Skip to main content

Forecasting of Wheat Diseases: Insights, Methods and Challenges

  • Chapter
  • First Online:
New Horizons in Wheat and Barley Research

Abstract

In wheat the incidence and severity of diseases may vary with season, region, variety, weather, inoculum load and resistance level of the host cultivars. This variation leads to the varied yield losses even up to 100 percent under most severe conditions. Thus effective disease management strategy is to be followed for timely and successful management of wheat diseases. This may involve chemical control, Host plant resistance, cultural and biological control etc. Out of all these, methods chemical control gave a quick response with maximum benefits. But this method is not a preferable choice for sustainable agriculture. Hence to avoid/minimize the dependency on fungicides, we can look for the option of use of epidemiological models to predict the time and place of occurrence or development of the disease. So, prediction of disease appearance in advance in space and time would help a lot to the farmers to have maximum cost benefit ratio by timely managing the diseases with minimum expenditure. Keeping this in view several models has been developed for the almost all the important wheat diseases namely rusts, Fusarium head blight, Septoria blight, Karnal Bunt, Powdery mildew and Blast etc. in different groups in different countries with varied accuracy like PROCULTURE a mechanistic model, developed in Belgium could accurately predicted epidemics of septoria blight with probability of detection (POD) of more than 0.90 Based on the predictions. Likewise weather based mechanistic model developed in Italy for predicting DON worked with 90 per cent accuracy in Netherlands and 60 per cent in Egypt, U. K., Mexico, Hungary and Russia. For the prediction of Karnal Bunt a multiregression Models has been also developed on the basis of maximum temperature (Tmax), sunshine duration (SSD), evening relative humidity (RHe) and rainy days (RD) and the equations derived from them are explained up to 89 percent of the disease variation. Similarly in rusts and other diseases there are successful examples of disease prediction models. Some of them have been used for developing the Decision support systems for the benefit of the farmers e.g. granoduro.net® in Italy, FusaProg in Switzerland and Fusarium Risk Tool in USA, SeptoriaSim in Denmark, PUCREC/PUCTRI, Superconsultant etc. are some. Despite of so many models in use still there is a need to develop by following the interdisciplinary approach which can be practically more feasible globally.

If “technology transfer tool” can be defined as a way to get information into the hands of as many people as possible, weather-based disease forecasting models are the perfect example of how this works in practice.: Julienne Isaacs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal P, Kalra N, Chander S et al (2006) InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agric Syst 89(1):1–25

    Article  Google Scholar 

  • Aggarwal VK, Verma HS, Khetrapal RK (1977) Occurence of partial bunt on Triticale. FAO Plt Prot Bull 25:210–211

    Google Scholar 

  • Agrios GN (2005) Plant pathology. Elsevier Academic Press, San Diego

    Google Scholar 

  • Akhmedovich KA, Urazalievich OA, Ugli USB (2020) Current status and prospects of the use of biofungicides against plant diseases. GSC Biol Pharm Sci 13(03):119–126

    Article  Google Scholar 

  • Allen SC, Thurston W, Meyer M et al (2019) An early warning system to predict and mitigate wheat rust diseases in Ethiopia. Environ Res Lett 14:115004

    Article  Google Scholar 

  • Allen-Sader C, Thurston W, Meyer M et al (2019) An early warning system to predict and mitigate wheat rust diseases in Ethiopia. Environ Res Lett 14:115004

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves KJP, Fernandes JMC (2006) Influence of temperature and relative air humidity on the sporulation of Magnaporthe grisea on wheat. Fitopatol Bras 31(60):579–584

    Article  Google Scholar 

  • Anderson A, Henry B, Tullis E (1947) Factors affecting infectivity, spread and persistence of Pyricularia oryzae Cav. Phytopathology 37:94–110

    Google Scholar 

  • Audsley E, Milne A, Paveley N (2005) A foliar disease model for use in wheat disease management decision support systems. Ann Appl Biol 147:161–172

    Article  Google Scholar 

  • Aujla SS, Gill KS, Sharma I et al (1986) Prevalence of Karnal bunt in Punjab as influenced by varietal susceptibility and meteorological factors. Pl Dis Res 1:51–54

    Google Scholar 

  • Aujla SS, Kaur S, Gill KS (1991) Forecasting Karnal bunt epidemic, a criterion based on analysis of weather profiles of epidemic and non epidemic years. Indian J Ecol 18:122–129

    Google Scholar 

  • Aujla SS, Sharma I, Gill KS (1990) Effect of soil moisture and temperature on teliospore germination of Neovossia indica. Indian Phytopathol 43:223–225

    Google Scholar 

  • Aujla SS, Sharma I, Gill KS et al (1988) Establishment of Neovossia indica in wheat kernel. Pl Dis Res 3:62–63

    Google Scholar 

  • Aujla SS, Sharma K, Chand K et al (1977) Influence of weather factors on the incidence and epidemiology of Karnal bunt of wheat. Indian J Ecol 8:175–179

    Google Scholar 

  • Austin CN, Wilcox WF (2012) Effects of sunlight exposure on grapevine powdery mildew development. Phytopathology 102:857–866

    Article  PubMed  Google Scholar 

  • Axelsen JA, Jorgensen LN, Damgaard CF et al (2020) Monitoring, warning, and decision support in winter wheat. Pesticide research, vol 186. The Danish Environmental Protection Agency, Copenhagen, Denmark, p 88

    Google Scholar 

  • Aylor DE (1993) Relative collection efficiency of Rotorod and Burkard spore samples for air borne Venturiainaequalis ascospores. Phytopathology 83:1116–1119

    Article  Google Scholar 

  • Bagga PS, Saharan MS (2005) Wheat crop health newsletter, vol 10. Directorate of Wheat Research, Karnal, India, p 2

    Google Scholar 

  • Bains SS (1992) Factors affecting multiplication of Neovossia indica sporidia on soil surface. Plant Disease Res 7(2):187–192

    Google Scholar 

  • Bains SS, Dhaliwal HS (1989) Release of Neovossia indica sporidia from inoculated wheat spikes. Pl Soil 115:83–87

    Article  Google Scholar 

  • Bala R, Kaur J, Pannu PPS et al (2015) A meteorological method for forecasting Karnal bunt (T. indica Mitra) of wheat (Triticum aestivum L.). Plant Disease Res 30(2):240

    Google Scholar 

  • Bannon FJ, Cooke BM (1998) Studies on dispersal of Septoria tritici pycnidiospores in wheat-clover intercrops. Plant Pathol 47:49–56

    Article  Google Scholar 

  • Bansal R, Singh DV, Joshi LM (1983) Germination of teliospore of Karnal bunt of wheat. Seed Res 11:258–261

    Google Scholar 

  • Battilani P, Bandyopadhyaya R, Amra H et al (2013) Predictive models: current knowledge and MycoRed contribution. In: ISMMycoRed international conference Europe 2013 – global mycotoxin reduction strategies. May 27–31, 2013. Martina Franca, Italy, p. 70

    Google Scholar 

  • Bearchell SJ, Fraaije BA, Shaw MW et al (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. PNAS 102:5438–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedi KS, Sikka MR, Mundkur BB (1949) Transmission of wheat bunt due to Neovossia indica (Mitra) Mundkur. Indian Phytopath 2:20–26

    Google Scholar 

  • Bedi PS (1989) Impact of new agricultural technologies on Karnal bunt of wheat in Punjab. Pl Dis Res 4:1–9

    Google Scholar 

  • Bedi PS, Dhiman JS (1982) Spread of Neovossia indica in wheat earheads. Indian Phytopath 37:335–337

    Google Scholar 

  • Bedi PS, Singh S, Singh PP (1990) Factors in teliospore germination of Neovossia indica. Pl Dis Res 5:19–26

    Google Scholar 

  • Beest DE, Shaw MW, Pietravalle S et al (2009) A predictive model for early-warning of Septoria leaf blotch on winter wheat. Eur J Plant Pathol 124:413–425

    Article  Google Scholar 

  • Beest Te DE, Paveley ND, Shaw MW, van den Bosch F (2008) Disease-weather relationships for powdery mildew and yellow rust on winter wheat. Phytopathology 98(5):609–617. https://doi.org/10.1094/PHYTO-98-5-0609

    Article  Google Scholar 

  • Berraies S, Gharbi MS, Rezgui S et al (2014) Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia. Chilean J Agricultural Res 74(4):432–437

    Article  Google Scholar 

  • Bhardwaj SC, Gangwar OP, Prasad P, Kumar S (2016) Wheat rusts: genetics, epidemiology and management in diseases of wheat and their management. In: Vaish SS (ed) Diseases of wheat and their management. Astral Publishers, Delhi, India, pp 1–91

    Google Scholar 

  • Bock CH, Poole GH, Parker PE et al (2010) Plant disease se-verity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit Rev Plant Sci 29:59–107

    Article  Google Scholar 

  • Bolanos-Carriel C (2018) Epidemiology and management of fusarium head blight and foliar fungal diseases of wheat. Dissertations and Student Research in Agronomy and Horticulture. 151. http://digitalcommons.unl.edu/agronhortdiss/151

  • Bondalpati KD, Stein JM, Neate SM et al (2012) Development of weather-based predictive models for fusarium head blight and deoxynivalenol accumulation for spring malting barley. Plant Dis 96:673–680

    Article  CAS  Google Scholar 

  • Bonde MR, Peterson GL, Schaad MW et al (1997) Karnal bunt of wheat. Plant Dis 81(1370):77

    Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Agricultural Bureaux for the Commonwealth Mycological Institute, Farnham Royal, UK

    Google Scholar 

  • Bourke PMA (1955) The forecasting from weather data of potato blight and other plant diseases and pests, technical note no. 10. World Meteorological Organisation, Paris, France

    Google Scholar 

  • Breukers A, Van Asseldonk MAPM, Bremmer J et al (2012) Understanding Growers’ decisions to manage invasive pathogens at the farm level. Phytopathology 102(6):609–619

    Article  PubMed  Google Scholar 

  • Brown JS, Holmes RJ (1983) Guidelines for use of foliar sprays to control stripe rust of wheat in Australia. Plant Dis 67:485–487

    Article  Google Scholar 

  • Bruno AA, Pace L, Tomassetti B et al (2007) Estimation of fungal spore concentra-tions associated to meteorological variables. Aerobiologia 23:221–228

    Article  Google Scholar 

  • Bruns JB (1996) Untersuchungen zur wetterbasierten Befallssimulation und Verlustprognose von echtem Mehltau (Erysiphe graminis D.C. f. sp. tritici Marchal) an Winterweizen. PhD thesis, Georg-August-University at Gottingen

    Google Scholar 

  • Bryant RR, McGrann GRD, Mitchell AR et al (2014) A change in temperature modulates defence to yellow (stripe) rust in wheat line UC1041 independently of resistance gene Yr36. BMC Plant Biol 14:10. https://doi.org/10.1186/1471-2229-14-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch M, Levetin E (2002) Effects of meteorological conditions on sporeplumes. Int J Biometeorol 46:107–117

    Article  CAS  PubMed  Google Scholar 

  • Burleigh JR, Eversmeyer MG, Roelfs AP (1972) Development of linear equations for predicting wheat leaf rust. Phytopathology 62:947–953

    Article  Google Scholar 

  • Camardo Leggieri M (2012) Mycotoxins in cereals. Decision support systems development for managing the risk of contamination. Dissertation, Universita Cattolica del Sacro Cuore, Milano, Italy

    Google Scholar 

  • Camardo Leggieri M, Amra H, Dzantiev BB et al (2011) Validation of a FHB-wheat model in MycoRed project, a further useful tool to improve cereals safety. In: MycoRed Africa 2011. April 4–6, 2011. Cape Town, South Africa, pp 72–73

    Google Scholar 

  • Camardo Leggieri M, Van der Fels-Klerx HJ, Battilani P (2013) Cross-validation of predictive models for deoxynivalenol in wheat at harvest. World Mycotoxin J 6:389–397

    Article  CAS  Google Scholar 

  • Camargo A, Smith JS (2009) Image pattern classification for the identification of disease causing agents in plants. Comput Electron Agric 66:121–125

    Article  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Cao X, Duan X, Zhou Y, Luo Y (2012) Dynamics in concentrations of Blumeria graminis f. sp. tritici conidia and its relationship to local weather conditions and disease index in wheat. Eur J Plant Pathol 132(4):525–535

    Article  Google Scholar 

  • Cao XR, Yao DM, Xu XM et al (2015) Development of weather-and airborne inoculum-based models to describe disease severity of wheat powdery mildew. Plant Dis 99:395–400

    Article  PubMed  Google Scholar 

  • Cardoso CAA, Reis EM, Moreira EN (2008) Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol 34:216–221

    Article  Google Scholar 

  • Carranza MR, Lori GA, Sisterna MN (2002) Fusaria involved in the head blight complex of wheat in Argentina. Fitopatología 37:164–168

    Google Scholar 

  • Chakraborty S, Ghosh R, Ghosh M et al (2004) Weather-based prediction of anthracnose severity using artificial neural network models. Plant Pathol 53:375–386

    Article  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x

    Article  Google Scholar 

  • Chaloner TM, Fones HN, Varma V et al (2019) A new mechanistic model of weather-dependent Septoria tritici blotch disease risk. Phil Trans R Soc B 374:20180266. https://doi.org/10.1098/rstb.2018.0266

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang W, Cheng J, Allaire JJ et al (2017) Shiny: webapplication framework for R. https://CRAN.R-project.org/package=shiny

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Austr J Agric Res 58:648–655

    Article  Google Scholar 

  • Cheng HX, Wang CM, Shuai KJ, Li YF, Song JF, Wang JM (2010) Meteorological forecast models of wheat pests in Jincheng City, Shanxi Province. Jiangsu Agric Sci 6:159–163

    Google Scholar 

  • Chenwei N, Lin Y, Yang X, Wei L, Yang G, (2014) Comparison of Methods for Forecasting Yellow Rust in Winter Wheat at Regional Scale. 8th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2014, Beijing, China pp 444–451

    Google Scholar 

  • Coakley M, McDaniel LR, Shaner G (1985) Model for predicting severity of Septoria tritici blotch on winter wheat. Phytopathology 75:1245–1251

    Article  Google Scholar 

  • Coakley SM, Boyd WS, Line RF (1982) Statistical models for predicting stripe rust on winter wheat in the Pacific northwest. Phytopathology 72:1539–1542

    Article  Google Scholar 

  • Coakley SM, Boyd WS, Line RF (1984) Development of regional models that use meteorological variables for predicting stripe rust disease in winter wheat. J Clim Appl Meteorol 23:1234–1240

    Article  Google Scholar 

  • Coakley SM, Line RF (1981) Quantitative relationships between climatic variables and stripe rust epidemics on winter wheat. Phytopathology 71:461–467

    Article  Google Scholar 

  • Coakley SM, Line RF, Boyd WS (1983) Regional models for predicting stripe rust on winter wheat in the Pacific northwest. Phytopathology 73:1382–1385

    Article  Google Scholar 

  • Coakley SM, Line RF, McDaniel LR (1988) Predicting stripe rust severity on winter wheat using an improved method for analyzing meteorological and rust data. Phytopathology 78(5):543–550

    Article  Google Scholar 

  • Cooke BM, Jones DG, Kaye B (2006) The epidemiology of plant diseases. Springer-Verlag, New York, NY

    Book  Google Scholar 

  • Copes WE (2015) Weather-based forecasting of Rhizoctonia web blight development on container-grown azalea. Plant Dis 99:100–105

    Article  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical com-puting. R foundation for statistical computing. https://www.R-project.org/

  • Cruz CD, Valent B (2017) Wheat blast disease: danger on the move. Trop Plant Pathol 42:210–222. https://doi.org/10.1007/s40858-017-0159-z

    Article  Google Scholar 

  • Daamen RA, Jorritsma ITM (1990) Effects of powdery mildew andweather on winter wheat yield. 2. Effects of mildew epidemics. Neth JPlant Path 96:35–46

    Article  Google Scholar 

  • De Vallavieille-Pope C, Bahri B, Leconte M et al (2018) Thermal generalist behaviour of invasive Puccinia striiformis f. sp. tritici strains under current and future climate conditions. Plant Pathol 67:1307–1320

    Article  Google Scholar 

  • de Vallavieille-Pope C, Huber L, Leconte M et al (1995) Comparative effects of temperature and interrupted wet periods on germination, penetration, and infection of Puccinia recondita f. sp. tritici and P. striiformis on wheat seedlings. Phytopathology 85:409–415

    Article  Google Scholar 

  • De Wolf ED, Isard SA (2007) Disease cycle approach to plant disease prediction. Annu Rev Phytopathol 45:203–220

    Article  PubMed  CAS  Google Scholar 

  • De Wolf ED, Madden LV, Lipps PE (2003) Risk assessment models for wheat fusarium head blight epidemics based on within season weather data. Phytopathology 93:428–435

    Article  PubMed  Google Scholar 

  • Debusho LK (2008) Ridge regression technique to determine the environmental influences on tef (Eragrostis tef) grain yield. Afr J Plant Soil 25:135–138

    Article  Google Scholar 

  • Dedeurwaerder G, Duvivier M, Mvuyenkure SM (2011) Spore trapsnetwork: a new tool for predicting epidemics of wheat yellow rust. Commun Agric Appl Biol Sci 74:667–670

    Google Scholar 

  • Del Ponte EM, Fernandes JMC, Pavan W (2005) A risk infection simulation model for fusarium head blight of wheat. Fitopatol Bras 30:634–642

    Article  Google Scholar 

  • den Berg V, van den Bosch F (2007) The elasticity of the epidemic growth rate to observed weather patterns with an application to yellow rust. Phytopathology 97(11):1512–1518. https://doi.org/10.1094/PHYTO-97-11-1512

    Article  PubMed  Google Scholar 

  • Dennis JI (1987) Temperature and wet-period conditions for infection by Puccinia striiformis f. sp. tritici race 104E137A +. Trans Br Mycol Soc 88:119–121

    Article  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins: chemistry, genetics and biology. American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Dhaliwal HS, Navarete MR, Valdez JC (1988) Scanning electron microscope studies of penetration mechanism of Tilletia indica in wheat spikes. Rev Mex Fitopathol 7:150–155

    Google Scholar 

  • Dhaliwal HS, Randhawa AS, Chand K et al (1983) Systemic spread of Karnal bunt (Neovossia indica (Mitra) Mundkur) of wheat. Wheatinformationservice 56, regional res. Station, Punjab agricultural university, Ludhiana, India

    Google Scholar 

  • Dhaliwal HS, Singh DV (1989) Production and inter- relationship of two types of secondary sporidia of Neovossia indica. Curr Sci 58:614–618

    Google Scholar 

  • Dhiman JS (1982) Epidemiology of Karnal bunt of wheat in Punjab. Ph. D dissertation. Punjab Agricultural University, Ludhiana, India

    Google Scholar 

  • Dong Y, Xu F, Liu L et al (2020) Automatic system for crop pest and disease dynamic monitoring and early forecasting. EEE J Selected Topics Appl Earth Observ Remote Sens 13:4410–4418

    Article  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    CAS  Google Scholar 

  • Dufault NS, De Wolf ED, Lipps PE et al (2006) Role of temperature and moisture in the production and maturation of Gibberella zeae perithecia. Plant Dis 90:637–644

    Article  CAS  PubMed  Google Scholar 

  • Duran R, Cromarty R (1977) Tilletia indica, a heterothallic wheat fungus with multiple alleles controlling incompatibility. Phytopathology 67:812–815

    Article  Google Scholar 

  • Dutta S, Bhattacharya BK, Rajak DR et al (2008) Modelling regional levelspatial distribution of aphid (Lipaphis Erysimi) growth in Indian mustard using satellite-based remote sensing data. Int J Pest Manage 54:51–62

    Article  Google Scholar 

  • Dweba CC, Figlan S, Shimelis HA et al (2017) Fusarium head blight of wheat: pathogenesis and control strategies. Crop Prot 91:114–122. https://doi.org/10.1016/j.cropro.2016.10.002

    Article  CAS  Google Scholar 

  • El Jarroudi M, Delfosse P, Maraite H et al (2009) Assessing the accuracy of simulation model for Septoria leaf blotch disease progress on winter wheat. Plant Dis 93:983–992

    Article  PubMed  Google Scholar 

  • El Jarroudi M, Kouadio A, Bock C (2017a) A threshold-based weather model for predicting stripe rust infection in winter wheat. Plant Dis 101(5):693–703

    Article  PubMed  Google Scholar 

  • El Jarroudi M, Kouadio L, Delfosse P et al (2014) Brown rust disease control in winter wheat: I. Exploring an approach for disease progression based on night weather conditions. Environ Sci Pollut R 21(7):4797–4808. https://doi.org/10.1007/s11356-013-2463-6i.2016.07.002

    Article  Google Scholar 

  • El Jarroudi M, Kouadio L, Junk J et al (2017b) Improving fungal disease forecasts in winter wheat: a critical role of intraday variations of meteorological conditions in the development of Septoria leaf blotch. Field Crops Res 213:12–20

    Article  Google Scholar 

  • El Jarroudi M et al (2020) Employing weather-based disease and machine learning techniques for optimal control of Septoria leaf blotch and stripe rust in wheat. In: Ezziyyani M (ed) Advanced intelligent systems for sustainable development (AI2SD’2019). AI2SD 2019. Advances in intelligent systems and computing, vol 1103. Springer, Cham. https://doi.org/10.1007/978-3-030-36664-3_18

    Chapter  Google Scholar 

  • Elnaggar AA, Noller JS (2010) Application of remote-sensing data anddecision-tree analysis to mapping salt-affected soils over large areas. Remote Sens 2:151–165

    Article  Google Scholar 

  • El-Orabey WM, Elkot AF (2020) Prediction of leaf rust severity and yield loss in wheat based on environmental factors. J Plant Dis Prot 127:507–519

    Article  Google Scholar 

  • Eriksen L, Shaw MW, Ostergard H (2001) A model of the effect of pseudothecia on genetic recombination and epidemic development in populations of Mycosphaerella graminicola. Phytopathology 91:240–248

    Article  CAS  PubMed  Google Scholar 

  • Evers JB, Vos J, Fournier C et al (2005) Towards a generic architectural model of tillering in Gramineae, as exemplified by spring wheat (Triticum aestivum). New Phytol 166:801–812

    Article  PubMed  Google Scholar 

  • Eversmeyer MG, Burleigh JR (1969) Amethod of predicting epidemic development of wheat leaf rust. Phytopathology 60:805–811

    Article  Google Scholar 

  • Eversmeyer MG, Burleigh JR, Roelfs AP (1973) Equations for predicting wheat stem rust development. Phytopathology 63:348–351

    Article  Google Scholar 

  • Eversmeyer MG, Kramer CL (1998) Models of early spring survival of wheat leaf rust in the central Great Plains. Plant Dis 82:987

    Article  CAS  PubMed  Google Scholar 

  • Everts KL, Leath S, Finney PL (2001) Impact of powdery mildew andleaf rust on milling and baking quality of soft red winter wheat. Plant Dis 85:423–429

    Article  PubMed  Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM et al (1987) The Septoria diseases of wheat: concepts and methods of disease management. CIMMYT

    Google Scholar 

  • Fan SQ, Xie XS, Li F, Yin QY, Zheng WY (2007) (2007) forecast model for prevalent stripe rust in winter wheat in Shanxi Province. Chin J Eco-Agric 15:113–115

    Google Scholar 

  • Fan ZY, Cao SQ, Luo HS, Jin SL (2008) Prediction model on wheat stripe rust in Gangu County. Gansu Agric Sci Technol 10:9–21

    Google Scholar 

  • Farman M, Peterson GL, Chen L et al (2017) The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis 101:684–692

    Article  CAS  PubMed  Google Scholar 

  • FDA (2010) Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products used for Animal Feed. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human. Accessed July 11, 2020

  • Fernandes JMC, Nicolau M, Pavan W et al (2017) A weather-based model for predicting early season inoculums build-up and spike infection by the wheat blast pathogen. Trop plant pathol 42:230–237

    Article  Google Scholar 

  • Fones H, Gurr S (2015) The impact of Septoria tritici blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Franke J, Menz G (2007) Multi-temporal wheat disease detection bymulti-spectral remote sensing. Precis Agric 8:161–172

    Article  Google Scholar 

  • Franz E, Booij K, Fels-Klerx I (2009) Prediction of deoxynivalenol content in Dutch winter wheat. J Food Prot 72(10):2170–2177

    Article  CAS  PubMed  Google Scholar 

  • Friedrich S (1994) Prognose der Infektionswahrscheinlichkeit durch Echten Mehltau an Winterweizen (Erysiphe graminis DC. f. sp. tritici) anhand meteorologischer Eingangsparameter. Mainz

    Google Scholar 

  • Friedrich S (1995a) Calculation of conidial dispersal of Erysiphe graminis within naturally infected plant canopies using hourly meteorological input prarameters. J Plant Diseases Prot 102(4):337–347

    Google Scholar 

  • Friedrich S (1995b) Calculation of the incubation period of powdery mildew under field conditions. J Plant Diseases Prot 102(4):348–353

    Google Scholar 

  • Friedrich S (1995c) Modelling infection probability of powdery mildew in winter wheat by meteorological input variables. J Plant Diseases Prot 102(4):354–365

    Google Scholar 

  • Gang Chen G, Haiguang Wang H, Ma Z (2006) Forecasting wheat stripe rust by discrimination analysis. Plant Prot 32(4):24–27

    Google Scholar 

  • Gang C, Wang H, Ma Z (2006) Forecasting wheat stripe rust by discrimination analysis. Plant Prot 32(4):24–27

    Google Scholar 

  • Garin G, Pradal C, Fournier C et al (2018) Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Ann Botany 121(5):927–940

    Article  Google Scholar 

  • Garrett KA, Bowden RL (2002) An allee effect reduces the invasive potential of Tilletia indica. Phytopathology 92:1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Gent DH, De Wolf ED, Pethybridge SJ (2011) Perceptions of risk, risk aversion, and barriers to adoption of decision support systems and integrated pest management: an introduction. Phytopathology 101:640–643

    Article  PubMed  Google Scholar 

  • Ghatak A, Willocquet L, Savary S, Kumar J (2013) Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks: a case of pathogen specialization? PLoS One 8:e66180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghimire B, Sapkota S, Bahri BA et al (2020) Fusarium head blight and rust diseases in soft red winter wheat in the Southeast United States: state of the art, challenges and future perspective for breeding. Front Plant Sci 11:1080. https://doi.org/10.3389/fpls.2020.01080

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill KS, Aujla SS, Sharma I (1993) Karnal bunt and wheat production. Punjab Agricultural University, Ludhiana, India, pp 1–153

    Google Scholar 

  • Gill KS, Randhawa AS, Aujla SS et al (1981) Breeding wheat varieties resistant to Karnal bunt. Crop Improv 8:73–80

    Google Scholar 

  • Giroux ME, Bourgeois G, Dion Y et al (2016) Evaluation of forecasting models for fusarium head blight of wheat under growing conditions of Quebec, Canad. Plant Dis 100:1192–1201

    Article  PubMed  Google Scholar 

  • Gitelson AA, Peng Y, Masek JG et al (2012) Remote estimation of crop gross primary production with Landsat data. Remote Sens Environ 121:404–414

    Article  Google Scholar 

  • Gladders P, Langton SD, Barrie IA et al (2007) The importance of weather and agronomic factors for the overwinter survival of yellow rust (Pucciniastriiformis) and subsequent risk in commercial wheat crops in England. Ann Appl Biol 150(3):371–382. https://doi.org/10.1111/j.1744-7348.2007.00131.x

    Article  Google Scholar 

  • Gladders P, Paveley ND, Barrie IA et al (2001) Agronomic and meteorological factors affecting the severity of leaf blotch caused by Mycosphaerella graminicola in commercial wheat crops in England. Ann Appl Biol 138:301–311

    Article  Google Scholar 

  • Goates B (1988) Histopathology of Karnal bunt infection of wheat. Proc 5th biennial smut workers workshop. Cuidad obergon, Sonora, CIMMYT, Mexico

    Google Scholar 

  • Goates BJ, Jackson EW (2006) Susceptibility of wheat to Tilletia. Indica during stages of spike development. Phytopathology 96:962–966

    Article  PubMed  Google Scholar 

  • Gouache D, Léon MS, Duyme F et al (2015) A novel solution to the variable selection problem in window pane approaches of plant pathogen climate models: development, evaluation and application of a climatological model for brown rust of wheat. Agric Forest Meteorol 205:51–59

    Article  Google Scholar 

  • Goulart ACP, Sousa PG, Urashima AS (2007) Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol 33:358–363

    Article  Google Scholar 

  • Grabow BS, Shah DA, DeWolf ED (2016) Environmental conditions associated with stripe rust in Kansas winter wheat. Plant Dis 100(11):2306–2312

    Article  CAS  PubMed  Google Scholar 

  • Granke LL, Morrice JJ, Hausbeck MK (2014) Relationships between airborne Pseudoperonosporacubensis sporangia, environmental conditions, and cucumber downy mildew severity. Plant Dis 98:674–681

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Chu B, Wang C et al (2020) Spore concentrations of Blumeriagraminis f. sp. tritici in relation to weatherfactors and disease development in Gansu, China, Canadian. J Plant Pathol 42(1):52–61

    Google Scholar 

  • Guillaume G, Christophe PFC, David C et al (2018) Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Ann Botany 121(5):927–940

    Article  Google Scholar 

  • Gupta V, Khajuria A, Razdan VK, Atul K (2017) Role of abiotic factors on the severity of stripe rust of wheat. Arch Phytopathol Plant Protect 50(11–12):515–525. https://doi.org/10.1080/03235408.2017.1327400

    Article  Google Scholar 

  • Haiguang Wang H, Zhanhong MZ (2012) Prediction of wheat stripe rust based on neural networks. In: Computer and computing technologies in agriculture V. Springer, Berlin, pp 504–515

    Chapter  Google Scholar 

  • Hajj ME, Bégué A, Guillaume S et al (2009) Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices—the case of sugarcane harvest on Reunion Island. Remote Sens Environ 113(10):2052–2061

    Article  Google Scholar 

  • Haran M, Bhat KS, Molineros J et al (2010) Estimating the risk of a crop epidemic from coincident spatio-temporal processes. J. Agric Biol Environ Stat 15:158–175

    Article  Google Scholar 

  • Hau B (1985) Epidemiologische Simulatoren als Instrumente der Systemanalyse mit besonderer Berücksichtigung eines Modells des Gerstenmehltaus. Acta Phytomed 1985:9

    Google Scholar 

  • Hellin P, Duvivier M, Dedeurwaerder G et al (2018) Evaluation of the temporal distribution of fusarium graminearum airborne inoculum above the wheat canopy and its relationship with fusarium head blight and DON concentration. Eur J Plant Pathol 151:1049–1064. https://doi.org/10.1007/s10658-018-1442-7

    Article  Google Scholar 

  • Henriksen KE, Jorgensen LN, Nielsen GC (2000) PC-plant protection –a tool to reduce fungicide input in winter wheat, winter barley and spring barley in Denmark. In proceedings Brighton crop protection conference: Pest and diseases Brighton, UK, 13–16 November 2000 pp 835–840

    Google Scholar 

  • Hernandez Nopsa JF, Pfender WF (2014) A latent period duration model for wheat stem rust. Plant Dis 98:1358–1363

    Article  Google Scholar 

  • Holb IJ, Füzi I (2016) Monitoring of ascospore density of Erysiphenecatorin the air in relation to weather factors and powdery mildewdevelopment. Eur J plant Pathol 144:751–762

    Article  Google Scholar 

  • Holton CS (1949) Observations on Neovossia indica. Indian Phytopath 2:1–5

    Google Scholar 

  • Hooker DC, Schaafsma AW, Tamburic-Ilincic L (2002) Using weather variables pre- and post-heading to predict deoxynivalenol content in winter wheat. Plant Dis 86:611–619

    Article  CAS  PubMed  Google Scholar 

  • Houborg R, Soegaard H, Boegh E (2007) Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens Environ 106(1):39–58

    Article  Google Scholar 

  • Hovmoller MS (2001) Disease severity and pathotype dynamics of Puccinia striiformis f.sp.tritici in Denmark. Plant Pathol 50:181–190

    Article  CAS  Google Scholar 

  • Hu XP, Yang ZW, Li ZQ et al (2000) Studies on the prediction of wheat stripe rust epidemics in Hanzhong District of Shaanxi Province. Acta Univ 28:18–21

    Google Scholar 

  • Huang L, Zhao J, Zhang D et al (2012) Identifying and mapping stripe rust in winter wheat using multi-temporal air-borne hyperspectral images. Int J Agric Biol 14:697–704

    Google Scholar 

  • Huang W, Lamb DW, Niu Z et al (2007) Identification of yellow rust in wheat using in-situ spectral reflec-tance measurements and airborne hyperspectral imaging. Precis Agric 8:187–197

    Article  Google Scholar 

  • Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS (1986) Pyricularia em trigo. 1. Ocorrência de Pyricularia sp. no estado do Paraná. Fitopatol Bras 11:351–352

    Google Scholar 

  • Inch SA (2001) An epidemiological study of fusarium head blight (FHB) of wheat caused by Gibberella zeae. University of Manitoba, Winnipeg, Canada, MSc thesis

    Google Scholar 

  • Jalli M, Kaseva J, Andersson B et al (2020) Yield increases due to fungicide control of leaf blotch diseases in wheat and barley as a basis for IPM decision-making in the Nordic-Baltic region. Eur J Plant Pathol 158:315–333

    Article  CAS  Google Scholar 

  • Jensen AL, Jensen FV (1996) Midas - an inuence diagram for management of mildew in winter wheat. In: Proceedings of the twelfth international conference on uncertainty in Arti_cial intelligence, UAI'96, pages 349–356. Morgan Kaufmann Publishers, San Francisco, CA

    Google Scholar 

  • Jhorar OP, Mavi HS, Sharma I et al (1992) A biometerological model for forecasting Karnal bunt disease of wheat. Pl Dis Res 7:204–209

    Google Scholar 

  • Jindal MM, Mohan C, Pannu PPS (2012) Status of stripe rust of wheat in Punjab during 2011–12 seasons. Proceedings of brain storming session, Department of Plant Pathology, PAU, Ludhiana, 56

    Google Scholar 

  • Junk J, Gorgen K, El Jarroudi M et al (2008) Operational application and improvements of the disease risk forecast model Proculture to optimize fungicides spray for the septoria leaf blotch disease in winter wheat in Luxembourg. Adv Sci Res 2:57–60

    Article  Google Scholar 

  • Junk J, Kouadio L, Delfosse P et al (2016) Effects of regional climate change on brown rust disease in winter wheat. Clim Chang 135:439–451

    Article  Google Scholar 

  • Karki CB, Pande S, Thombre SB et al (1979) Evaluation of a linear model to predict stem rust severity. Cereal Rusts Bull 7:3–7

    Google Scholar 

  • Kasbohrer M, Hoffmann G, Fischbeck G (1988) Disease frequency as athreshold for control of powdery mildew (Erysiphe graminis f. sp. tritici) on wheat. J Plant Diseases Prot 95(1):1–15

    Google Scholar 

  • Kaundal R, Kapoor AS, Raghava GPS (2006) Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinform 7:485

    Article  Google Scholar 

  • Kaur J, Bala R, Kaur H et al (2018) Current status of wheat diseases in Punjab. Agric Res J PAU 55:113–116

    Google Scholar 

  • Kaur S (1998) Epidemiological studies on fusarium head blight of wheat. M.Sc. Thesis. Punjab Agricultural University, Ludhiana, Punjab, India

    Google Scholar 

  • Kaur S, Chahal SS, Singh N (1999) Effect of temperature on the development of the pathogen and head blight disease in wheat. Plant Dis Res 14:191–194

    Google Scholar 

  • Kaur S, Singh M, Singh K (2002a) Factors affecting telial and sporidial inoculum of Neovossia indica. Indian Phytopath 55:14–18

    Google Scholar 

  • Kaur S, Chahal SS, Singh N (2002b) Assessment of losses caused by head blight in wheat. J Plant Mycol Plant Pathol 30(2):204–206

    Google Scholar 

  • Keller MD, Bergstrom GC, Shields EJ (2013) The aerobiology of fusarium graminearum. Aerobiologia. https://doi.org/10.1007/s10453-013-9321-3

  • Kennedy R, Wakeham AJ (2015) Measuring biological particles in theair using the Hirst type spore trap: aerobiology in the age of genomics. Ann Appl Biol 166:1–3

    Article  Google Scholar 

  • Khan MA (1997) Evaluation of multiple regression models based on epidemiological factors to predict leaf rust on wheat. Pak J Agri Sci 34(1–4)

    Google Scholar 

  • Khan MA, Trevathan LE (1997) Relationship of air soil temperature to leaf rust development at three locations in Mississipi. Pak J Phytopath 9:41–49

    Google Scholar 

  • Kharbikar LL, Shanware AS, Saharan MS et al (2019) Fusarium graminearum microRNA-like RNAs and their interactions with wheat genome: a much-needed study. Indian Phytopath 72:565–573

    Article  Google Scholar 

  • Khoshgoftaar TM, Fazelpour A, Dittman DJ et al (2015) Ensemble vs. In: Data sampling: which option is best suited to improve classification performance of imbalanced bioinformatics data? In 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI), pp 705–712

    Google Scholar 

  • Kim K (2001) A simulation model to determine infection periods of Magnaporthe grisea and to predict progress of rice leaf blast severity based on near real-time weather data. PhD Thesis. Seoul National University. Seoul, South Korea

    Google Scholar 

  • Kim KR (2000) Weather-driven models for rice leaf blast and their im-plementation to forecast disease development on the near real-timebasis. PhD Thesis, Seoul National University, Suwon

    Google Scholar 

  • Klem K, Vanova M, Hajslova J et al (2007) A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant Soil Environ 53(10):421–429

    Article  CAS  Google Scholar 

  • Klink H (1997) Geoepidemiologische Erhebungen von Weizenpathogenen in Schleswig-Holstein unter Anwendung und Entwicklung des Integrierten Panzenschutzsystems (IPS-Modell Weizen) fur einen minimierten, bedarfsgerechten Fungizideinsatz (1993–1996). PhD thesis, Christian-Albrechts-University at zu Kiel

    Google Scholar 

  • Kohli MM, Mehta YR, Guzman E et al (2011) Pyricularia blast - a threat to wheat cultivation. Czech J Genet Plant Breed 47:S130–S134

    Article  Google Scholar 

  • Kokaly RF, Asner GP, Ollinger SV et al (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ 113(S1):S78–S91

    Article  Google Scholar 

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Krause RA, Massie LB (1975) Predictive systems: modern approaches to disease control. Ann Rev Phytopathol 13:31–47

    Article  Google Scholar 

  • Krishna A, Singh RA (1981) Aberrations in the teliospore germination of Neovossia indica. Indian Phytopath 34:260–262

    Google Scholar 

  • Krishnaa G, Sahooa RN, Pargalb S, Guptaa VK, Sinhac P, Bhagatd S, Saharane MS, Singha R, Chattopadhyayd C (2014) Assessing wheat yellow rust disease through hyperspectral remote sensing. In: the international archives of the photogrammetry, remote sensing and spatial information sciences, volume XL-8, 2014 ISPRS technical commission VIII symposium, 09–12 December 2014, Hyderabad. doi:https://doi.org/10.5194/isprsarchives-XL-8-1413-2014

  • Kuang WG, Liu WC, Ma ZH, Wang HG (2013) Development of a web-based prediction system for wheat stripe rust. In: Li D, Chen Y (eds) CCTA 2012, Part I, International Federation for Information Processing (IFIP) 2013 AICT 392; 2013. Springer, Cham, pp 324–335

    Google Scholar 

  • Kumar PV (2014) Development of weather-based prediction models for leaf rust in wheat in the indo-Gangetic plains of India. Eur J Plant Pathol 140:429–440

    Article  Google Scholar 

  • Landschoot S, Waegeman W, Audenaert K et al (2013) A field-specific web tool for the prediction of fusarium head blight and deoxynivalenol content in Belgium. Comput Electron Agric 93:140–148

    Article  Google Scholar 

  • Langevin F, Eudes F, Comeau A (2004) Effect of trichothecenes produced by fusarium graminearum during fusarium head blight development in six cereal species. Eur J Plant Pathol 110:735–746. https://doi.org/10.1023/B:EJPP.0000041568.31778.ad

    Article  Google Scholar 

  • Lei Y, Shuqin L (2009) Prediction of wheat stripe rust by wavelet neural network. Microcomput Inform 25(12–2):42–43

    Google Scholar 

  • Leonard K (2001) Stem rust—future enemy? In: Peterson PD (ed) Stem rust of wheat: from ancient enemy to modern foe. APS Press, St Paul, MN, pp 119–146

    Google Scholar 

  • Li ZQ, Zeng SM (2002) Wheat rust in China. China Agriculture Press, Beijing, China

    Google Scholar 

  • Liu JG, Pattey E, Jégo G (2012) Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens Environ 123:347–358

    Article  Google Scholar 

  • Liu JG, Pattey E, Miller JR, McNairn H et al (2010) Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens Environ 114(6):1167–1177

    Article  Google Scholar 

  • Liu WC, Shao ZR (1998) Epidemiology, occurrence and analysis of wheat powdery mildew in recent years. Plant Prot Technol Extens 6:17–19

    Google Scholar 

  • Lucas JA, Hawkins NJ, Fraaije BA (2015) The evolution of fungicide resistance. Adv Appl Microbiol 90:29–92

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Ma ZH, Reyes HC et al (2007) Quantification of airborne spores’ of Monilinia fructicolain stone fruitorchards of California using real-time PCR. Eur J Plant Pathol 118:145–154

    Article  Google Scholar 

  • Ma HQ, Huang WJ, Jing YS (2016) Wheat powdery mildew forecastingin filling stage based on remote sensing and meteorological data. Tran. Chin Soc Agr Eng 32:165–172

    Google Scholar 

  • Madden L, Pennypacker SP, Macnab AA et al (1978) A forecast system for Alternaria solani on tomato. Phytopathology 68(9):1354–1358

    Article  Google Scholar 

  • Madden LV (1980) Quantification of disease progression. Prot Ecol 2:159–176

    Google Scholar 

  • Madden LV (2006) Botanical epidemiology: some key advances and its continuing role in disease management. Eur J Plant Pathol 115:3–23

    Article  Google Scholar 

  • Madden LV, Hughes G, Van den Bosch RF (2007) The study of plant disease epidemics. The American Phytopathology Press, St Paul, MN

    Google Scholar 

  • Marsalis MA, Goldber NP (2017) Leaf, stem and stripe rust diseases of wheat. https://aces.nmsu.edu/pubs/_a/A415/welcome.html

  • Mavi HS, Jhorar OP, Sharma I et al (1992) Forecasting Karnal bunt of wheat-a biometerological method. Cer Res Comm 20(1–2):67–76

    Google Scholar 

  • McCown RL (2002) Changing systems for supporting farmers’ decisions: problems, paradigms and prospects. Agric Syst 74:179–220

    Article  Google Scholar 

  • McMullen M, Bergstrom G, De Wolf E et al (2012) A unified effort to fight an enemy of wheat and barley: fusarium head blight. Plant Dis 96:1712–1728

    Article  PubMed  Google Scholar 

  • McMullen M, Jones R, Gallemberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  PubMed  Google Scholar 

  • McRoberts N, Hall C, Madden LV et al (2011) Perceptions of disease risk: from social construction of subjective judgements to rational decision making. Phytopathology 101:654–665

    Article  CAS  PubMed  Google Scholar 

  • Mehra LK, Adhikari U, Ojiambo PS et al (2018) Septoria nodorum blotch of wheat. Peer J. https://doi.org/10.7287/peerj.preprints.27039v2

  • Mehta YR (2014) Wheat diseases and their management. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-06465-9

    Book  Google Scholar 

  • Meitz-Hopkins JC, Diest SGV, Koopman TA (2014) A method to monitor airborne Venturiainaequalis ascospores using volumetricspore traps and quantitative PCR. Eur J Plant Pathol 140:527–541

    Article  Google Scholar 

  • Meyer M, Burgin L, Hort MC et al (2017) Large-scale atmospheric dispersal simulations identify likely airborne incursion routes of wheat stem rust into ethiopia. Phytopathology 107:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Milgate A, Hollaway G, Wallwork H et al (2014) Septoria tritici blotch: GRDC fact sheet. GRDC, Canberra, Australia

    Google Scholar 

  • Mitra M (1937) Studies on the stinking smut (bunt) of wheat in India. Indian J Agric Sci 4:467–468

    Google Scholar 

  • Molineros J (2007) Understanding the challenge of fusarium head blight forecasting. Dissertation, The Pennsylvania State University, University Park

    Google Scholar 

  • Moreno R, Jiménez VM, Lagunes A et al (2020) Weather data based model: an approach for forecasting leaf and stripe rust on winter wheat. Meteorol Appl 27:e1896. https://doi.org/10.1002/met.1896

    Article  Google Scholar 

  • Moschini RC, Carranza MR, Carmona M (2004) Meteorological-based predictions of wheat head blight epidemic in the southern Argentinean pampas region. Cereal Res Commun 32:45–52

    Article  Google Scholar 

  • Moschini RC, Martinez MI, Sepulcri MG (2013) Modeling and forecasting systems for fusarium head blight and deoxynivalenol content in wheat in Argentina. In: Alconada Magliano TM, Chulze SN (eds) Fusarium head blight in Latin America. Springer, Cham, pp 205–227. https://doi.org/10.1007/978-94-007-7091-1_13

    Chapter  Google Scholar 

  • Moschini RC, Pérez BA (1999) Predicting wheat leaf rust severity using planting date, genetic resistance, and weather variables. Plant Dis 83:381–384

    Article  Google Scholar 

  • Moschini RC, Pioli R, Carmona MA et al (2001) Empirical predictions of wheat head blight in the northern Argentinean pampas region. Crop Sci 41:1541–1545

    Article  Google Scholar 

  • Mulatu W, Bedasa M, Terefa G (2020) Prediction of wheat rust diseases using data mining application. Open Access Library J 7:1–27. https://doi.org/10.4236/oalib.1106717

    Article  Google Scholar 

  • Mundkur BB (1940) A second contribution towards knowledge of Indian Ustilaginales. Trans Br Mycol Soc 24:312–336

    Article  Google Scholar 

  • Mundkur BB (1943) Studies in Indian cereal smut. V Mode of transmission of Karnal bunt of wheat Indian. J Agric Sci 13:54–58

    Google Scholar 

  • Munjal RL (1970) Studies on Karnal bunt of wheat. Ph.D thesis, Punjab University, Chandigarh, India, p 125

    Google Scholar 

  • Munjal RL (1971) Epidemiology and control of Karnal bunt of wheat. Proc epidemiology, forecasting and control of plant disease. 1971, Sym. P 2.INSA, New Delhi (abstr.)

    Google Scholar 

  • Munjal RL (1975) Status of Karnal bunt (Neovossia indica) of wheat in North India during 1968–69 and 1969–70. Indian J Mycol Pl Path 5:185–187

    Google Scholar 

  • Murray G, Ellison M, Watson PJ et al (1994) The relationship between wheat yield and stripe rust as effected by length of epidemic and temperature at grain development stage of crop growth. Plant Pathol 43:397–405

    Article  Google Scholar 

  • Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australas Plant Pathol 38:558–570

    Article  Google Scholar 

  • Musa T, Hecker A, Vogelgsang S et al (2007) Forecasting of Fusarium head blight and deoxynivalenol content in winter wheat with Fusa Prog*. Bulletin OEPP/EPPO Bulletin 37(2):283–289

    Article  Google Scholar 

  • Nagarajan S (1991) Epidemiology of Karnal bunt of wheat incited by Neovossia indica and an attempt to develop a disease prediction system. Technical Report Wheat Programme. CIMMYT, Mexico, pp 1–62

    Google Scholar 

  • Nagarajan S, Aujla SS, Nanda GS et al (1997) Karnal bunt (Tilletia indica) of wheat - a review. Rev Plant Pathol 76:1207–1214

    Google Scholar 

  • Nagarajan S, Joshi LM (1978) A linear model for a seven-day forecast of stem rust severity. Indian Phytopath 31:504–506

    Google Scholar 

  • Nagarajan S, Singh H (1975) Indian stem rust rules -- an epidemiological concept of the spread of wheat stem rust. Plant Disease Reptr 59:133–136

    Google Scholar 

  • Nagarajan S, Singh H (1976) Preliminary studies on forecasting wheat stem rust appearance. Agric Meteorol 17:281–289

    Article  Google Scholar 

  • Naseri B, Marefat A (2019) Wheat stripe rust epidemics in interaction with climate, genotype and planting date. Eur J Plant Pathol 154(4):1077–1089. https://doi.org/10.1007/s10658-019-01729-8

    Article  CAS  Google Scholar 

  • Naseri B, Sharifi F (2019) Predicting wheat stripe rust epidemics according to influential climatic variables. J Plant Prot Res 59(4):519–528

    Google Scholar 

  • Newbery F, Qi A, Fitt BDL (2016) Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr Opin Plant Biol 32:101–109. https://doi.org/10.1016/j.pbi.2016.07.002

    Article  PubMed  Google Scholar 

  • Newlands NK (2018) Model-based forecasting of agricultural crop disease risk at the regional scale, integrating airborne inoculum, environmental, and satellite-based monitoring data. Front Environ Sci 6:1–16. https://doi.org/10.3389/fenvs.2018.00063

    Article  Google Scholar 

  • Nganje WE, Kaitibie S, Wilson WW et al (2004) Economic impacts of fusarium head blight in wheat and barley: 1993-2001. (agribusiness and applied economics report no 538). North Dakota State University, Fargo, ND: Department of Agribusiness and Applied Economics, agricultural Experiment Station

    Google Scholar 

  • Nicolau M, Fernandes JMC (2012) A predictive model for daily inoculum levels of Gibberella zeae in Passo Fundo. Brazil Int J Agron 2012:7. https://doi.org/10.1155/2012/795162

    Article  Google Scholar 

  • Nilsson HE (1995) Remote sensing and image analysis in plant pathology. Can J Plant Pathol 17:154–166

    Article  Google Scholar 

  • Nopsa JFH, Pfender WF (2014) A latent period duration model for wheat stem rust. Plant Dis 98:1358–1363. https://doi.org/10.1094/PDIS-11-13-1128-RE

    Article  PubMed  Google Scholar 

  • Norton GA, Holt J, Mumford JD (1993) Introduction to pest models. In: Norton GA, Mumford JD (eds) Decision tools for Pest management. CAB International, Cambridge, UK, pp 89–99

    Google Scholar 

  • Ojiambo PS, Yuen J, van den Bosch F et al (2017) Epidemiology: past, present and future impacts on understanding disease dynamics and improving plant disease management – a summary of focus issue articles. Phytopathology 107:1092–1094. https://doi.org/10.1094/PHYTO-07-17-0248-FI

    Article  CAS  PubMed  Google Scholar 

  • Orton ES, Deller S, Brown JK (2011) Mycosphaerella graminicola: from genomics to disease control. Mol Plant Pathol 12:413–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Osborne LE, Stein JM (2007) Epidemiology of fusarium head blight on small-grain cereals. Int J Food Microbiol 119(1–2):103–108

    Article  PubMed  Google Scholar 

  • Ou SH (1972) Fungus diseases – foliage diseases. In: Ou SH (ed) Rice diseases. Commonwealth agricultural Bureaux, Surrey, pp 97–184

    Google Scholar 

  • Pakpour S, Li DW, Klironomos J (2015) Relationships of fungal sporeconcentrations in the air and meteorological factors. Fungal Ecol 13:130–134

    Article  Google Scholar 

  • Pant AK, Mishra GC, Chand R, Mishra VK (2016) Weather based statistical modelling for forecasting of yearly spot blotch severity in different growth stages of wheat. Int J Agric Env Biotechnol 9:1117–1124

    Article  Google Scholar 

  • Panwar V, Aggarwal A, Paul S et al (2016) Distribution dynamics of fusarium spp. causing fusarium head blight (FHB) in wheat at different geographical locations in India. South Asian J Exp Biol 6(5):167–177

    Article  Google Scholar 

  • Park RF (1990) The role of temperature and rainfall in the epidemiology of Pucciniastriiformis f. sp. tritici in the summer rainfall area of eastern Australia. Plant Pathol 39(3):416–423. https://doi.org/10.1111/j.1365-3059.1990.tb02517.x

    Article  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sci 4:439–473

    Google Scholar 

  • Pietravalle S, Shaw MW, Parker SR et al (2003) Modeling of relationships between weather and septoria tritici epidemics on winter wheat: a critical approach. Phytopathology 93:1329–1339

    Article  CAS  PubMed  Google Scholar 

  • Polley RW, Thomas MR (1991) Surveys of diseases of winter wheat in England and Wales, 1976-1988. Ann Appl Biol 119:1–20

    Article  Google Scholar 

  • Prabhu AS, Filippi MC, Castro N (1992) Pathogenic variation among isolates of Pyricularia oryzae infecting rice, wheat, and grasses in Brazil. Trop Pest Manag 38:367–371

    Article  Google Scholar 

  • Prandini A, Sigolo S, Filippi L et al (2009) Review of predictive models for fusarium head blight and related mycotoxin contamination in wheat. Food Chem Toxicol 47:927–931

    Article  CAS  PubMed  Google Scholar 

  • Prank M, Kenaley SC, Bergstrom GC et al (2019) Climate change impacts the spread potential of wheat stem rust, a significant crop disease. Environ Res Lett 14:124053

    Article  CAS  Google Scholar 

  • Pu CJ (1998) On periodic epidemic regular pattern and prediction of wheat stripe rust in Gansu Province. Acta Phytopathol Sin 28:299–302

    Google Scholar 

  • Purdy LH, Kendrick EL (1957) Influence of environmental factors on the development of wheat bunt in the Pacific Northwest.I. effect of soil moisture and soil temperature on spore germination. Phytopathology 47:591–594

    Google Scholar 

  • Qiang ZF (1999) Markov forecast of wheat stripe rust in Qinghai in 1998. Plant Prot 25:19–22

    Google Scholar 

  • Rabbinge R, Rijsdijk F H (1983) EPIPRE: a disease and pest management system for winter wheat, taking account of micrometeorological factors. EPPO/WMO Symp.On meteorology for plant protection (Geneva, march 1982)

    Google Scholar 

  • Rader T, Racca P, Jorg E et al (2007) PUCREC/PUCTRI a decision support system for the control of leaf rust of winter wheat and winter rye. EPPO Bull 37(2):378–382

    Article  Google Scholar 

  • Rao SKV, Berggren GT, Snow JP (1990) Characterization of wheat leaf rust epidemics in Louisiana. Phytopathology 80:402–410

    Article  Google Scholar 

  • Rao SKV, Snow JP, Berggren GT (1989) Effect of growth stage and initial inoculum level on leaf rust development and yield loss caused by Puccinia recondita f. sp. tritici. J Phytopathol 127(3):200–210

    Article  Google Scholar 

  • Rapilly F (1979) Yellow rust epidemiology. Annu Rev Phytopathol 17:59–73

    Article  Google Scholar 

  • Rapilly F, Jolivet E (1976) Construction of a model (EPISEPT) allowing the simulation of an epidemic of Septoria nodorum BERK on wheat construction d’un modèle (EPISEPT) permettant la simulation d’une épidémie de Septoria nodorum BERK. Appl Stat Rev 3:31–60

    Google Scholar 

  • Ratan GS, Aujla SS (1992) Ecology of germination of the teliospores of Karnal bunt pathogen (Neovossia indica). Indian J Agric Sci 62:228–231

    Google Scholar 

  • RE Jeger M.J. (2004) Analysis of disease progress as a basis for evaluating disease management practices. Annu Rev Phytopathol 42(1):61–82. https://doi.org/10.1146/annurev.phyto.42.040803.140427

    Article  CAS  Google Scholar 

  • Reis EM, Casa RT, Hoffman LL, Mendes CS (2000) Effect of leaf rust on wheat grain yield. Fitopatol Bras 25:67–71

    Google Scholar 

  • Riley S, Earnes K, Isham V et al (2015) Five challenges for spatial epidemic models. Epidemics 10:68–71. https://doi.org/10.1016/j.epidem.2014.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Rios JA, Rios VS, Paul PA et al (2016) Fungicide and cultivar effects on the development and temporal progress of wheat blast under field conditions. Crop Prot 89:152–160

    Article  CAS  Google Scholar 

  • Robert C, Fournier C, Andrieu B et al (2008) Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D): a new approach to investigate plant–pathogen interactions linked to canopy architecture. Funct Plant Biol 35:997–1013

    Article  PubMed  Google Scholar 

  • Rodríguez-Moreno VM, Jiménez-Lagunes A, Estrada-Avalos J et al (2020) Weather-data-based model: an approach for forecasting leaf and stripe rust on winter wheat. Meteorol Appl 27:e1896

    Article  Google Scholar 

  • Rossi V, Giosue S, Caffi T (2010) Modelling plant diseases for decision making in crop protection. In: Oerke EC, Gerhards R, Menz G, Sikora RA (eds) Precesion crop protection – the challenge and use of heterogeneity. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Rossi V, Giosue S, Girometta B et al (2006) Validation of a model for wheat fusarium in Piedmontese cereal areas. Rivista Italiana di Agrometeorologia 11:21–23

    Google Scholar 

  • Rossi V, Giosue S, Pattori E et al (2003) A model estimating the risk of fusarium head blight on wheat. EPPO Bull 33:421–425

    Article  Google Scholar 

  • Rossi V, Giosuffe S (2003) A dynamic simulation model for powdery mildew epidemics on winter wheat. EPPO Bull 33(3):389–396

    Article  Google Scholar 

  • Rossi V, Manstretta V, Ruggeri M (2015) A multicomponent decision support system to manage fusarium head blight and mycotoxins in durum wheat. World Mycotoxin J 8(5):629–640

    Article  CAS  Google Scholar 

  • Rossi V, Racca P, Giosue S et al (1997a) A simulation model for the development of brown rust epidemics in winter wheat. Eur J Plant Pathol 103(5):453–465

    Article  Google Scholar 

  • Rossi V, Racca P, Giosue S et al (1997b) An advisory system for the control of Brown rust on winter wheat in northern Italy. In: Dehne HW, Adam G, Diekmann M, Frahm J, Mauler-Machnik A, van Halteren P (eds) Diagnosis and identification of plant pathogens. Developments in plant pathology, vol 11. Springer, Dordrecht

    Google Scholar 

  • Rossi V, Racca P, Pancaldi D et al (1996) Appearance of Puccinia recondita f.sp. tritici on winter wheat: a simulation model. Bulletin OEPP/EPPO Bulletin 26:555–556

    Article  Google Scholar 

  • Roy AK (1974) Ear blight and scab of wheat in Arunachal Pradesh (fusarium avenaceum). Curr Sci 43:162

    Google Scholar 

  • Ruggeri M (2014) Development and field validation of an innovative approach to sustainable cultivation of durum wheat in Italy. Dissertation, Università Cattolica del Sacro Cuore, Milano, Italy

    Google Scholar 

  • Rydahl P (2003) A web-based decision support system for integrated management of weeds in cereals and sugarbeet. Bulletin OEPP/EPPO Bulletin 33:455–460

    Article  Google Scholar 

  • Saharan MS, Sharma AK (2009) Studies on pathogenic variation among fusarium spp./isolates causing head blight/head scab of wheat in India. Indian Phytopathol 62(3):402

    Google Scholar 

  • Salazar-Huerta FI, Osada KS, Gilchrist SL et al (1990) Evaluation de la resistenicia de seis genotipos de trigo (Triticum vulgare L.) al carbon parcial causado por el hongo Tilletia indica Mitra en invernadero. Rev Mex Fitopathol 8:145–152

    Google Scholar 

  • Sansford C, Baker R, Brennan J, Ewert F, Gioli B, Inman A, et al. (2008) Report on the risk of entry, establishment and socio-economic loss for Tilletia indica in the European Union (DL6·1) and determination and report on the most appropriate risk management scheme for Tilletia indica in the EU in relation to the assessed level of risk (DL6·5) EC Fifth Framework Project QLK5–1999-01554, Risks associated with Tilletia indica, the newly-listed EU quarantine pathogen, the cause of Karnal bunt of wheat, Deliverable Reports 6·1 and 6·5. Retrieved May 10, 2008 from http,//karnalpublic.pestrisk.net/deliverables

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537. https://doi.org/10.1007/sl2571-012-0200-5

    Article  Google Scholar 

  • Savary S, Nelson AD, Djurlec A et al (2018) Concepts, approaches, and avenues for modelling crop health and crop losses. Eur J Agron 100:4–18

    Article  Google Scholar 

  • Savary S, Stetkiewicz S, Brun F et al (2015) Modelling and mapping potential epidemics of wheat diseases—examples on leaf rust and Septoria tritici blotch using EPIWHEAT. Eur J Plant Pathol 142:771–790. https://doi.org/10.1007/s10658-015-0650-7

    Article  CAS  Google Scholar 

  • Savary S, Teng PS, Willocquet L et al (2006) Quantification and modelling crop losses: a review of purposes. Annu Rev Phytopathol 44:89–112

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ et al (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439. https://doi.org/10.1038/s41559-018-0793-y

    Article  PubMed  Google Scholar 

  • Schaafsma AW, Hooker DC (2007) Climatic models to predict occurrence of fusarium toxins in wheat and maize. Int J Food Microbiol 119:116–125

    Article  CAS  PubMed  Google Scholar 

  • Schall R (1991) Pest risk analysis on Karnal bunt. U.S. Department of Agriculture, Animal and Plant Health Inspection Service

    Google Scholar 

  • Secher BJM (1991) The Danish plant protection recommendation models for cereals. Danish J Plant Soil Sci 85:127–133

    Google Scholar 

  • Secher BJM, Jorgensen LN, Murali NS et al (1995) Field validation of a decision support system for the control of pests and diseases in cereals in Denmark. Pestic Sci 45(2):195–199

    Article  CAS  Google Scholar 

  • Shah DA, De Wolf ED, Paul PA et al (2014) Predicting fusarium head blight epidemics with boosted regression trees. Phytopathology 104:702–714

    Article  CAS  PubMed  Google Scholar 

  • Shah DA, Molineros JE, Paul PA et al (2013) Predicting fusarium head blight epidemics with weatherdriven pre- and post-anthesis logistic regression models. Phytopathology 103:906–919

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Sharma RK, Babu KS (2004) Effect of planting options and irrigation schedules on development of powdery mildew and yield of wheat in the North Western plains of India. Crop Prot 23(3):249–253

    Article  Google Scholar 

  • Sharma I, Nanda GS (2002) Factors affecting teliospore viability of Neovossia indica. J Res PAU, Ludhiana 39(1):15–27

    Google Scholar 

  • Sharma I, Nanda GS (2003) Effect of prolonged period of fog/rain from sowing of wheat to pre-boot stage on Karnal bunt development. Ann Plant Protection Sci 11(1):93–95

    Google Scholar 

  • Sharma-Poudyal D, Chen XM (2011) Models for predicting potential yield loss of wheat caused by stripe rust in the U.S. Pacific northwest. Phytopathology 101(5):544–554. https://doi.org/10.1094/PHYTO-08-10-0215

    Article  CAS  PubMed  Google Scholar 

  • Shaw MW, Royle DJ (1993) Factors determining the severity of epidemics of Mycosphaerellagraminicola (Septoria tritici) on winter wheat in the UK. Plant Pathol 42:882–899

    Article  Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Shrum R (1975) Simulation of wheat stripe rust (Puccinia striiformis West.) using EPIDEMIC a flexible plant disease simulator. Progress report 347, Pennsylvania State University

    Google Scholar 

  • Shtienberg D, Dinoor A, Marani A (1990) Wheat disease control advisory, a decision support system for management of foliar diseases of wheat in Israel. Can J Plant Pathol 12:195–203

    Article  Google Scholar 

  • Siddhartha VS, Singh DV, Srivastava KD et al (1995) Some epidemiological aspects of Karnal bunt of wheat. Indian Phytopath 48:419–426

    Google Scholar 

  • Singh A and, Prasad R (1978) Date of sowing and meterological factors in relation to occurrence of Karnal bunt of wheat in U.P. Tarai. Indian J Mycol Pl Path 8: 2

    Google Scholar 

  • Singh BB (1986) Studies on variability, epidemiology and biology of Neovossia indica (Mitra) Mundkur causing Karnal bunt of wheat. Ph.D dissertation, Punjab agricultural university, Ludhiana, 1986

    Google Scholar 

  • Singh DV, Singh R, Rao VLM (1996) Relation between weather parameters and Karnal bunt in wheat. Indian J Agric Sci 56:522–525

    Google Scholar 

  • Singh PJ, Aujla SS (1994) Effect of lodging on the development of head scab of wheat. Indian Phytopath 47:56–57

    Google Scholar 

  • Singh R, Karwasra SS (2016) Mapping the distribution of Karnal bunt of wheat and its correlations with weather parameters. J Plant Pathol 98(3):519–523

    Google Scholar 

  • Smeets E, Hendrickx G, Geypens M (1994) EPIPRE, an up to date link between research and today’s farming practice. Meded Fac Landbouw Univ Gent 59:1233–1239

    Google Scholar 

  • Smilanick JL, Hoffman JA, Royer MH (1985) Effect of temperature, pH, light and dessication on teliospore germination of Tilletia indica. Phytopathology 75:1428–1431

    Article  Google Scholar 

  • Smilanick JL, Presscott JM, Hoffman JA et al (1989) Environmental effects on survival and growth of secondary sporidia and teliospores of Tilletia indica. Crop Prot 8:86–90

    Article  Google Scholar 

  • Smiley RW (1997) Risk assessment for Karnal bunt occurrence in the Pacific northwest. Pl Dis 81:689–692

    Article  Google Scholar 

  • Smith WG (1884) New diseases of wheat, barley, and Rye-grass, caused by Fusisporium culmorum, horde and Lolii. In: Smith WG (ed) Diseases of field and garden crops: chiefly such as are caused by Fungi. MacMillan and Co, London, pp 208–213

    Chapter  Google Scholar 

  • Solis VZ, Flores GJG (2003) Comparative analysis of interpolation techniques in estimating the spatial variation of factors in a hydrographic basin. XIII National SELPER Meeting Puerto Vallarta, Mexico DF

    Google Scholar 

  • Srivastava KD (1981) Studies on the spread of Puccinia recondita robs. Ex. Desm and its epidemiology. Agra, India: Agra University, Ph.D thesis

    Google Scholar 

  • Stack RW (2003) History of fusarium head blight with emphasis on North America. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, MN, pp 1–34

    Google Scholar 

  • Stansbury CD, McKridy SJ (2012) Forecasting climate suitability for Karnal bunt of wheat, a comparison of two meterology methods. Australasian Plant Pathol 31:81–92

    Article  Google Scholar 

  • Steinberg G (2015) Cell biology of the wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 79:17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokes ME, Davis CS, Koch GG (1995) Categorical data analysis using the SAS system. SAS Institute, Cary, NC

    Google Scholar 

  • Stolley PD, Lasky T (1995) Investigating disease patterns: the science of epidemiology. Scientific American Library, New York, p 45

    Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43(1):83–116

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao KV, Berggren GT, Snow JP (1990) Characterization of wheat leaf rust epidemics in Louisiana. Phytopathology 80:402–410

    Article  Google Scholar 

  • Suffer F, Sache I, Lannou C (2011) Early stages of Septoria tritici blotch epidemics of winter wheat: build-up, overseasoning, and release of primary inoculum. Plant Pathol 60:166–177

    Article  Google Scholar 

  • Sung JM, Cook RJ (1981) Effects of water potential on reproduction and spore germination by fusarium roseumgraminearum’, ‘culmorum’ and‘avenaceum’. Phytopathology 71(5):499–504

    Article  Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by fusarium graminearum. Can J Plant Pathol 4:195–209

    Article  Google Scholar 

  • Sutton JC (1988) Predictive value of weather variables in the epidemiology and management of foliar disease. Fitopatologia Brasi-leira, Brasília 12(4):305–312

    Google Scholar 

  • Teli B, Chattopadhyay A, Meena SC et al (2016) Present status of fusarium head blight of wheat and barley in India. In: Vaish SS (ed) Diseases of wheat and their management. Astral Publishers, Delhi, India, pp 1–91

    Google Scholar 

  • Teng PS (1985) A comparison of simulation approaches to epidemic modeling. Annu Rev Phytopathol 23:351–379

    Article  Google Scholar 

  • Thandapani SP, Senthilkumar S, Shanmuga Priya S (2019) Decision support system for plant disease identification. In: Luhach AK et al (eds) ICAICR 2018, CCIS, vol 956, pp 217–229. https://doi.org/10.1007/978-981-13-3143-5_19

    Chapter  Google Scholar 

  • The Economic Times (2020) Government plans to ban 27 pesticides, https://economictimes.indiatimes.com/industry/indl-goods/svs/chem-/-fertilisers/government-plans-to-ban-27-pesticides/articleshow/75839949.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst

  • Thomas MR, Cook RJ, King JE (1989) Factors affecting development of Septoria tritici in winter wheat and its effect on yield. Plant Pathol 38:246–257

    Article  Google Scholar 

  • Toledo J (2015) Tratamiento de Semillas. In: Manual de recomendaciones técnicas – Cultivo de trigo. Asociación de Productores de Oleaginosas y Trigo (ANAPO), Santa Cruz, Bolivia, p 140

    Google Scholar 

  • Tomerlin JR, Eversmeyer MG, Kramer CL et al (1983) Temperature and host effects on latent and infectious periods and on urediniospore production of Pucciniarecondita f.sp.tritici. Phytopathology 73:414–419

    Article  Google Scholar 

  • Troutt C, Levetin E (2001) Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma. Int J Biometeorol 45:64–74

    Article  CAS  PubMed  Google Scholar 

  • Uddin W, Serlemitsos K, Viji G (2003) A temperature and leaf wetness duration-based model for prediction of gray leaf spot of perennial ryegrass turf. Phytopathology 93:336–343

    Article  CAS  PubMed  Google Scholar 

  • Umer J, Nasim G, Rasool G (2008) Correlation and regression for prediction of wheat leaf rust severity in Bahawalpur and Multan using relevant meteorological data. Mycopathologia 6(1&2):23–29

    Google Scholar 

  • Urashima A, Martins T, Bueno C et al (2004) Triticale and barley: new hosts of Magnaporthe griseain São Paulo, Brazil - relationship with blast of rice and wheat. In: Kawasaki S (ed) Rice blast: interaction with rice and control. Springer, Dordrecht, Netherlands, pp 251–226

    Chapter  Google Scholar 

  • Urashima AS, Grosso C, Stabili A et al (2009) Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Wang GL, Valent B (eds) Advances in genetic genomics and control of rice blast disease. Springer, Dordrecht, Netherlands, pp 267–277

    Chapter  Google Scholar 

  • Vallavieille-Pope D, Giosue C, Munk S et al (2000) Assessment of epidemiological parameters and their use inepidemiologicalandforecasting models of cereal airborne diseases. Agron Sustain Dev 20:715–727

    Google Scholar 

  • Van Der Fels-Klerx HJ, Burgers SLGE et al (2010) Descriptive modeling to predict deoxynivalenol in winter wheat in the Netherlands. Food Addit Contam 27:636–643

    Article  CAS  Google Scholar 

  • Van der Plank JE (1963) Plant diseases epidemics and control. Academic Press, New York, p 349

    Google Scholar 

  • Viani A, Sinha P, Sharma T (2017) A model for forecasting spot blotch disease in wheat. Australasian Plant Pathol 46:601–609

    Article  Google Scholar 

  • Viedma L (1989) Importancia y distribucion de la fusariosis de trigo en Paraguay. In: Kohli MM (ed) Taller sobre la Fusariosis de la espiga en America del Sur. Mexico, DF, CIMMYT

    Google Scholar 

  • Visser B, Meyer M, Park RF et al (2019) Microsatellite analysis and urediniospore dispersal simulations support the movement of Puccinia graminis f. sp. tritici fromm southern Africa to Australia. Phytopathology 109:133–144

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ma Z (2011) Prediction of wheat stripe rust based on support vector machine, 2011 seventh international conference on natural computation, Shanghai, pp. 378–382,

    Google Scholar 

  • Wang H, Ma Z (2012) Prediction of wheat Sripe rust based on neural networks. In: Li D, Chen Y (eds) Computer and computing Technologies in Agriculture V. CCTA 2011. IFIP, Amsterdam, Netherlands

    Google Scholar 

  • Wang Z, Li H, Zhang D et al (2015) Genetic and physical map-ping of powdery mildew resistance gene MlHLT in Chinese wheatlandrace Hulutou. Theor App Genet 128:365–373

    Article  CAS  Google Scholar 

  • Wang ZY, Zhao J, Chen XM et al (2016) Virulence variations of Puccinia striiformis f. sp. tritici isolates collected from Berberis spp. in China. Plant Dis 100:131–138

    Article  PubMed  Google Scholar 

  • Warham EJ (1986) Karnal bunt disease of wheat – a literature review. Trop Pest Mgmt 32:229–242

    Article  Google Scholar 

  • Wei-chuan Z, Gui-ming Z (2010) Prediction of potential epidemiological areas in China prone to Karnal bunt of wheat. J Plant Pathol 92:367–373

    Google Scholar 

  • West JS, Kimber RBE (2015) Innovations in air sampling to detect plantpathogens. Ann Appl Biol 166:4–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiik L, Ewaldz T (2009) Impact of temperature and precipitation on yield and plant diseases of winter wheat in southern Sweden 1983–2007. Crop Prot 28:952–962

    Article  Google Scholar 

  • Willocquet L, Aubertot J, Lebard S et al (2008) Simulating multiple pest damage in varying winter wheat production situations. Field Crop Res 107(1):12–28

    Article  Google Scholar 

  • Workneh F, Allen TW, Nash GH, Narasimhan B, Srinivasan R, Rush CM (2008) Rainfall and temperature distinguish between Karnal bunt positive and negative years in wheat fields in Texas. Phytopathology 98:95–100

    Article  CAS  PubMed  Google Scholar 

  • Wu JD, Wang D, Bauer ME (2007) Assessing broadband vegetation indices and quick bird data in estimating leaf area index of corn and potato canopies. Field Crops Res 102(1):33–42

    Article  Google Scholar 

  • Xiao ZQ, Li ZM, Fan M et al (2007) Prediction model on stripe rust influence extent of winter wheat in Longnan mountainous area. China J Agrometeorol 28:350–353

    Google Scholar 

  • Yilmaz MT, Hunt ER Jr, Jackson TJ (2008) Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens Environ 112(5):2514–2522

    Article  Google Scholar 

  • Young CS, Paveley ND, Vaughan TB et al (2003) Predicting epidemics of yellow rust (Puccinia striiformis) on the upper canopy of wheat from disease observations on lower leaves. Plant Pathol 52:338–349

    Article  Google Scholar 

  • Yuan C, Kriticos DJ, Beddow JM et al (2016) Puccinia trichina. Pest Geography

    Google Scholar 

  • Yuan L, Li SQ (2010) Application of principal component analysis of wheat stripe rust. Comput Eng Des 31:459–461

    Google Scholar 

  • Zadoks JC (1961) Yellow rust on wheat: studies in epidemiology and physiologic specialization. Netherland J Plant Pathol 67(3):69–259. https://doi.org/10.1007/BF01984044

    Article  Google Scholar 

  • Zadoks JC, Rabbinget R (1985) Modeling to a purpose. Adv Plant Pathol 3:231–244

    Google Scholar 

  • Zadoks JC, Schein RDE (1979) Epidemiology and plant management. Oxford University, New York, p 427

    Google Scholar 

  • Zahavi T, Reuveni M, Scheglov D, Lavee S (2001) Effect of grapevine training systems on development of powdery mildew. Eur J Plant Pathol 107:495–501

    Article  Google Scholar 

  • Zeng SM (1962) Mathematical analysis of epidemic of wheat yellow rust, I. Rate of disease progress, −icta. Phytopathologica Sinica 1:354S

    Google Scholar 

  • Zeng SM, Luo Y (2008) Systems analysis of wheat stripe rust epidemics in China. Eur J Plant Pathol 121:425–438

    Article  Google Scholar 

  • Zhang J, Pu R, Wang J et al (2012) Detecting powdery mildew of winter wheat using leaf level hyperspectral mea-surements. Comput Electron Agr 85:13–23

    Article  Google Scholar 

  • Zhang J, Pu R, Yuan L et al (2014) Integrating remotely sensed and meteorological observations to forecast wheat powdery mildew at a regional scale. IEEE J Sel Top Appl Earth Obs 7:4328–4339

    Article  Google Scholar 

  • Zhao J, Huang W, Zhang D et al (2012) Characterization and identification of leaf-scale wheat powdery mil-dew using a ground-based hyperspectral imaging system. Disaster Adv 5:1657–1662

    Google Scholar 

  • Zhao J, Xu C, Xu J et al (2018) Forecasting the wheat powdery mildew (Blumeria graminis f. sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale. Australas Plant Pathol 47:53–61

    Article  CAS  Google Scholar 

  • Zhao S, Yao C (1989) On the sea temperature prediction models of the prevailing level of wheat scab. Acta Phytopathol Sin 19:229–234

    Google Scholar 

  • Zhuang QS, Li ZS (1993) Present status of wheat breeding and related genetic study in China. Wheat Inf Sew 76:1–15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspal Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, J., Bala, R., Singh, P. (2022). Forecasting of Wheat Diseases: Insights, Methods and Challenges. In: Kashyap, P.L., et al. New Horizons in Wheat and Barley Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-4134-3_2

Download citation

Publish with us

Policies and ethics