Skip to main content

Overcoming Lung Clearance Mechanisms for Controlled Release Drug Delivery

  • Chapter
  • First Online:
Controlled Pulmonary Drug Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

The lung anatomy and physiology is well adapted to handle exogenous aerosols and rapidly process them for clearance. Only in a few circumstances in nature are these defenses breached, with dire consequences, as in the case of asbestos. For controlled drug delivery to the lung, however, the goal is to slow or evade these clearance mechanisms using biocompatible systems that elicit no inflammatory response but allow modulated drug release. In this chapter, we introduce briefly the principles of the lung clearance mechanisms including mucociliary, absorptive, phagocytic, and metabolic clearance. Then, we review the literature and present the current and emerging approaches to effectively control release in the pulmonary system. These approaches include manipulating drug deposition site, modifying drug absorption rates, eluding macrophage uptake, and controlling degradation of the therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adjei A, Hui J, Finely R et al (1994) Pulmonary bioavailability of leuprolide acetate following multiple dosing to beagle dogs: some pharmacokinetic and preclinical issues. J Pharm Sci 107:57–66

    CAS  Google Scholar 

  2. Adjei AL, Carrigan PJ (1992) Pulmonary bioavailability of LH-RH analogs: some pharmaceutical guidelines. J Biopharm Sci 3:247–254

    CAS  Google Scholar 

  3. Ahsan F, Rivas IP, Khan MA, Súarez-Torres AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres on the phagocytosis by macrophages. J Control Release 79:29–40

    PubMed  CAS  Google Scholar 

  4. Arppe J, Vidgren M, Waldrep JC (1998) Pulmonary pharmacokinetics of cyclosporin A liposomes. Int J Pharm 161:205–214

    CAS  Google Scholar 

  5. Ben-Jebria A, Chen D, Eskew ML et al (1999) Large porous particles for sustained protection from carbachol-induced bronchoconstriction in guinea pigs. Pharm Res 16:555–561

    PubMed  CAS  Google Scholar 

  6. Beyerle A, Merkel O, Stoeger T, Kissel T (2010) PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: structure–function relationships. Toxicol Appl Pharmacol 242:146–154

    PubMed  CAS  Google Scholar 

  7. Bhat M (2002) Development of a novel spray-drying technique to produce particles for aerosol delivery. In: Dalby R, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery XIII. Davis Horwood International Publishing, Raleigh, NC, pp 427–429

    Google Scholar 

  8. Bittner B, Kissel T (1999) Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres. J Microencapsul 16:325–341

    PubMed  CAS  Google Scholar 

  9. Bot AI, Tarara TE, Smith DJ et al (2000) Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharm Res 17:275–283

    PubMed  CAS  Google Scholar 

  10. Boucher RC (2003) Regulation of airway surface liquid volume by human airway epithelia. Eur J Physiol 445:495–498

    CAS  Google Scholar 

  11. Boucher RC, Stutts MJ, Gatzy JT (1981) Regional differences in bioelectric properties and ion flow in excised canine airways. J Appl Physiol 51:706–714

    PubMed  CAS  Google Scholar 

  12. Byron PR (1993) Physicochemical effects on lung disposition of pharmaceutical aerosols. Aerosol Sci Tech 18:223–229

    CAS  Google Scholar 

  13. Cannon GJ, Swanson JA (1992) The macrophage capacity for phagocytosis. J Cell Sci 101:907–913

    PubMed  Google Scholar 

  14. Canonico AE, Plitman JD, Conary JT et al (1994) No lung toxicity after repeated aerosol or intravenous delivery of plasmid cationic liposome complexes. J Appl Physiol 77:415–419

    PubMed  CAS  Google Scholar 

  15. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. PNAS 103:4930–4934

    PubMed  CAS  Google Scholar 

  16. Cheng YS, Yazzie D, Gao J et al (2003) Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology. J Aerosol Med 16:65–73

    PubMed  CAS  Google Scholar 

  17. Chow AH, Tong HH, Chattopadhyay P et al (2007) Particle engineering for pulmonary drug delivery. Pharma Res 24:411–432

    CAS  Google Scholar 

  18. Codrons V, Vanderbist F, Ucakar B et al (2004) Impact of formulation and methods of pulmonary delivery on absorption of parathyroid hormone (1–34) from rat lungs. J Pharm Sci 93:1241–1252

    PubMed  CAS  Google Scholar 

  19. Crommelin D, Schreier H (1994) Liposomes. In: Kreuter J (ed) Colloidal drug delivery systems. Marcel Dekker, New York, pp 73–190

    Google Scholar 

  20. Derrien D, Midoux P, Petit C et al (1989) Muramyl dipeptide bound to poly-L-lysine substituted with mannose and gluconoyl residues as macrophage activators. Glycoconj J 6:241–255

    PubMed  CAS  Google Scholar 

  21. Desai T, Hancock REW, Finaly WH (2002) A facile method of delivery of liposomes by nebulization. J Control Release 84:69–78

    PubMed  CAS  Google Scholar 

  22. Devereux TR, Domin BA, Philpot RM (1989) Xenobiotic metabolism by isolated pulmonary cells. Pharmacol Ther 41:243–256

    PubMed  CAS  Google Scholar 

  23. Dhiman N, Khuller GK (1998) Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (DL-lactide-co-glycolide) microparticles as carrier vehicles. FEMS Immunol Med Microbiol 21:19–28

    PubMed  CAS  Google Scholar 

  24. Eastman S, Tousignant JD, Lukason MJ et al (1997) Optimisation of formulations and conditions for the aerosol delivery of functional cationic lipids: DNA complex. Hum Gene Ther 8:313–322

    PubMed  CAS  Google Scholar 

  25. Edsman K, Hägerström H (2005) Pharmaceutical applications of mucoadhesion for the non-oral routes. J Pharm Pharmacol 57:3–22

    PubMed  CAS  Google Scholar 

  26. Edwards DA, Ben-Jebria A, Langer R (1998) Recent advances in pulmonary drug delivery using large, porous inhaled particles. J Appl Physiol 85:379–385

    PubMed  CAS  Google Scholar 

  27. Edwards DA, Hanes J, Caponetti G et al (1997) Large porous particles for pulmonary drug delivery. Science 276:1868–1871

    PubMed  CAS  Google Scholar 

  28. Ehrhardt C, Fiegel J, Fuchs S et al (2002) Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers. J Aerosol Med 15:131–139

    PubMed  CAS  Google Scholar 

  29. El-Sherbiny IM, McGill S, Smyth HDC (2009) Swellable microparticles as carriers for sustained pulmonary drug delivery. J Pharm Sci 99:2343–2356

    Google Scholar 

  30. Esmailpour NH, Hogger P, Rabe KF et al (1997) Distribution of inhaled fluticasone propionate between human lung tissue and serum in vivo. Eur Respir J 10:1496–1499

    PubMed  CAS  Google Scholar 

  31. Evora C, Soriano I, Rogers RA et al (1998) Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J Control Release 51:143–152

    PubMed  CAS  Google Scholar 

  32. Fiegel J, Ehrhardt C, Schaefer UF, Lehr CM, Hanes J (2003) Large porous particle impingement on lung epithelial cell monolayers-toward improved particle characterization in the lung. Pharm Res 20:788–796

    PubMed  CAS  Google Scholar 

  33. Fielding R, Ahra RM (1992) Factors affecting the release rate of terbutaline from liposome formulations after intratracheal instillation in the guinea pig. Pharm Res 9:220–223

    PubMed  CAS  Google Scholar 

  34. Gibbons AM, McElvaney NJ, Taggart CC, Cryan SA (2009) Delivery of rSLPI in a liposomal carrier for inhalation provides protection against cathepsin L degradation. J Microencapsul 26:513–522

    PubMed  CAS  Google Scholar 

  35. Gregoriadis G (1984) Liposome technology. CRC, Boca Raton

    Google Scholar 

  36. Grenha A, Grainger CI, Dailey LA et al (2007) Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. Eur J Pharm Sci 31:73–84

    PubMed  CAS  Google Scholar 

  37. Gudapaty SR, Liener IE, Hoidal JR et al (1985) The prevention of elastase-induced emphysema in hamsters by intratracheal ad-ministration of a synthetic elastase inhibitor bound to albumin microspheres. Am Rev Respir Dis 132:159–163

    PubMed  CAS  Google Scholar 

  38. Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    PubMed  CAS  Google Scholar 

  39. Harvey RJ, Schlosser RJ (2009) Local drug delivery. Otolaryngol Clin North Am 42:829–845

    PubMed  Google Scholar 

  40. Heyder J, Gebhart J, Rudolf G et al (1896) Deposition of particles in the human respiratory tract in the size range 0.005-15 μm. J Aerosol Sci 17:811–825

    Google Scholar 

  41. Heydet J, Rudolf G (1984) Mathematical models of particle deposition in the human respiratory tract. J Aerosol Sci 17:697–707

    Google Scholar 

  42. Hogg JC (1985) Response of the lung to inhaled particles. Med J Aust 142:675–678

    PubMed  CAS  Google Scholar 

  43. Houtmeyers E, Gosselink R, Gayan-Ramirez G et al (1999) Regulation of mucociliary clearance in health and disease. Eur Respir J 13:1177–1188

    PubMed  CAS  Google Scholar 

  44. Hutchinson FG, Furr BJ (1989) Biodegradable polymers for controlled release of peptides and proteins. Horiz Biochem Biophys 9:111–129

    PubMed  CAS  Google Scholar 

  45. Johnson M (1996) Pharmacodynamics and pharmacokinetics of inhaled glucocorticoids. J Allergy Clin Immunol 97:169–176

    PubMed  CAS  Google Scholar 

  46. Joshi M, Misra A (2001) Dry powder inhalation of liposomal Ketotifen fumarate formulation and characterisation. Int J Pharm 223:15–27

    PubMed  CAS  Google Scholar 

  47. Kaplan J, Ward DM (1990) Movement of receptors and ligands through the endocytic apparatus in alveolar macrophages. Am J Physiol 258:L263–L270

    PubMed  CAS  Google Scholar 

  48. Kawaguchi H, Koiwai N, Ohtsuka Y et al (1986) Phagocytosis of latex particles by leucocytes. Dependence of phagocytosis on the size and surface potential of particles. Biomaterials 7:61–66

    PubMed  CAS  Google Scholar 

  49. Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T (1999) Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release 62:279–287

    PubMed  CAS  Google Scholar 

  50. Kim JC, Kim JD (2001) Preparation by spray-drying of amphotericin B phospholipid composite particles and their anticellular activity. Drug Deliv 8:143–147

    PubMed  CAS  Google Scholar 

  51. Kips JC, Pauwels RA (2001) Long acting inhaled β2-agonist therapy in asthma. Am J Respir Crit Care Med 164:923–932

    PubMed  CAS  Google Scholar 

  52. Klonne DR, Dodd DE, Losco PE et al (1989) Two-week aerosol inhalation study on polyethylene glycol (PEG) 3350 in F-344 rats. Drug Chem Toxicol 12:39–48

    PubMed  CAS  Google Scholar 

  53. Koushik K, Dhanda DS, Cheruvu NPS, Kompella UB (2004) Pulmonary Delivery of Deslorelin: Large-porous PLGA particles and HPBCD complexes. Pharm Res 21:1119–1126

    PubMed  CAS  Google Scholar 

  54. Koval M, Preiter K, Adled C et al (1998) Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 242:265–273

    PubMed  CAS  Google Scholar 

  55. Krenis LJ, Strauss B (1961) Effect of size and concentration of latex particles on respiration of human blood leucocytes. Proc Soc Exp Med 107:748–750

    CAS  Google Scholar 

  56. Kumar N, Chaubal M, Domb A et al (2003) Controlled release technology. In: Encyclopedia of polymer science and technology, vol. 5. Wiley, Hoboken, p 697.

    Google Scholar 

  57. Kumar RMNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    CAS  Google Scholar 

  58. Lai Y, Mehta RC, Thacker AA et al (1993) Sustained bronchodilation with isoproterenol poly(glycolide-co-lactide) microspheres. Pharm Res 10:119–125

    PubMed  CAS  Google Scholar 

  59. Lasic D (1997) Liposomes in gene delivery. CRC, Boca Raton

    Google Scholar 

  60. Lee SL, Adams WP, Li BV et al (2009) In vitro considerations to support bioequivalence of locally acting drug in dry powder inhalers for lung diseases. AAPS J 11:414–423

    PubMed  CAS  Google Scholar 

  61. Letsou GV, Safi HJ, Reardon MJ et al (1999) Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression. Ann Thorac Surg 68:2044–2048

    PubMed  CAS  Google Scholar 

  62. Liang WW, Shi X, Deshpande D et al (1996) Oligonucleotide targeting to alveolar macrophages by mannose receptormediated endocytosis. Biochim Biophys Acta 1279:227–234

    PubMed  Google Scholar 

  63. Lombry C, Edwards DA, Preat V et al (2004) Alveolar macrophages are a primary barrier to pulmonary absorption of macromolecules. Am J Physiol Lung Cell Mol Physiol 286:L1002–L1008

    PubMed  CAS  Google Scholar 

  64. Mall MA (2008) Role of the cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21:12–24

    Google Scholar 

  65. Martonen T, Smyth HDC, Isacs K et al (2005) Issues in drug delivery: dry powder inhaler performance and lung deposition. Respir Care 50:1228–1252

    PubMed  Google Scholar 

  66. Mathias NR, Hussainn MA (2010) Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci 99:1–20

    PubMed  CAS  Google Scholar 

  67. Matsui H, Randell SH, Peretti SW et al (1998) Coordinated cleareance of periciliary liquid and mucus from airway surfaces. J Clin Invest 102:1125–1132

    PubMed  CAS  Google Scholar 

  68. McCluskie MJ, Chu Y, Xia JL et al (1998) Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA. Antisense Nucleic Acid Drug Dev 8:401–414

    PubMed  CAS  Google Scholar 

  69. McLachlan G, Davidson DJ, Stevenson BJ et al (1995) Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy. Gene Ther 2:614–622

    PubMed  CAS  Google Scholar 

  70. Meers P, Neville M, Malinin V et al (2008) Biofilm preparation, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aerudinosa ling infections. J Antimicrob Chemother 61:859–868

    PubMed  CAS  Google Scholar 

  71. Miller-Larsson A (2004) Concluding clinical synergism from preclinical study data. Respir Drug Deliv 1:87–98

    Google Scholar 

  72. Montgomery AB, Pitlick WH, Nardella P et al (2000) Sputum concentrations and systemic pharmacokinetics of aerosolized tobramycin (tobi) in diseased lungs. Respir Drug Deliv 1:19–24

    Google Scholar 

  73. Musante CJ, Schroeter JD, Rosati JA et al (2002) Factors affecting the deposition of inhaled porous drug particles. J Pharm Sci 91:1590–1600

    PubMed  CAS  Google Scholar 

  74. Niven R (2003) Modulated drug therapy with inhalation aerosols. In: Hickey AJ (ed) Pharmaceutical inhalation aerosols technology. Marcel Dekker, New York, pp 551–570

    Google Scholar 

  75. Niven R, Carvajal TM, Schreier H (1992) Nebulization of liposomes. III. The effects of operating conditions and local environment. Pharm Res 9:515–520

    PubMed  CAS  Google Scholar 

  76. Niven R, Schreier H (1990) Nebulization of liposomes. I. Effects of lipid composition. Pharm Res 7:1127–1133

    PubMed  CAS  Google Scholar 

  77. Niven R, Speer M, Schreier H (1991) Nebulization of liposomes. II. The effects of size and modeling of solute release profiles. Pharm Res 8:217–221

    PubMed  CAS  Google Scholar 

  78. Niven RW, Whitcomb KL, Shaner L et al (1995) The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and monoPEGylated rhG-CSF. Pharm Res 12:1343–1349

    PubMed  CAS  Google Scholar 

  79. Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    PubMed  CAS  Google Scholar 

  80. Olsson T, Svensson LA (1984) New lipophilic terbutaline ester prodrugs with long effect duration. Pharm Res 3:19–23

    Google Scholar 

  81. Park K (1997) Controlled drug delivery: challenges and strategies. American Chemical Society, Washington, 629

    Google Scholar 

  82. Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Del Rev 19:3–36

    CAS  Google Scholar 

  83. Patton JS, Byron PR (2007) Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 6:67–74

    PubMed  CAS  Google Scholar 

  84. Plowman S, Langner E, Blair J (2002) Elucidation of insulin release mechanism from OED microparticles using ATR-FTIR. In: Dalby R, Byron PR, Peart J, Farr SJ (eds) Respiratory drug delivery VIII. Davis Horwood International Publishing, Raleigh, pp 423–426

    Google Scholar 

  85. Poyner EA, Alpar HO, Almeida AJ et al (1995) A comparative study on the pulmonary delivery of tobramycin encapsulated into liposomes and PLA microspheres following intravenous and endotracheal delivery. J Control Release 35:41–48

    CAS  Google Scholar 

  86. Robbins JC, Lam MH, Tripp CS et al (1981) Synthetic glycopeptide substrates for receptor-mediated endocytosis by macrophages. Proc Natl Acad Sci USA 78:7294–7298

    PubMed  CAS  Google Scholar 

  87. Rudt S, Muller RH (1992) In vitro phagocytosis assay of nano- and microparticles by ­chemiluminescence. III. Uptake of differently sized surface-modified particles and its correlation to particle properties and in vivo distribution. Eur J Pharm Sci 1:31–39

    Google Scholar 

  88. Sakagami M, Kinoshita W, Sakon K et al (2002) Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J Control Release 80:207–218

    PubMed  CAS  Google Scholar 

  89. Sally-Ann C (2005) Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J 7:E20–E41

    Google Scholar 

  90. Scheuch G, Siekmeier R (2007) Novel approacches to enhance pulmonary delivery of proteins and peptides. J Physiol Pharmacol 58:615–625

    PubMed  Google Scholar 

  91. Schreier H, Mobley WC, Concessio N et al (1994) Formulation and in vitro performance of liposome powder aerosols. STP Pharma Sci 4:38–44

    CAS  Google Scholar 

  92. Seville PC, Kellaway IW, Birchall JC (2002) Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying. J Gene Med 4:428–437

    PubMed  CAS  Google Scholar 

  93. Sharma R, Saxena D, Dwivedi AK, Misra A (2001) Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res 18:1405–1410

    PubMed  CAS  Google Scholar 

  94. Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501

    PubMed  CAS  Google Scholar 

  95. Siekmeier R, Scheuch G (2008) Systemic treatment by inhalation of macromolecules-principles, problems, and examples. J Physiol Pharmacol 59:53–79

    PubMed  Google Scholar 

  96. Simon SI, Schmid-Chongeing GW (1988) Biophysical aspects of microsphere engulfment by human neutrophils. Biophys J 53:163–173

    PubMed  CAS  Google Scholar 

  97. Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M (2000) Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug Dev Ind Pharm 26:1279–1284

    PubMed  CAS  Google Scholar 

  98. Smyth HDC, Hickey AJ (2005) Carriers in drug powder delivery: implications for inhalation system design. Am J Drug Deliv 3:117–132

    CAS  Google Scholar 

  99. Standard W, O’callaghan C (2006) Ciliary function and the role of cilia in clearance. J Aerosol Med 19:110–115

    Google Scholar 

  100. Stone KC, Mercer RR, Gehr P et al (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243

    PubMed  CAS  Google Scholar 

  101. Stribling R, Brunette E, Liggitt D et al (1992) Aerosol gene delivery in vivo. Proc Natl Acad Sci USA 89:11277–11281

    PubMed  CAS  Google Scholar 

  102. Suarez S, Gonzalez-Rothi RJ, Schreier H, Hochhaus G (1998) Effect of dose and release rate on pulmonary targeting of liposomal triamcinolone acetonide phosphate. Pharm Res 15:461–465

    PubMed  CAS  Google Scholar 

  103. Suarez S, Hickey AJ (2000) Drug properties affecting aerosol behavior. Respir Care 45:652–666

    PubMed  CAS  Google Scholar 

  104. Suarez S, O’Hara P, Kazantseva M et al (2001) Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother 48:431–434

    PubMed  CAS  Google Scholar 

  105. Suarez S, O’Hara P, Kazantseva M et al (2001) Respirable PLGA microspheres containing rifampicin for the treatment of tuber-culosis: screening in an infectious disease model. Pharm Res 18:1315–1319

    PubMed  CAS  Google Scholar 

  106. Surendrakumar K, Martyn GP, Hodgers ECM et al (2003) Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J Control Release 91:385–394

    PubMed  CAS  Google Scholar 

  107. Suzuki Y, Yamaguchi T (1993) Effects of hyaluronic acid on macrophage phagocytosis and active oxygen release. Agents Actions 38:32–37

    PubMed  CAS  Google Scholar 

  108. Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9:356–362

    PubMed  CAS  Google Scholar 

  109. Takeuchi H, Yamamoto H, Kawashima Y (2001) Mucoadhesive nanoparticulate systems for peptide drug delivery. Adv Drug Deliv Rev 47:39–54

    PubMed  CAS  Google Scholar 

  110. Talton J, Fitz-Gerald J, Singh R et al (2000) Nano-thin coating for improved lung targeting of glucocorticoid dry powders: in-vitro and in-vivo characteristics. In: Dalby RN, Byron PR, Farr SJ et al (eds) Respiratory drug delivery VII. Serentec Press, Raleigh, pp 67–74

    Google Scholar 

  111. Telko MJ, Hickey AJ (2005) Dry powder inhaler formulation. Respir Care 50:1209–1227

    PubMed  Google Scholar 

  112. Tietze C, Schlesinger P, Stahl P (1982) Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol 92:417–424

    PubMed  CAS  Google Scholar 

  113. Traini D, Young PM (2009) Delivery of antibiotics to the respiratory tract: an update. Expert Opin Drug Deliv 6:897–905

    PubMed  CAS  Google Scholar 

  114. Tsapis N, Bennett D, Jackson B et al (2002) Trojan particles: large porous carriers of ­nanoparticles for drug delivery. PNAS 99:12001–12005

    PubMed  CAS  Google Scholar 

  115. Tsifansky MD, Yeo Y, Evgenov OV et al (2008) Microparticles for inhalational delivery of antipseudomonal antibiotics. AAPS J 10:254–260

    PubMed  CAS  Google Scholar 

  116. Tsutsumi Y, Kihira T, Tsunoda S et al (1995) Molecular design of hybrid tumour necrosis factor alfa with polyethylene glycol increases its anti-tumor potency. Br J Cancer 71:963–968

    PubMed  CAS  Google Scholar 

  117. Tsutsumi Y, Tsunoda S, Kamada H et al (1997) PEGylation of interleukin-6 effectively increases its thrombopoietic potency. Thromb Haemost 77:168–173

    PubMed  CAS  Google Scholar 

  118. Usami OS, Biddiscombe MF, Underwood RS et al (2004) Characterization of the generation of radiolabeled monodisperse albuterol particles using the spinning-top aerosol generator. J Nucl Med 45:69–73

    Google Scholar 

  119. Venbever R, Ben-Jebria A, Mintzes JD et al (1999) sustained-release of insulin from insoluble inhaled particles. Drug Dev Res 48:178–185

    Google Scholar 

  120. Vyas SP, Kannan ME, Jain S, Mishra V et al (2004) Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 269:37–49

    PubMed  CAS  Google Scholar 

  121. Weibel ER (1963) Morphometry of the human lung. Academic, New York

    Google Scholar 

  122. Widdicombe JH (2002) Regulation of the depth and composition of airway surface liquid. J Anat 201:313–318

    PubMed  CAS  Google Scholar 

  123. Yanga Y, Bajajc N, Xua P, Ohnd K et al (2009) Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30:1947–1953

    Google Scholar 

  124. Zanen P, Go LT, Lammers JWJ (1994) The optimal particle size for β-Adrenergic aerosols in mild asthmatics. Int J Pharm 107:211–217

    CAS  Google Scholar 

  125. Zeng X, Martin CG, Marriott C (1995) The controlled delivery of drugs to the lung. Int J Pharm 124:149–164

    CAS  Google Scholar 

  126. Zou Y, Zong G, Ling YH, Perez-Soler R (2000) Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther 7:683–696

    PubMed  CAS  Google Scholar 

  127. Algranati NE, Sy S, Modi M (1999) A branched methoxy 40 KDA polyethylene glycol (PEG) moiety optimizes the pharmacokinetics (PK) of peginterferon alpha-2a (peginterferon) and may explain its enhanced efficacy in chronic hepatitis C (CHC). Hepatology 30: 190A

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

El-Sherbiny, I.M., Villanueva, D.G., Herrera, D., Smyth, H.D.C. (2011). Overcoming Lung Clearance Mechanisms for Controlled Release Drug Delivery. In: Smyth, H., Hickey, A. (eds) Controlled Pulmonary Drug Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9745-6_5

Download citation

Publish with us

Policies and ethics