Skip to main content

An Introduction to Respiratory Diseases and an Emerging Need for Efficient Drug Delivery Systems

  • Chapter
  • First Online:
Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases

Abstract

Respiratory diseases, both acute or chronic and infectious or non-infectious, affect millions of people worldwide. The leading causes of morbidity and mortality due to respiratory diseases like asthma, chronic obstructive pulmonary diseases, interstitial lung diseases, cystic fibrosis (CF), respiratory infections and lung cancers impose enormous socio-economic burdens. Despite the significant improvement in understanding the mechanisms of these disease processes, only a few effective therapies have been developed, and most of the treatments reduce the symptoms but do not prevent the disease. There is a need for the development of efficacious respiratory drugs as well as the drug delivery system to reduce health care burdens and improve patient outcomes. Pulmonary drug delivery has not been fully explored, considering the increasing complexity of respiratory diseases, which demands an emerging need for suitable, effective and patient-complaint pharmaceuticals. In this chapter, we provide an overview of the burden of respiratory diseases, current treatments and limitations; a brief outline of chronic lung diseases and their pathogenic mechanisms; and the need for the development of novel and effective pulmonary drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegunde DO et al (2007) The burden and costs of chronic diseases in low-income and middle-income countries. Lancet 370(9603):1929–1938

    Article  PubMed  Google Scholar 

  • Allen DB et al (2003) Inhaled corticosteroids: past lessons and future issues. J Allergy Clin Immunol 112(3 Suppl):S1–S40

    Article  CAS  PubMed  Google Scholar 

  • Amir Sharafkhaneh NAH, Kim V (2008) Pathogenesis of emphysema. Proc Am Thorac Soc 5:475–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson CF et al (2020) Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley interdisciplinary reviews. Nanomed Nanobiotechnol 12(1):e1586–e1586

    Article  CAS  Google Scholar 

  • Antoniou KM et al (2014) Interstitial lung disease. Eur Respir Rev 23(131):40–54

    Article  PubMed  Google Scholar 

  • Ashkenazi-Hoffnung L et al (2018) A host-protein signature is superior to other biomarkers for differentiating between bacterial and viral disease in patients with respiratory infection and fever without source: a prospective observational study. Eur J Clin Microbiol Infect Dis 37(7):1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astma GIF (2020) GINA Report, Global Strategy for Asthma Management and Prevention

    Google Scholar 

  • Bakshi HA et al (2020) Dietary crocin is protective in pancreatic cancer while reducing radiation-induced hepatic oxidative damage. Nutrients:12(6)

    Google Scholar 

  • Barnes PJ (2000) Chronic obstructive pulmonary disease. N Engl J Med 343(4):269–280

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645

    Article  CAS  PubMed  Google Scholar 

  • Beck-Broichsitter M, Merkel OM, Kissel T (2012) Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J Control Release 161(2):214–224

    Article  CAS  PubMed  Google Scholar 

  • Bordon J et al (2013) Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int J Infect Dis 17(2):e76–e83

    Article  CAS  PubMed  Google Scholar 

  • Boubour A, Paradkar M, Thakur KT (2020) Chapter 1—Global and regional burden of tuberculosis and tuberculous meningitis. In: Chin JH-C (ed) Tuberculous meningitis. Academic Press, pp 1–15

    Google Scholar 

  • Brambilla E et al (2001) The new World Health Organization classification of lung tumours. Eur Respir J 18(6):1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Burgel P-R et al (2011) Update on the roles of distal airways in COPD. Eur Respir Rev 20(119):007–022

    Article  Google Scholar 

  • Cazzola M et al (2020) Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Deliv 17(5):635–646

    Article  CAS  PubMed  Google Scholar 

  • Chandel A et al (2019) Recent advances in aerosolised drug delivery. Biomed Pharmacother 112:108601

    Article  CAS  PubMed  Google Scholar 

  • Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10

    Article  CAS  PubMed  Google Scholar 

  • Chow A et al (2007) Particle engineering for pulmonary drug delivery. Pharm Res 24:411–437

    Article  CAS  PubMed  Google Scholar 

  • Chung KF, Adcock IM (2008) Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J 31(6):1334–1356

    Article  CAS  PubMed  Google Scholar 

  • Cillóniz C, Cardozo C, García-Vidal CJ (2018) Epidemiology, pathophysiology, and microbiology of communityacquired pneumonia. Ann Res Hosp 2(1)

    Google Scholar 

  • Cottin V et al (2018) Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur Respir Rev:27(150)

    Google Scholar 

  • Cryan S-A (2005) Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J 7(1):E20–E41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandachi D, Rodriguez-Barradas MC (2018) Viral pneumonia: etiologies and treatment. J Investig Med 66(6):957–965

    Article  PubMed  Google Scholar 

  • Daniels CE et al (2010) Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med 181(6):604–610

    Article  CAS  PubMed  Google Scholar 

  • Davies DE et al (2003) Airway remodeling in asthma: new insights. J Allergy Clin Immunol 111(2):215–225; quiz 226

    Article  CAS  PubMed  Google Scholar 

  • Davies JC, Alton EW, Bush A (2007) Cystic fibrosis. BMJ 335(7632):1255–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • de Benedictis FM, Bush A (2012) Corticosteroids in respiratory diseases in children. Am J Respir Crit Care Med 185(1):12–23

    Article  PubMed  CAS  Google Scholar 

  • Demedts M et al (2001) Interstitial lung diseases: an epidemiological overview. Eur Respir J Suppl 32:2s–16s

    CAS  PubMed  Google Scholar 

  • Desai O et al (2018) The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med (Lausanne) 5:43

    Article  Google Scholar 

  • Elborn JS (2016) Cystic fibrosis. Lancet 388(10059):2519–2531

    Article  CAS  PubMed  Google Scholar 

  • El-Gendy N, Bailey MM, Berkland C (2011) Particle engineering technologies for pulmonary drug delivery. In: Smyth HDC, Hickey AJ (eds) Controlled pulmonary drug delivery. Springer, New York, NY, pp 283–312

    Chapter  Google Scholar 

  • El-Sherbiny IM et al (2011) Overcoming lung clearance mechanisms for controlled release drug delivery. In: Smyth HDC, Hickey AJ (eds) Controlled pulmonary drug delivery. Springer, New York, NY, pp 101–126

    Chapter  Google Scholar 

  • Fahy JV (2015) Type 2 inflammation in asthma—present in most, absent in many. Nat Rev Immunol 15(1):57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fergeson JE, Patel SS, Lockey RF (2017) Acute asthma, prognosis, and treatment. J Allergy Clin Immunol 139(2):438–447

    Article  CAS  PubMed  Google Scholar 

  • Flaster H et al (2007) The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol 21(6):1267–1280

    Article  CAS  PubMed  Google Scholar 

  • Gillis RJ, Iglewski BH (2004) Azithromycin retards Pseudomonas aeruginosa biofilm formation. J Clin Microbiol 42(12):5842–5845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosselink JV et al (2010) Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(12):1329–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal V, Chang AB (2016) Acute exacerbations of airway inflammation. In: Parnham MJ (ed) Compendium of inflammatory diseases. Springer, Basel, pp 5–20

    Chapter  Google Scholar 

  • Guarascio AJ et al (2013) The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon Outcomes Res 5:235–245

    PubMed  PubMed Central  Google Scholar 

  • Gupta P, O’Mahony MS (2008) Potential adverse effects of bronchodilators in the treatment of airways obstruction in older people. Drugs Aging 25(5):415–443

    Article  CAS  PubMed  Google Scholar 

  • Hamid Q et al (2003) Inflammatory cells in asthma: mechanisms and implications for therapy. J Allergy Clin Immunol 111(1 Suppl):S5–S12; discussion S12–S7

    Article  CAS  PubMed  Google Scholar 

  • Hogg JC (2004a) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721

    Article  PubMed  Google Scholar 

  • Hogg JC (2004b) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364(9435):709–721

    Article  PubMed  Google Scholar 

  • Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Ann Rev Pathol Mechan Dis 4(1):435–459

    Article  CAS  Google Scholar 

  • Holgate ST et al (2015) Asthma. Nat Rev Dis Primers 1(1):15025

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang H, Lovell JF (2017) Advanced functional nanomaterials for theranostics. Adv Funct Mater 27(2):1603524

    Article  PubMed  CAS  Google Scholar 

  • Hurley MN et al (2014) Rate of improvement of CF life expectancy exceeds that of general population—observational death registration study. J Cyst Fibros 13(4):410–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssens JP, Krause KH (2004) Pneumonia in the very old. Lancet Infect Dis 4(2):112–124

    Article  PubMed  Google Scholar 

  • Jilani TN, Jamil RT, Siddiqui AH (2020) H1N1 Influenza (Swine Flu). In: StatPearls. StatPearls Publishing, Treasure Island, FL

    Google Scholar 

  • Kalchiem-Dekel O et al (2018) Interstitial lung disease and pulmonary fibrosis: a practical approach for general medicine physicians with focus on the medical history. J Clin Med:7(12)

    Google Scholar 

  • Keatings VM et al (1997) Effects of inhaled and oral glucocorticoids on inflammatory indices in asthma and COPD. Am J Respir Crit Care Med 155(2):542–548

    Article  CAS  PubMed  Google Scholar 

  • Khaltaev N (2017) GARD, a new way to battle with chronic respiratory diseases, from disease oriented programmes to global partnership. J Thorac Dis 9(11):4676–4689

    Article  PubMed  PubMed Central  Google Scholar 

  • Knowles MR et al (1997) Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100(10):2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuruvilla ME, Lee FE, Lee GB (2019) Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol 56(2):219–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusano S et al (1995) Effect of roxithromycin on peripheral neutrophil adhesion molecules in patients with chronic lower respiratory tract disease. Respiration 62(4):217–222

    Article  CAS  PubMed  Google Scholar 

  • Labaki WW, Han MK (2020) Chronic respiratory diseases: a global view. Lancet Respir Med 8(6):531–533

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavorini F, Pistolesi M, Usmani OS (2017) Recent advances in capsule-based dry powder inhaler technology. Multidiscip Respir Med 12(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Lederer DJ, Martinez FJ (2018) Idiopathic pulmonary fibrosis. N Engl J Med 378(19):1811–1823

    Article  CAS  PubMed  Google Scholar 

  • Liu L et al (2015) Global, regional, and national causes of child mortality in 2000-13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet 385(9966):430–440

    Article  PubMed  Google Scholar 

  • Lozano R et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128

    Article  PubMed  Google Scholar 

  • Lundback B et al (2003) Not 15 but 50% of smokers develop COPD? Report from the Obstructive Lung Disease in Northern Sweden Studies. Respir Med 97(2):115–122

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie T et al (2014) Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry. Ann Intern Med 161(4):233–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Madan J, et al (2013) Formulation and evaluation of microspheres containing ropinirole hydrochloride using biodegradable polymers

    Google Scholar 

  • Mapel DW et al (2015) Application of the new GOLD COPD staging system to a US primary care cohort, with comparison to physician and patient impressions of severity. Int J Chron Obstruct Pulmon Dis 10:1477–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez FJ et al (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3:17074

    Article  PubMed  Google Scholar 

  • Matera MG, Page CP, Cazzola M (2011) Novel bronchodilators for the treatment of chronic obstructive pulmonary disease. Trends Pharmacol Sci 32(8):495–506

    Article  CAS  PubMed  Google Scholar 

  • Matera MG et al (2018) Current pharmacotherapeutic options for pediatric lower respiratory tract infections with a focus on antimicrobial agents. Expert Opin Pharmacother 19(18):2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Matera MG et al (2020) Pharmacology and therapeutics of bronchodilators revisited. Pharmacol Rev 72(1):218

    Article  CAS  PubMed  Google Scholar 

  • McKimm-Breschkin JL (2013) Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respir Viruses 7(Suppl 1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Menéndez R et al (2012) Cytokine activation patterns and biomarkers are influenced by microorganisms in community-acquired pneumonia. Chest 141(6):1537–1545

    Article  PubMed  Google Scholar 

  • Miravitlles M, Anzueto A (2013) Antibiotics for acute and chronic respiratory infection in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 188(9):1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Molfino NA, Jeffery PK (2007) Chronic obstructive pulmonary disease: histopathology, inflammation and potential therapies. Pulm Pharmacol Ther 20(5):462–472

    Article  CAS  PubMed  Google Scholar 

  • Nagai H et al (1991) Long-term low-dose administration of erythromycin to patients with diffuse panbronchiolitis. Respiration 58(3–4):145–149

    Article  CAS  PubMed  Google Scholar 

  • Newman SP (2004) Dry powder inhalers for optimal drug delivery. Expert Opin Biol Ther 4(1):23–33

    Article  CAS  PubMed  Google Scholar 

  • Nunes C, Pereira A, Morais-Almeida M (2017) Asthma costs and social impact. Asthma Res Pract 3

    Google Scholar 

  • Page C, Cazzola M (2017) Bifunctional drugs for the treatment of respiratory diseases. Handb Exp Pharmacol 237:197–212

    Article  CAS  PubMed  Google Scholar 

  • Page CP, Spina D (2012) Selective PDE inhibitors as novel treatments for respiratory diseases. Curr Opin Pharmacol 12(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Papi A et al (2018) Asthma. Lancet 391(10122):783–800

    Article  PubMed  Google Scholar 

  • Patil JS, Sarasija S (2012) Pulmonary drug delivery strategies: a concise, systematic review. Lung India 29(1):44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavord ID et al (2018) After asthma: redefining airways diseases. Lancet 391(10118):350–400

    Article  PubMed  Google Scholar 

  • Pettersen CA, Adler KB (2002) Airways inflammation and COPD: epithelial-neutrophil interactions. Chest 121(5 Suppl):142S–150S

    Article  CAS  PubMed  Google Scholar 

  • Pfuntner A, Wier LM, Steiner C (2006) Costs for Hospital Stays in the United States, 2011: Statistical Brief #168, in Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Agency for Healthcare Research and Quality (US), Rockville, MD

    Google Scholar 

  • Pneumonia—Our World in Data (2019). https://ourworldindata.org/pneumonia

  • Prüss-Üstün A, Corvalán CF, World Health Organization (2006) Preventing disease through healthy environments: towards an estimate of the environmental burden of disease. World Health Organization, Geneva

    Google Scholar 

  • Raghu G et al (2013) Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med 158(9):641–649

    Article  PubMed  Google Scholar 

  • Ramsey CD, Celedón JC (2005) The hygiene hypothesis and asthma. Curr Opin Pulm Med 11(1):14–20

    Article  PubMed  Google Scholar 

  • Rangasamy T et al (2009) Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol 296(6):L888–L900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 308(2):L130–L140

    Article  CAS  PubMed  Google Scholar 

  • Renna M et al (2011) Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest 121(9):3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey MM, Bonk MP, Hadjiliadis D (2019) Cystic fibrosis: emerging understanding and therapies. Annu Rev Med 70:197–210

    Article  CAS  PubMed  Google Scholar 

  • Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. N Engl J Med 353(16):1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Robinson DS (2010) The role of the T cell in asthma. J Allergy Clin Immunol 126(6):1081–1091. quiz 1092-3

    Article  CAS  PubMed  Google Scholar 

  • Robinson D et al (2017) Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 47(2):161–175

    Article  CAS  PubMed  Google Scholar 

  • Rubin BK (2018) Cystic fibrosis 2017-the year in review. Respir Care 63(2):238–241

    Article  PubMed  Google Scholar 

  • Rudan I et al (2013) Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health 3(1):010401

    PubMed  PubMed Central  Google Scholar 

  • Ryu JH et al (2007) Diagnosis of interstitial lung diseases. Mayo Clin Proc 82(8):976–986

    Article  PubMed  Google Scholar 

  • Saetta M, Turato G (2001) Airway pathology in asthma. Eur Respir J Suppl 34:18s–23s

    Article  CAS  PubMed  Google Scholar 

  • Saettaa GTRZM (2001) Pathogenesis and pathology of COPD. Respiration 68(2):117–128

    Article  Google Scholar 

  • Salazar LM, Herrera AM (2011) Fibrotic response of tissue remodeling in COPD. Lung 189(2):101–109

    Article  PubMed  Google Scholar 

  • Sethi GR, Singhal KK (2008) Pulmonary diseases and corticosteroids. Indian J Pediatr 75(10):1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth A, Walters S (2001) Prophylactic antibiotics for cystic fibrosis. Cochrane Database Syst Rev 2001(3):Cd001912

    Google Scholar 

  • Snider GL (1989) Chronic obstructive pulmonary disease: risk factors, pathophysiology and pathogenesis. Annu Rev Med 40:411–429

    Article  CAS  PubMed  Google Scholar 

  • So JY, Mamary AJ, Shenoy K (2018) Asthma: diagnosis and treatment. Eur Med J 3(4):111–121

    Google Scholar 

  • Sohrabi C et al (2020) World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg 76:71–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano JB et al (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med 8(6):585–596

    Article  Google Scholar 

  • Spahn JD et al (2001) Clarithromycin potentiates glucocorticoid responsiveness in patients with asthma: results of a pilot study. Ann Allergy Asthma Immunol 87(6):501–505

    Article  CAS  PubMed  Google Scholar 

  • Spina D (2014) Current and novel bronchodilators in respiratory disease. Curr Opin Pulm Med 20(1):73–86

    Article  CAS  PubMed  Google Scholar 

  • Suresh Babu K (2013) J. Kastelik, and J.B. Morjaria, Role of long term antibiotics in chronic respiratory diseases. Respir Med 107(6):800–815

    Article  CAS  PubMed  Google Scholar 

  • Takizawa H et al (1997) Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med 156(1):266–271

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki J et al (1995) Effect of clarithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob Agents Chemother 39(8):1688–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashkin DP et al (2008) A 4-year trial of tiotropium in chronic obstructive pulmonary disease. N Engl J Med 359(15):1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD (2010) COPD and the response of the lung to tobacco smoke exposure. Pulm Pharmacol Ther 23(5):376–383

    Article  CAS  PubMed  Google Scholar 

  • Theron AJ et al (2013) Can the anti-inflammatory activities of beta2-agonists be harnessed in the clinical setting? Drug Des Devel Ther 7:1387–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrisi SE et al (2018) Assessment of survival in patients with idiopathic pulmonary fibrosis using quantitative HRCT indexes. Multidiscip Respir Med 13:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapani A et al (2014) Nanocarriers for respiratory diseases treatment: recent advances and current challenges. Curr Top Med Chem 14(9):1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Travis WD, Travis LB, Devesa SS (1995) Lung cancer. Cancer 75(1 Suppl):191–202

    Article  CAS  PubMed  Google Scholar 

  • Travis WD et al (2015) The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10(9):1243–1260

    Article  PubMed  Google Scholar 

  • Troeger C et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18(11):1191–1210

    Article  Google Scholar 

  • van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24(6):782–801

    Article  PubMed  CAS  Google Scholar 

  • van Doorn HR, Yu H (2013) Viral respiratory infections. Hunter’s Trop Med Emerg Infect Dis:269–274. https://doi.org/10.1016/B978-1-4160-4390-4.00029-1. Epub 2012 Nov 28

  • van Gool K et al (2013) Understanding the costs of care for cystic fibrosis: an analysis by age and health state. Value Health 16(2):345–355

    Article  PubMed  Google Scholar 

  • Viegi G et al (2020) Global Burden of Chronic Respiratory Diseases. J Aerosol Med Pulm Drug Deliv 33(4):171–177

    Article  PubMed  Google Scholar 

  • von Mutius E (2009) Gene-environment interactions in asthma. J Allergy Clin Immunol 123(1):3–11. quiz 12-3

    Article  Google Scholar 

  • Walker CLF et al (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381(9875):1405–1416

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2020) Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. Lancet Glob Health 8(4):e497–e510

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (2020) Asthma: global prevalence. [cited 2020 20th July]. https://www.who.int/news-room/q-a-detail/asthma

  • Wisnivesky J, De-Torres JP (2019) The global burden of pulmonary diseases: most prevalent problems and opportunities for improvement. Ann Glob Health 85(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong AW, Ryerson CJ, Guler SA (2020) Progression of fibrosing interstitial lung disease. Respir Res 21(1):32

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodruff PG et al (2016) Clinical significance of symptoms in smokers with preserved pulmonary function. N Engl J Med 374(19):1811–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Bank (2020)

    Google Scholar 

  • World Health Organization (2019) Global Tuberculosis Report

    Google Scholar 

  • World Health Organization, G., Switzerland (2018a). Global tuberculosis report 2018. https://www.who.int/tb/publications/global_report/en/

  • World Health Organization, G., Switzerland (2018b). https://www.who.int/news-room/fact-sheets/detail/cancer

  • Worlitzsch D et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109(3):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M et al (2020) Trends in prevalence and incidence of chronic respiratory diseases from 1990 to 2017. Respir Res 21(1):49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Moilanen E, Kankaanranta H (2001) Beclomethasone, budesonide and fluticasone propionate inhibit human neutrophil apoptosis. Eur J Pharmacol 431(3):365–371

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishna Sunkara or Venkata Sita Rama Raju Allam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunkara, K. et al. (2022). An Introduction to Respiratory Diseases and an Emerging Need for Efficient Drug Delivery Systems. In: Chellappan, D.K., Pabreja, K., Faiyazuddin, M. (eds) Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases . Springer, Singapore. https://doi.org/10.1007/978-981-16-4392-7_1

Download citation

Publish with us

Policies and ethics