scholar 

  66. Durakli VS, Ercioglu E, Boyaci IH (2017) Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods. J Dairy Res 84(2):214–219

    Article  Google Scholar 

  67. Temiz HT, Tamer U, Berkkan A, Boyaci IH (2017) Synchronous fluorescence spectroscopy for determination of tahini adulteration. Talanta 167:557–562

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kanth Kamlekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kenoth, R., M., B.M., Kamlekar, R.K. (2022). Steady-State Fluorescence Spectroscopy as a Tool to Monitor Protein/Ligand Interactions. In: Sahoo, H. (eds) Optical Spectroscopic and Microscopic Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-16-4550-1_3

Download citation

Publish with us

Policies and ethics