Skip to main content

Fluorescence Techniques in Analysis of Protein–Ligand Interactions

  • Protocol
  • First Online:
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1008))

Abstract

Fluorescence spectroscopy may serve as a universal tool for the study of protein–ligand interactions. Applications of fluorometry have made use of various aspects of fluorescence such as intensity, emission and excitation spectra, lifetime, quantum yield, polarization state, and anisotropy, as well as energy transfer and other electronic phenomena. An experimentalist has to consider each of these characteristics carefully, frequently in combination with each other, for the analysis of protein–ligand complexes and for the determination of binding constants. Most of the available techniques are of a rather general nature and a wealth of possibilities exists for their utilization. In this chapter we will provide a short survey of selected techniques that can be used for measuring binding constants and probing protein–ligand interactions. Basic principles and phenomena are discussed followed by experimental considerations and examples of binding constant determination. Emphasis is placed on steady-state techniques that employ the use of intrinsic protein fluorescence, labeled ligands, as well as anisotropy and resonance energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand L, Johnson ML (eds) (2008) Fluorescence spectroscopy. Methods Enzymol 450:1–358

    Google Scholar 

  2. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  3. Valeur B (2002) Molecular fluorescence. Principles and applications, Wiley-VCH, Weinheim

    Google Scholar 

  4. Sharma A, Schulman SG (1999) Introduction to fluorescence spectroscopy. Wiley-Interscience, New York

    Google Scholar 

  5. Valeur B, Brochon JC (eds) (2001) New trends in fluorescence spectroscopy. Applications to chemical and life sciences. Springer, Berlin

    Google Scholar 

  6. Kraayenhof R, Visser AJWG, Gerritsen HC (eds) (2002) Fluorescence spectroscopy, imaging and probes. New tools in chemical, physical and life sciences. Springer, Berlin

    Google Scholar 

  7. Gell C, Brockwell D, Smith A (2006) Handbook of single molecule spectroscopy. Oxford University Press, Oxford

    Google Scholar 

  8. Roehrl MHA, Wang JY, Wagner G (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein–protein interactions by fluorescence polarization. Biochemistry 43:16056–16066

    Article  PubMed  CAS  Google Scholar 

  9. Eccleston JF, Hutchinson JP, Jameson DM (2005) Fluorescence-based assays. Prog Med Chem 43:19–48

    Article  PubMed  CAS  Google Scholar 

  10. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110:2685–2708

    Article  PubMed  CAS  Google Scholar 

  11. Weljie AM, Vogel HJ (2002) Steady-state fluorescence spectroscopy. Methods Mol Biol 173:231–253, Clifton, NJ

    Google Scholar 

  12. Jameson DM, Croney JC, Moens PD (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol 360:1–43

    Article  PubMed  CAS  Google Scholar 

  13. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75

    Article  Google Scholar 

  14. Förster T, Sinanoglu O (eds) (1996) Modern quantum chemistry. Academic Press, New York

    Google Scholar 

  15. Hammes G (1981) Fluorescence methods. In: Frieden C, Nichol LW (eds) Protein–protein interactions. Wiley-Interscience, New York, pp 257–287

    Google Scholar 

  16. Demchenko AP (2009) Introduction to fluorescence sensing. Springer Science + Business Media B V, New York

    Google Scholar 

  17. Xiao J, Wei X, Wang Y, Liu C (2009) Fluorescence resonance energy-transfer affects the determination of the affinity between ligand and proteins obtained by fluorescence quenching method. Spectrochim Acta A 74:977–982

    Article  Google Scholar 

  18. Shaw AK, Pal SK (2008) Resonance energy transfer and ligand binding studies on pH-induced folded states of human serum albumin. J Photochem Photobiol B Biol 90:187–197

    Article  CAS  Google Scholar 

  19. Permyakov EA (1993) Luminescent spectroscopy of proteins. CRC Press, Boca-Raton, FL

    Google Scholar 

  20. Weber G (1966) Polarization of the fluorescence of solutions. In: Hercules DM (ed) Fluorescence and phosphorescence analysis. Wiley-Interscience Publishers, New York

    Google Scholar 

  21. Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6:167–173

    Article  PubMed  CAS  Google Scholar 

  22. Dandliker WB, Feijen GA (1961) Quantification of the antigen-antibody reaction by the polarization of fluorescence. Biochem Biophys Res Commun 5:299–304

    Article  PubMed  CAS  Google Scholar 

  23. Dandliker WB, de Saussure VA (1970) Fluorescence polarization in immunochemistry. Immunochemistry 7:799–828

    Article  PubMed  CAS  Google Scholar 

  24. Weber G, Young LB (1964) Fragmentation of bovine serum albumin by pepsin. I The origin of the acid expansion of the albumin molecule J Biol Chem 239:1415–1423

    CAS  Google Scholar 

  25. Levine RJ, Teller DN, Denber HC (1968) Binding of chlorpromazine and thioproperazine in vitro. 3. Fluorometric measurement of changes in Limulus polyphemus (horseshoe crab) myosin B structure and enzyme activity after treatment with phenothiazine drugs. Mol Pharmacol 4:435–444

    PubMed  CAS  Google Scholar 

  26. Jameson DM, Sawyer WH (1995) Fluorescence anisotropy applied to biomolecular interactions. Methods Enzymol 246:283–300

    Article  PubMed  CAS  Google Scholar 

  27. Kusbaa J, Lakowicz JR (1999) Definition and properties of the emission anisotropy in the absence of cylindrical symmetry of the emission field: application to the light quenching experiments. J Chem Phys 111:89–99

    Article  Google Scholar 

  28. Fixler D, Namer Y, Yishay Y et al (2006) Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments. IEEE Trans Biomed Eng 53:1141–1152

    Article  PubMed  Google Scholar 

  29. Mocz G (2006) Information content of fluorescence polarization and anisotropy. J Fluoresc 16:511–524

    Article  PubMed  CAS  Google Scholar 

  30. Perrin F (1929) La fluorescence des solutions. Ann Phys Ser 10(12):169–275

    Google Scholar 

  31. Ross JA, Jameson DM (2008) Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem Photobiol Sci 7:1301–1312

    Article  PubMed  CAS  Google Scholar 

  32. Callis PR, Liu T (2004) Quantitative predictions of fluorescence quantum yields for tryptophan in proteins. Phys Chem B 108:4248–4259

    Article  CAS  Google Scholar 

  33. Chen Y, Barkley MD (1998) Toward understanding tryptophan fluorescence in proteins. Biochemistry 37:9976–9982

    Article  PubMed  CAS  Google Scholar 

  34. Mocz G (2007) Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mar Biotechnol (NY) 9:305–328

    Article  CAS  Google Scholar 

  35. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  36. Das K, Sarkar N, Bhattacharya K (1993) Interaction of urea with fluorophores bound to protein surface J Chem Soc Faraday Trans 89:1959–1961

    Article  CAS  Google Scholar 

  37. Del Castillo B, Alvarez-Builla J, Lerner DA (1991) Fluorogenic reagents and fluorescent probes. In: Baeyens WRG, De Keukeleire D, Korkidis K (eds) Luminescence techniques in chemical and biochemical analysis. Marcel-Dekker, Inc, New York, pp 73–139

    Google Scholar 

  38. Mocz G, Helms MK, Jameson DM et al (1998) Probing the nucleotide binding sites of axonemal dynein with the fluorescent nucleotide analogue 2′(3′)-O-(–N-methylanthraniloyl)-adenosine 5′-triphosphate. Biochemistry 37:9862–9869

    Article  PubMed  CAS  Google Scholar 

  39. Jameson DM, Mocz G (2005) Fluorescence polarization/anisotropy approaches to study protein–ligand interactions: effects of errors and uncertainties. Methods Mol Biol 305:301–322

    PubMed  CAS  Google Scholar 

  40. Connors KA (1987) Binding constants. The measurement of molecular complex stability. Wiley-Interscience, New York

    Google Scholar 

  41. Martell AE, Motekaitis RJ (1988) The determination and use of stability constants. VCH Publishers, Inc, New York

    Google Scholar 

  42. Jameson DM, Weber G, Spencer RD et al (1978) Fluorescence polarization measurements with a photon-counting photometer. Rev Sci Instrum 49:510–514

    Article  PubMed  CAS  Google Scholar 

  43. Weber G (1989) From solution spectroscopy to image spectroscopy. In: Kohen E (ed) Cell structure and function by microspectrofluorometry. Academic Press, New York, pp 71–85

    Google Scholar 

  44. Daniel E, Weber G (1966) Cooperative binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Biochemistry 5:1893–1899

    Article  PubMed  CAS  Google Scholar 

  45. Weber G, Daniel E (1966) Cooperative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalene-sulfonate. Polarization of the ligand fluorescence and quenching of the protein fluorescence. Biochemistry 5:1900–1907

    Article  PubMed  CAS  Google Scholar 

  46. Togashi DM, Ryder AG (2008) A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer. J Fluoresc 18:519–526

    Article  PubMed  CAS  Google Scholar 

  47. Laurence DJR (1952) A study of the adsorption of dyes on bovine serum albumin by the method of polarization of fluorescence. Biochem J 51:168–180

    PubMed  CAS  Google Scholar 

  48. Voelker JR, Jameson DM, Brater DC (1989) In vitro evidence that urine composition affects the fraction of active furosemide in the nephrotic syndrome. J Pharmacol Exp Ther 250:772–778

    PubMed  CAS  Google Scholar 

  49. Jameson DM, Ross JA, Albanesi JP (2009) Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics. Biophys Rev 1:105–118

    Article  PubMed  CAS  Google Scholar 

  50. Rurack K (2008) Fluorescence quantum yields: methods of determination and standards. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques, vol 5. Springer, Berlin, Heidelberg

    Google Scholar 

  51. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes: the orientation factor in intramolecular energy transfer. Biophys J 26:161–194; Errata: (1980) 30:365

    Google Scholar 

  52. Cheung H (1991) Resonance energy transfer. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy: principles. 2:127–176, Plenum Press, New York

    Google Scholar 

  53. Callis PR (2007) Exploring the electrostatic landscape of proteins with tryptophan fluorescence. In: Geddes CD (ed) Reviews in fluorescence, 4th edn. Springer, New York

    Google Scholar 

  54. Takla PM, Schulman SG, Perrin JH (1985) Meaurement of flurbiprofen-human serum albumin interaction by fluorimetry. J Pharm Biomed Anal 3:41–50

    Article  PubMed  CAS  Google Scholar 

  55. Bobrovnik S (2005) New capabilities in determining the binding parameters for ligand–receptor interaction. J Biochem Biophys Methods 65:30–44

    Article  PubMed  CAS  Google Scholar 

  56. Rigler R, Elson ES (eds) Fluorescence correlation spectroscopy. Theory and applications. Springer, Berlin

    Google Scholar 

  57. Barbieri B, Terpetschnig E, Jameson DM (2005) Frequency-domain fluorescence spectroscopy using 280-nm and 300-nm light-emitting diodes: measurement of proteins and protein-related fluorophores. Anal Biochem 344:298–300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This publication was made possible in part by grant no. G12RR003061 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the author and do not necessarily represent the official view of NCRR or NIH (GM). This work was supported by National Institutes of Health grants RO1GM076665 (JAR). We thank Professor David M. Jameson for useful discussions and for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mocz, G., Ross, J.A. (2013). Fluorescence Techniques in Analysis of Protein–Ligand Interactions. In: Williams, M., Daviter, T. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 1008. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-398-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-398-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-397-8

  • Online ISBN: 978-1-62703-398-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics