Skip to main content

Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Changing Climate?

  • Chapter
  • First Online:
Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability

Abstract

Throughout history, more than 5538 crop species have been used as food for human beings, whereas only 12 crop species share the major percentage of food security globally. Among these crop species, three kinds of cereal, such as rice, wheat and maize share >50% of calories across the globe. Besides these, more than 1000 neglected and underutilized crop species (NUFCs) across the world have been estimated as upcoming survival crop species as these crop species are enriched in nutrients and have wider adaptability to various stresses in the modern era of climate change. Although their importance and potentiality have been still unknown to various stakeholders. Recently, these NUFCs crops have received appreciation due to their prospective role for the sustainability of crop production through alleviating agricultural risk. Researchers also recognized that the extensive utilization of underutilized minor crops to reform time-based and dimensional heterogeneity into uniform farming systems will expand the pliability to both biotic and environmental stresses. The utilization of biotechnological approaches such as genotyping by sequencing and arrays and pan-genomics tools are important tactics for evaluating the secreted prospects of the NUFCs. The application of these genomic approaches has been already proved to improve the productivity of numerous climate-resilient NUFCs including sweet potato, cassava, yam, coconut, sorghum, groundnut, cowpea, common bean, chickpea, cacao, etc. Unlocking the real potentials of the NUFCs by employing advanced breeding technologies is imperative for global food and nutritional security and also for attaining Sustainable Development Goals (SDG). This chapter highlights the prospects of NUFCs as genetic resources for fighting poverty, hunger and malnutrition for the food security of the increasing population. This chapter also discusses the important roles of NUFCs in advancing defensible agricultural improvement beyond the Green Revolution in the changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aboagye LM, Obirih-Opareh N, Amissah L, Adu-Dapaah H (2007) Underutilized species policies and strategies: analysis of existing national policies and legislations that enable or inhibit the wider use of underutilized plant species for food and agriculture in Ghana

    Google Scholar 

  • Adhikari L, Hussain A, Rasul G (2017) Tapping the potential of neglected and underutilized food crops for sustainable nutrition security in the mountains of Pakistan and Nepal. Sustainability 9:291. https://doi.org/10.3390/su9020291

    Article  Google Scholar 

  • Amagloh FK, Hardacre A, Mutukumira AN, Weber JL, Brough L, Coad J (2012) A household-level sweet potato-based infant food to complement vitamin a supplementation initiative. Matern Child Nutr 2012(8):512–521

    Article  Google Scholar 

  • Arora RK (2014) Diversity in underutilized plant species—an Asia-Pacific perspective. Bioversity International, New Delhi, p 203

    Google Scholar 

  • Arora D, Chandel KPS, Joshi BS, Pent KC (1980) Rice bean: tribal pulse of eastern India. Econ Bot 34:260–263

    Article  Google Scholar 

  • Arora RK, Sharma GD, Joshi V, Phogat BS, Bhatt KC, Rana JC (2006) Underutilized crops. In: Dhillon BS, Saxena S, Agrawal A, Tyagi RS (eds) Plant genetic resources: food grain crops. Narosa Publishing House, New Delhi, pp 320–342

    Google Scholar 

  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T et al (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci U S A 108:11034–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AVRDC (2008) The World Vegetable Center. Point of impact: healthy urban fast food: a new Maasai Enterprise. AVRDC—The World Vegetable Center, Tainan

    Google Scholar 

  • Baldermann S, Blagojević L, Frede K, Klopsch R, Neugart S, Neumann A, Ngwene B, Norkeweit J, Schröter D, Schröter A, Schweigert FJ, Wiesner M, Schreiner M (2016) Are neglected plants the food for the future. Crit Rev Plant Sci 35:106–119. https://doi.org/10.1080/07352689.2016.1201399

    Article  CAS  Google Scholar 

  • Baloda S, Sehrawat SK, Yadav BS, Ahlawat VP, Singh S (2012) Present status of ber production and future thrusts in India—a review. Agric Rev 33(3):256–264

    Google Scholar 

  • Banerjee P, Maitra S (2020) The role of small millets as functional food to combat malnutrition in developing countries. Indian J Nat Sci 10(60):20412–20417

    Google Scholar 

  • Barbieri RL, Gomes JCC, Alercia A, Padulosi S (2014) Agricultural biodiversity in Southern Brazil: integrating efforts for conservation and use of neglected and underutilized species. Sustainability 6:741–757

    Article  Google Scholar 

  • Beluhan S, Ranogajec A (2011) Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem 124(3):1076–1082

    Article  CAS  Google Scholar 

  • Bhag Mal M, Paroda RS, Kochhar S (1997) Underutilized crops and their implications in farming systems in India. In: Smartt J, Haq N (eds) Domestication, production and utilization of new crops. ICUC (International Centre for Underutilized Crops), Southampton, pp 30–45

    Google Scholar 

  • Bhowmik P, Hassan MM, Molla K, Rahman M, Islam MT (2019) Application of CRISPR-Cas genome editing tools for the improvement of plant abiotic stress tolerance. In: Hasanuzzaman M, Nahar K, Fujita M, Oku H, Islam MT (eds) Approaches for enhancing abiotic stress tolerance in plants. CRC Press, Boca Raton, pp 459–472

    Chapter  Google Scholar 

  • Biodiversity International (2017) Mainstreaming agrobiodiversity in sustainable food systems: scientific foundations for an agrobiodiversity index. Bioversity International, Rome

    Google Scholar 

  • Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr Biol 20:629–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagbrough IS, Bayoumi SAL, Rowan MG, Beeching JR (2010) Cassava: an appraisal of its phytochemistry and its biotechnological prospects—review. Phytochemistry 71(17–18):1940–1951

    Article  CAS  PubMed  Google Scholar 

  • Bobojonov I, Lamers JP, Bekchanov M, Djanibekov N, Franz-Vasdeki J, Ruzimov J, Martius C (2013) Options and constraints for crop diversification: a case study in sustainable agriculture in Uzbekistan. Agroecol Sustain Food Syst 37:788–811

    Article  Google Scholar 

  • Bosch CH (2004) Moringa oleifera Lam. In: Grubben GJH, Denton OA (eds) Plant resources of tropical Africa, vol 2: vegetables. Backhuys Publishers, Kerkwerve, pp 392–395

    Google Scholar 

  • Bovell-Benjamin C (2007) Sweet potato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52:1–59

    Article  CAS  PubMed  Google Scholar 

  • Bressani R (1985) Nutritive value of cowpea. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilization. Wiley, Chichester, pp 353–359

    Google Scholar 

  • Brown AH (2010) Variation under domestication in plants: 1859 and today. Philos Trans R Soc Lond Ser B Biol Sci 365(1552):2523–2530. https://doi.org/10.1098/rstb.2010.0006

    Article  Google Scholar 

  • Bruinsma J (2009) The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? In: Proceedings of the technical meeting of experts on how to feed the world in 2050, Rome, Italy, 24–26 June 2009. Food and Agriculture Organization (FAO), Rome, pp 1–33

    Google Scholar 

  • Burton GW, Wallace AT, Rachie KO (1972) Chemical composition and nutritive value of pearl millet [Pennisetum typhoides (burm.) stapf and E. C. Hubbard] grain. Crop Sci 12:187–188

    Article  CAS  Google Scholar 

  • Burton W, Pymer S, Salisbury P, Kirk J, Oram R (1999) Performance of Australian canola quality Indian mustard breeding lines. In: Proceedings of 10th international rapeseed congress, Canberra, Australia, 26–29 September 1999 [CD ROM]. The Regional Institute, Canberra

    Google Scholar 

  • Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3:144–158

    Article  CAS  Google Scholar 

  • Chandrasekara A, Josheph Kumar T (2016) Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. Int J Food Sci:3631647. https://doi.org/10.1155/2016/3631647

  • Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:28.1–28.31

    Article  Google Scholar 

  • Cheng A, Mayes S, Dalle G, Demissew S, Massawe F (2017) Diversifying crops for food and nutrition security – a case of teff. Biol Rev 92(1):188–198

    Article  PubMed  Google Scholar 

  • Chethan S, Malleshi NG (2007) Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem 105:862–870

    Article  CAS  Google Scholar 

  • Chibarabada T, Modi A, Mabhaudhi T (2017) Expounding the value of grain legumes in the semi- and arid tropics. Sustainability 9:60. https://doi.org/10.3390/su9010060

    Article  Google Scholar 

  • Chivenge P, Mabhaudhi T, Modi A, Mafongoya P (2015) The potential role of neglected and underutilised crop species as future crops under water scarce conditions in sub-Saharan Africa. Int J Environ Res Public Health 12:5685–5711. https://doi.org/10.3390/ijerph120605685

    Article  PubMed  PubMed Central  Google Scholar 

  • Chweya JA, Eyzaguirre PB (1999) The biodiversity of traditional leafy vegetables. IPGRI, Rome

    Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JG (2014) Don’t just produce more food—produce better food. Natl Geograph Spec Ser Future Food:1–2

    Google Scholar 

  • da Silveira Vasconcelos M, Gomes-Rochette NF, de Oliveira ML, Nunes-Pinheiro DC, Tomé AR, Maia de Sousa FY, Pinheiro FG, Moura CF, Miranda MR, Mota EF, de Melo DF (2015) Anti-inflammatory and wound healing potential of cashew apple juice (Anacardium occidentale l.) in mice. Exp Biol Med 240:1648–1655

    Article  CAS  Google Scholar 

  • Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95:5–16

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg JA, Wilson JP, Snyder T (2003) Sorghum and pearl millet: health foods and industrial products in developed countries. In: Alternative uses of sorghum and pearl millet in Asia. Proceedings of expert meeting. ICRISAT, Patancheru, pp 42–59

    Google Scholar 

  • Dandin SB, Krishna Kumar NK (2018) Mainstreaming future smart food for improving nutrition security. In: Li X, Siddique KHM (eds) Future smart foods, rediscovering hidden treasures of neglected and underutilized species for Zero Hunger in Asia, Bangkok, pp 79–88

    Google Scholar 

  • de Abreu FP, Dornier M, Dionisio AP, Carail M, Caris-Veyrat C, Dhuique-Mayer C (2013) Cashew apple (Anacardium occidentale L.) extract from by-product of juice processing: a focus on carotenoids. Food Chem 138:25–31

    Article  PubMed  CAS  Google Scholar 

  • De la Peña RC, Ebert AW, Gniffke P, Hanson P, Symonds RC (2011) Genetic adjustment to changing climates: vegetables. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change, 1st edn. Wiley, Chichester, pp 396–410

    Chapter  Google Scholar 

  • Dehmer KJ (2003) Molecular diversity in the genus Amaranthus. In: Knüpffer H, Ochsmann J (eds) Rudolf Mansfeld and plant genetic resources. ZADI, Bonn, pp 208–215

    Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Duke JA (2013) Moringa oleifera Lam. http://www.hort.purdue.edu/newcrop/duke_energy/Moringa_oleifera.html. Accessed 21 Nov 2013

  • Ebert AW (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6(1):319–335. https://doi.org/10.3390/su6010319

    Article  Google Scholar 

  • Ebert AW, Wu TH, Wang ST (2011) International cooperators’ guide—vegetable Amaranth (Amaranthus L.). AVRDC—The World Vegetable Center, Tainan, p 8

    Google Scholar 

  • El-Jasser AS (2011) Chemical and biological properties of local cowpea seed protein grown in Gizan region. Int J Agric Res Rev 1:68–75

    Google Scholar 

  • Esfeld K, Uauy C, Tadele Z (2013) Application of TILLING for orphan crop improvement. In: Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 83–113

    Chapter  Google Scholar 

  • Espinosa JR (1996) Dominant two-loop corrections to the MSSM finite-temperature effective potential. Nucl Phys 475(1–2):273–292

    Article  Google Scholar 

  • Eyzaguirre PB, Padulosi S, Hodgkin T (1999) IPGRI’s strategy for neglected and underutilized species and the human dimension of agrobiodiversity. In: Padulosi S (ed) Priority setting for underutilized and neglected species of the Mediterranean region. Report of the IPGRI Conference 9-11Feb. 1998, ICARDA, Aleppo, Syria IPGRI, Rome Italy. pp 1-19

    Google Scholar 

  • Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Phytochemistry 47:123–157

    Google Scholar 

  • Falco SD, Chavas JP (2009) On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am J Agric Econ 91(3):599–611

    Article  Google Scholar 

  • FAO (1996a) Global plan of action for the conservation and sustainable utilization of world’s plant genetic resources for food and agriculture and Leipzig declaration. In: International technical conference on plant genetic resources, Leipzig, Germany, 17–23 June 1996. Food and Agriculture Organization of the United Nations, Rome. www.fao.org/pgrfa-gpa-archive/docs/gpa_en.pdf

  • FAO (1996b) Report on the state of the world’s plant genetic resources for food and agriculture. Prepared for the international technical conference on plant genetic resources, Leipzig, Germany, 17–23 June 1996. Food and Agriculture Organization of the United Nations, Rome, Italy. p 511

    Google Scholar 

  • FAO (2009) FAO and traditional knowledge: the linkages with sustainability, food security and climate change impacts. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • FAO (2014) The state of food insecurity in the world: strengthening the enabling environment for food security and nutrition. Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • FAO (Food and Agricultural Organization) (1998) The state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • FAO (Food and agriculture organization) (1999) Fermented cereals. A global perspective. FAO Agricultural Services Bulletin 138 Food and Agriculture Organization of the United Nations, Rome (1999). http://www.fao.org/docrep/x2184E/x2184e00.HTM. Accessed 30 June 2009

  • FAOSTAT (2013). http://faostat3.fao.org

  • Fernandez AI, Viron N, Alhagdow M et al (2009) Flexible tools for gene expression and silencing in tomato. Plant Physiol 151:1729–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Yan J (2019) De novo domestication: an alternative route toward new crops for the future. Mol Plant 12:615–631

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (1997) Chemistry, biochemistry and dietary role of potato polyphenols—a review. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  • Frison EA, Cherfas J, Hodgkin T (2011) Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 3:238–253

    Article  Google Scholar 

  • Galluzzi G, Noriega I (2014) Conservation and use of genetic resources of underutilized crops in the Americas—a continental analysis. Sustainability 6:980–1017. https://doi.org/10.3390/su6020980

    Article  Google Scholar 

  • Ganry J (2006) The nutritional value of fruits and vegetables. Fruits 61(4):223–224. https://doi.org/10.1051/fruits:2006034

    Article  Google Scholar 

  • Garai S, Mondal M, Mukherjee S (2020) Resource conservation technologies for achieving sustenance in agricultural production system. In: Maitra S, Pramanick B (eds) Advanced agriculture, 1st edn. New Delhi Publishers, New Delhi, pp 325–349

    Google Scholar 

  • Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109(39):2579–2586

    Article  Google Scholar 

  • Gillespie S, van den Bold M (2017) Agriculture, food systems, and nutrition: meeting the challenge. Global Chall 1:1600002. https://doi.org/10.1002/gch2.201600002

    Article  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Govender L, Pillay K, Siwela M, Modi A, Mabhaudhi T (2016) Food and nutrition insecurity in selected rural communities of KwaZulu-Natal, South Africa-linking human nutrition and agriculture. Int J Environ Res Public Health 14(1):17. https://doi.org/10.3390/ijerph14010017

    Article  PubMed Central  Google Scholar 

  • Grierson D (2016) Identifying and silencing tomato ripening genes with antisense genes. Plant Biotechnol J 14:835–838

    Article  PubMed  Google Scholar 

  • Gruère G, Nagarajan L, King EO (2009) The role of collective action in the marketing of underutilized plant species: lessons from a case study on minor millets in South India. Food Policy 34(1):39–45

    Article  Google Scholar 

  • Hadebe S, Mabhaudhi T, Modi AT (2017) Drought tolerance and water use of cereal crops: a focus on sorghum as a food security crop in sub-Saharan Africa. J Agron Crop Sci 203:177–199. https://doi.org/10.1111/jac.12191

    Article  CAS  Google Scholar 

  • Hagen T (2004) Traditional framing practices and farmers’ rights in the HKH Region, Policy Brief. No. 6. SWATEE, Lalitpur

    Google Scholar 

  • Handschuch C, Wollni M (2016a) Improved production systems for traditional food crops: the case of finger millet in Western Kenya. Food Secur 2016(8):783–797

    Article  Google Scholar 

  • Handschuch C, Wollni M (2016b) Traditional food crop marketing in sub-Saharan Africa: does gender matter? J Dev Stud 52:343–359

    Article  Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Smiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MA, Singh SR, Majhi D, Devi HL, Somi Singh Y, Biswas S, Das BC (2010) Significance of minor fruits in health care. In: Proc botanicals in integrated health care, pp 162–166

    Google Scholar 

  • Hazell P (2003) The green revolution. In: Mokyr J (ed) Oxford encyclopedia of economic history. Oxford University Press, Oxford, UK

    Google Scholar 

  • Hernández-Bermejo JE (2013) Cultivos infrautilizados en España: pasado, presente y futuro. Ambienta. http://www.revistaambienta.es/WebAmbienta/marm/Dinamicas/pdfs/versionpdf/Esteban13.pdf

  • Hughes JDA, Ebert AW (2013) Research and development of underutilized plant species: the role of vegetables in assuring food and nutritional security. In: Massawe F, Mayes S, Alderson P (eds) Proceedings of the 2nd international symposium on underutilized plant species: crops for the future—beyond food security; International Society for Horticultural Sciences (ISHS). Korbeek-Lo, Belgium, pp 79–91

    Google Scholar 

  • IPGRI (1998) IPGRI’s strategy for neglected and under-utilized species and the human dimension of agrobiodiversity. Priority setting for under-utilized and neglected plant species of the Mediterranean region. IPGRI-Aleppo, Syria

    Google Scholar 

  • IPGRI (International Plant Genetic Resources Institute) (2002) Neglected and underutilized plant species: strategic action plan of the International Plant Genetic Resources Institute. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T (2019) CRISPR-Cas technology in modifying food crops. CAB Rev 14(50):1–16

    Article  Google Scholar 

  • Jackson LE, Pascual U, Hodgkin T (2007) Utilizing and conserving agrobiodiversity in agricultural landscapes. Agric Ecosyst Environ 121:196–210

    Article  Google Scholar 

  • Jahan FN, Rahim MA, Bokhtiar SM, Samanta AK (2020) Potentiality of underutilized crop Dioscorea spp.: a source of nutraceutical. SAARC J Agric 17:1–13. https://doi.org/10.3329/sja.v17i2.45290

    Article  Google Scholar 

  • Jain SM, Gupta SD (2013) Biotechnology of neglected and underutilized crops. Springer, Berlin. https://doi.org/10.1007/978-94-007-5500-0

    Book  Google Scholar 

  • Jayaweera DMA (1982) Medicinal plants (indigenous and exotic) used in Ceylon. Part 11:1982

    Google Scholar 

  • Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX (2008) Genetic control of rice plant architecture under domestication. Nat Genet 40:1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johns T, Sthapit BR (2004) Biocultural diversity in the sustainability of developing-country food systems. Food Nutr Bull 25:143–155

    Article  PubMed  Google Scholar 

  • Jones JM, Engleson J (2010) Whole grains: benefits and challenges. Annu Rev Food Sci Technol 40

    Google Scholar 

  • Joshi BK, Shrestha R (2018) Nepal. In: Li X, Siddique KHM (eds) Future smart food—rediscovering hidden treasures of neglected and underutilized species for Zero Hunger in Asia. FAO, Bangkok, pp 161–178

    Google Scholar 

  • Joshi KD, Bhanduri B, Gautam R, Bajracharya J, Hollington PB (2008) Rice bean: a multi-purpose underutilized legume. In: Smart JH (ed) New crops and uses: their role in a rapidly changing world. CUC, UK, pp 234–248

    Google Scholar 

  • Kahane R, Hodgkin T, Jaenicke H, Hoogendoorn C, Hermann M, Keatinge JDH, Hughes JA, Padulosi S, Looney N (2013) Agrobiodiversity for food security, health and income. Agron Sustain Dev 33:671–693

    Article  Google Scholar 

  • Kannan SM, Thooyavathy RA, Kariyapa RT, Subramanian K, Vijayalakshmi K (2013) Seed production techniques for cereals and millets. In: Vijayalakshmi K (ed) Seed node of the revitalizing rainfed agriculture network Centre for Indian knowledge systems (CIICS), pp 1–39. http://www.ciks.org/downloads/seeds/5.%20Seed%20Production%20Techniques%20for%20Cereals%20and%20Millets.pdf. Accessed 29 Dec 2017

    Google Scholar 

  • Kaul T, Eswaran M, Thangaraj A, Meyyazhagan A, Nehra M, Raman NM, Bharti J, Gayacharan, Badapanda C, Balamurali B (2019) Rice Bean (Vigna umbellata) draft genome sequence: unravelling the late flowering and unpalatability related genomic resources for efficient domestication of this underutilized crop. bioRxiv. https://doi.org/10.1101/816595

  • Keatinge JDH, Waliyar F, Jamnadass RH, Moustafa A, Andrade M, Drechsel P, Hughes J’A, Palchamy K, Luther K (2010) Re-learning old lessons for the future of food—by bread alone no longer: diversifying diets with fruit and vegetables. Crop Sci 50:51–62

    Article  Google Scholar 

  • Keatinge JDH, Easdown W, Yang R-Y, Chadha M, Shanmugasundaram S (2011) Overcoming chronic malnutrition in a future warming world: the key importance of mungbean and vegetable soybean. Euphytica 180:129–141

    Article  Google Scholar 

  • Keatinge JD, Chadha ML, Hughes JDA, Easdown WJ, Holmer RJ, Tenkouano A, Yang RY, Mavlyanova R, Neave S, Afari-Sefa V, Luther G (2012) Vegetable gardens and their impact on the attainment of the Millennium Development Goals. Biol Agric Hortic 28(2):71–85

    Article  Google Scholar 

  • Kermali SR, Anishetty NM, Cooper HD (1997) Promoting development and commercialization of underutilized crops and species in the FAO global plan of action. In: Smartt J, Haq N (eds) Domestication, production and utilization of new crops. ICUC, Southampton, pp 19–27

    Google Scholar 

  • Khalid MA, Kaushik G (2008) Food security in mountains: challenges and sustainable strategies. http://www.mtnforum.org/sites/default/files/publication/files/1850.pdf. Accessed 25 Aug 2020

  • Khoury CK, Bjorkman AD, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg LH, Struik PC (2014) Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci 111(11):4001–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104:1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koneri R, Balaraman R, Saraswati CD (2006) Antiovulatory and abortifacient potential of the ethanolic extract of roots of Momordica cymbalaria Fenzl in rats. Indian J Pharmacol 38:111–114

    Article  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Kour S, Bakshi P, Sharma A, Wali VK, Jasrotia A, Kumari S (2018) Strategies on conservation, improvement and utilization of underutilized fruit crops. Int J Curr Microbiol App Sci 7:638–650. https://doi.org/10.20546/ijcmas.2018.703.075

    Article  Google Scholar 

  • Kubo J, Lee JR, Kubo I (1999) Anti-helicobacter pylori agents from the cashew apple. J Agric Food Chem 47:533–537

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S, Singh M, Gupta S, Babu BK, Sood S, Yadav R (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front. Plant Sci 7:934. https://doi.org/10.3389/fpls.2016.00934

    Article  Google Scholar 

  • Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur 7(1):31. https://doi.org/10.1186/s40066-018-0183-3

    Article  Google Scholar 

  • Kuo CG, Chen HM, Sun HC (1992) Membrane thermostability and heat tolerance of vegetable leaves. In: Adaptation of food crops to temperature and water stress. AVRDC—The World Vegetable Center, Tainan, pp 160–168

    Google Scholar 

  • Laurie S, Van Heerden S (2012) Consumer acceptability of four products made from beta-carotene-rich sweet potato. Afr J Food Sci 6:96–103

    Article  CAS  Google Scholar 

  • Lebot V (2009) Tropical root and tuber crops: cassava, sweet potato, yams and aroids. CABI, Oxfordshire

    Google Scholar 

  • Leder I (2004) Sorghum and millets. Cultivated plants, primarily as food sources. In: Gyargy F (ed) Encyclopaedia of life support systems. UNESCO, Eolss Publishers, Oxford

    Google Scholar 

  • Ledford H (2013) US regulation misses some GM crops. Nature 500:389–390

    Article  CAS  PubMed  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4:766–770

    Article  CAS  PubMed  Google Scholar 

  • Li X, Siddique KHM (2018) Future smart food—rediscovering hidden treasures of neglected and underutilized species for Zero Hunger in Asia. FAO, Bangkok. 242 pp. http://www.fao.org/documents/card/en/c/I8907EN/. Accessed 15 Sept 2019

    Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Li J-F et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol. https://doi.org/10.1038/nbt.4273

  • Li J et al (2019) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J 17:858–868

    Article  CAS  PubMed  Google Scholar 

  • Liang Z et al (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebman M, Helmers MJ, Schulte LA, Chase CA (2013) Using biodiversity to link agricultural productivity with environmental quality: results from three field experiments in Iowa. Renew Agric Food Syst 28:115–128

    Article  Google Scholar 

  • Lim TK (2015) Arracacia xanthorrhiza. In: Edible medicinal and non medicinal plants. Springer, Dordrecht, pp 361–366

    Chapter  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61(3):183–193. https://doi.org/10.1525/bio.2011.61.3.4

    Article  Google Scholar 

  • Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE et al (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB et al (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6:e288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99:13302–13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YW, Shang HF, Wang CK, Hsu FL, Hou WC (2007) Immunomodulatory activity of dioscorin, the storage protein of yam (Dioscorea alata cv. Tainong No. 1) tuber. Food Chem Toxicol 45(11):2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D (2007) A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr 2007(137):1320–1327

    Article  Google Scholar 

  • Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z-Y, Xu D, Jones T, Gordon-Kamm W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28(9):1998–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabhaudhi T, O’Reilly P, Walker S, Mwale S (2016) Opportunities for underutilised crops in Southern Africa’s post–2015 development agenda. Sustainability 8:302

    Article  Google Scholar 

  • Mabhaudhi T, Chimonyo VGP, Chibarabada TP, Modi AT (2017a) Developing a roadmap for improving neglected and underutilized crops: a case study of South Africa. Front Plant Sci 8:2143. https://doi.org/10.3389/fpls.2017.02143

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabhaudhi T, Chimonyo VGP, Modi AT (2017b) Status of underutilised crops in South Africa: opportunities for developing research capacity. Sustainability 9:1569. https://doi.org/10.3390/su9091569

    Article  Google Scholar 

  • Magbagbeola JAO, Adetoso JA, Owolabi OA (2010) Neglected and underutilized species (NUS): a panacea for community focused development to poverty alleviation/poverty reduction in Nigeria. J Econ Int Finance 2:208–211

    Google Scholar 

  • Maitra S (2020) Potential horizon of brown-top millet cultivation in drylands: a review. Crop Res 55(1–2):57–63. https://doi.org/10.31830/2454-1761.2020.012

    Article  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Makate C, Makate M, Mango N (2017) Smallholder farmers’ perceptions on climate change and the use of sustainable agricultural practices in the Chinyanja Triangle, Southern Africa. Soc Sci 6(1):30. https://doi.org/10.3390/socsci6010030

    Article  Google Scholar 

  • Mal B (2007) Neglected and underutilized crop genetic resources for sustainable agriculture. Indian J Plant Genet Resour 20(1):1–4

    Google Scholar 

  • Mal B, Padulosi S, Ravi SB (2010) Minor millets in South Asia: Learnings from IFAD-NUS project in India and Nepal, Biodiversity International, Rome, Italy. The M.S. Swaminathan Research Foundation, Chennai

    Google Scholar 

  • Malalavidhane S, Wickramasinghe SM, Jansz ER (2001) An aqueous extract of the of the green leafy vegetable Ipomoea aquatica is as effective as the oral hypoglycaemic drug tolbutamide in reducing the blood sugar levels of wistar rats. Phytother Res 15:635–637

    Article  CAS  PubMed  Google Scholar 

  • Malkanthi SHP (2017) Importance of underutilized crops in Thanamalwila Divisional Secretariat Division in Monaragala District in Sri Lanka. J Agric Sci 12(3):197–206

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez JG, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN, Xu Y (2019) Food security. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner HO, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In Press. https://www.ipcc.ch/site/assets/uploads/2019/11/08_Chapter-5.pdf. Accessed 26 Aug 2020

    Google Scholar 

  • McCouch S (2013) Feeding the future. Nature 2013(499):23–24

    Article  CAS  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Michaelraj PSJ, Shanmugam A (2013) A study on millets based cultivation and consumption in India. Int J Market Finance Manage 2(4):49–58

    Google Scholar 

  • Modi AT, Mabhaudhi T (2013) Water use and drought tolerance of selected traditional and indigenous crops; Final report of Water Research Commission Project K5/1771//4; WRC Report No. 1771/1/13, ISBN 978-1-4312-0434-2. Water Research Commission, Pretoria

    Google Scholar 

  • Mondal M, Garai S, Banerjee H (2020) Smart practices and adaptive technologies for climate resilient agriculture. In: Maitra S, Pramanick B (eds) Advanced agriculture, 1st edn. New Delhi Publishers, New Delhi, pp 3–35

    Google Scholar 

  • Morris JB (2007) Swordbean (Canavalia ensiformis (L.) DC.) genetic resources regenerated for potential medical, nutraceutical and agricultural traits. Genet Resour Crop Evol 54:585–592

    Article  Google Scholar 

  • Morton JF (1987) Fruits of warm climates. Julia F. Morton, Miami

    Google Scholar 

  • Motsa N (2015) Agronomic and physiological approaches to improving productivity of selected sweet potato (Ipomoea batatas l.) cultivars in KwaZulu–Natal: a focus on drought tolerance. PhD thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa

    Google Scholar 

  • Mukhopadhyay S, Sen H, Jana P (1990) Effect of planting materials on growth and yield of sweet potato. J Root Crops 1990(16):119–122

    Google Scholar 

  • Mukhopadhyay SK, Chattopadhyay A, Chakraborty I, Bhattacharya I (2011) Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Secur 3(3):283

    Article  Google Scholar 

  • Müller O, Krawinkel M (2005) Malnutrition and health in developing countries. CMAJ 173(3):279–286. https://doi.org/10.1503/cmaj.050342

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy K, Matanguihan J (2015) Quinoa: improvement and sustainable production. Wiley, Hoboken

    Book  Google Scholar 

  • Muthamilarasan M, Singh NK, Prasad M (2019) Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. Adv Genet 103:1–38

    Article  CAS  PubMed  Google Scholar 

  • Nair RM, Schafleitner R, Kenyon L, Srinivasan R, Easdown W, Ebert AW, Hanson P (2012) Genetic improvement of mungbean. SABRAO J Breed Genet 44:177–190

    Google Scholar 

  • Nalawadi UG, Jayasheela N (1975) Progress Hortic 7:37–38

    Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18

    Article  Google Scholar 

  • Njeru EM (2013) Crop diversification: a potential strategy to mitigate food insecurity by smallholders in sub-Saharan Africa. J Agric Food Syst Community Dev 3(4):63–69. https://doi.org/10.5304/jafscd.2013.034.006

    Article  Google Scholar 

  • Ochatt S, Jain SM (2007) Breeding of neglected and under-utilized crops, spices and herbs. Science Publishers Inc., Enfield

    Book  Google Scholar 

  • Oduori C (2005) The importance and research status of finger millet in Africa. Presented at the McKnight Foundation Collaborative Crop Research Program workshop on Tef & Finger Millet: comparative genomics of the Chloridoid cereals at the Biosciences for East and Central Africa (BECA), Nairobi, Kenya, 28–30 June 2005

    Google Scholar 

  • Olson M (2013) The home page of the plant family Moringaceae. http://www.mobot.org/gradstudents/olson/moringahome.html. Accessed 21 Nov 2013

  • Osei A, Pandey P, Spiro D, Nielson J, Shrestha R, Talukder Z, Quinn V, Haselow N (2010) Household food insecurity and nutritional status of children aged 6 to 23 months in Kailali district of Nepal. Food Nut Bull 31:483–494

    Article  Google Scholar 

  • Padulosi S (2006) Finger millet. Crop diversity, priority crops. The global crop diversity trust. http://www.croptrust.org/main/priority.php

  • Padulosi S, Eyzaquirre P, Hodgkin T (1999) Challenges and strategies in promoting conservation and use of neglected and underutilized crop species. In: Alexandria VA (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 140–145

    Google Scholar 

  • Padulosi S, Irmgard H, Bordoni P (2008) Minor crops and underutilized species: lessons and prospects. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (eds) Crop wild relatives, conservation and use. CAB International, Wallingford

    Google Scholar 

  • Padulosi S, Mal B, Bala Ravi S, Gowda J, Gowda KTK, Shanthakumar G, Yenagi N, Dutta M (2009) Food security and climate change: role of plant genetic resources of minor millets. Indian J Plant Genet Resour 22:1–16

    Google Scholar 

  • Padulosi S, Amaya K, Jäger M, Gotor E, Rojas W, Valdivia RA (2014) Holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru. Sustainability 6:1283–1312

    Article  Google Scholar 

  • Padulosi S, Mal B, King OI, Gotor E (2015) Minor millets as a central element for sustainably enhanced incomes, empowerment, and nutrition in rural India. Sustainability 7:8904–8933

    Article  Google Scholar 

  • Padulosi S, Cawthorn DM, Meldrum G, Flore R, Halloran A, Mattei F (2019a) Leveraging neglected and underutilized plant, fungi, and animal species for more nutrition sensitive and sustainable food systems. Encyclopaedia Food Secur Sustain 3:361–370

    Article  Google Scholar 

  • Padulosi S, Roy P, May FJR (2019b) Supporting nutrition sensitive agriculture through neglected and underutilized species—operational framework. Bioversity International and IFAD, Rome

    Google Scholar 

  • Palai JB, Jena J, Maitra S (2019) Prospects of underutilized food legumes in sustaining pulse needs in India—a review. Crop Res 54:82–88. https://doi.org/10.31830/2454-1761.2019.014

    Article  Google Scholar 

  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:1–9. https://doi.org/10.1038/srep24765

    Article  CAS  Google Scholar 

  • Pareek OP, Sharma S (2009a) Underutilized fruits and nuts, vol 1. Diversity and utilization and fruits of tropical and temperate region. Aavishkar Publishers and Distributors, p 366

    Google Scholar 

  • Pareek OP, Sharma S (2009b) Underutilized fruits and nuts, vol 2. Fruits of tropical region. Aavishkar Publishers and Distributors, p 342

    Google Scholar 

  • Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Patricio HG, Palada MC, Ebert AW (2012) Adaptability and horticultural characterization of Moringa accessions under Central Philippines conditions. In: Holmer R, Linwattana G, Nath P, Keatinge JDH (eds) High value vegetables in Southeast Asia: production, supply and demand; proceedings of the SEAVEG 2012 regional symposium. AVRDC—The World Vegetable Center, Shanhua, pp 61–70

    Google Scholar 

  • Pedersen B, Kalinowski LS, Eggum BO (1987) The nutritive value of amaranth grain (Amaranthus caudatus). Plant Foods Hum Nutr 36(4):309–324

    Article  CAS  Google Scholar 

  • Pnueli L et al (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Polprasid P (1996) Moringa oleifera Lamk. In: Siemonsma JS, Piluek K (eds) PROSEA—plant resources of South-East Asia No. 8: vegetables. Prosea Foundation, Bogor, pp 213–215

    Google Scholar 

  • Popoola J, Ojuederie O, Omonhinmin C, Adegbite A (2019) Neglected and underutilized legume crops: improvement and future prospects. In: Shah F, Khan Z, Iqbal A, Turan M, Olgun M (eds) Recent advances in grain crops research. IntechOpen. https://doi.org/10.5772/intechopen.87069

    Chapter  Google Scholar 

  • Pudasaini R, Sthapit S, Suwal R, Sthapit B (2013) The role of integrated home gardens and local, neglected and underutilized plant species in food security in Nepal and meeting the millennium development goal 1 (MDG). In: Diversifying food and diets: using agricultural biodiversity to improve nutrition and health, pp 242–256

    Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Rahmatullah M, Noman A, Hossan MS, Rashid MH, Rahman T, Chowdhury MH, Jahan R (2009) A survey of medicinal plants in two areas of Dinajpur district, Bangladesh including plants which can be used as functional foods. Am Eurasian J Sustain Agric 3(4):862–876

    Google Scholar 

  • Rai M, Pandey S, Ram D, Rai N, Pandey AK, Yadav DS (2007) Plant genetic resources of legumes and underutilized vegetable crops in India. Acta Hort 752:225–230

    Article  Google Scholar 

  • Ramachandran C, Peter KV, Gopalakrishnan PK (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283

    Article  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    Article  CAS  PubMed  Google Scholar 

  • Ransom EI, Elder LK (2003) Nutrition of women and adolescent girls: why it matters. Population Reference Bureau, Washington, DC

    Google Scholar 

  • Rathore SK, Bhatt SH, Dhyani S, Jain A (2012) Preliminary phytochemical screening of medicinal plant Ziziphus mauritiana Lam. fruits. Int J Curr Pharm Res 4(3):160–162

    CAS  Google Scholar 

  • Ravi SB, Hrideek TK, Kumar AK, Prabhakaran TR, Mal B, Padulosi S (2010) Mobilizing neglected and underutilized crops to strengthen food security and alleviate poverty in India. Indian J Plant Genet Resour 1(23):110–116

    Google Scholar 

  • Reddy RVSK, Subbaiah YPV, Reddy MGDM (2007) Exploit kaasara kaya (Momordica tuberosa) for diversification of vegetables. Acta Hort 752:577–579

    Article  Google Scholar 

  • Rodríguez JP, Rahman H, Thushar S, Singh RK (2020) Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet 11:49. https://doi.org/10.3389/fgene.2020.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrıguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A 97:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 104:8641–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothan C, Diouf I, Causse M (2019) Trait discovery and editing in tomato. Plant J 97:73–90

    Article  CAS  PubMed  Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A, Bazile D (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34(2):349–359

    Article  Google Scholar 

  • Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Schindele A, Dorn A, Puchta H (2020) CRISPR/Cas brings plant biology and breeding into the fast lane. Curr Opin Biotechnol 61:7–14

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Lam NT, Hoanh MT, Padulosi S (2010) Promoting neglected and underutilized tuberous plant species in Vietnam. In: Haas R, Canavari M, Slee B, Tong C, Anurugsa B (eds) Looking east looking west: organic and quality food marketing in Asia and Europe. Wageningen Academic Publishers, Wageningen, pp 183–194

    Google Scholar 

  • Sebetha ET, Ayodele VI, Kutu FR, Mariga IK (2010) Yields and protein content of two cowpea varieties grown under different production practices in Limpopo province. S Afr J Biotechnol 9:628–634

    Article  CAS  Google Scholar 

  • Sedbrook JC, Phippen WB, Marks MD (2014) New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.). Plant Sci 227:122–132

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Wu W (2019) Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11:1485. https://doi.org/10.3390/su11051485

    Article  Google Scholar 

  • Shan Q et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shanmugasundaram S, Keatinge JDH, Hughes JA (2009) The mungbean transformation: diversifying crops, defeating malnutrition. In: Proven successes in agricultural development. A technical compendium to millions fed. IFPRI discussion paper 00922. International Food Policy Research Institute (IFPRI), Washington

    Google Scholar 

  • Shobana S, Usha Kumari SR, Malleshi NG, Ali SZ (2007) Glycemic response of rice, wheat and finger millet based diabetic food formulations in normoglycemic subjects. Int J Food Sci Nutr 58(5):363–372

    Article  CAS  PubMed  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y et al (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456

    Article  CAS  PubMed  Google Scholar 

  • Sigmon B, Vollbrecht E (2010) Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol 19:1296–1311

    Article  CAS  PubMed  Google Scholar 

  • Sillitoe P, Marzano M (2009) Future of indigenous knowledge research in development. Futures 41:13–23

    Article  Google Scholar 

  • Silva Ramos MÁ (2002) Elrol de los cultivos marginales en la seguridad alimentaria. Instituto Interamericano de Cooperación para la Agricultura,Oficina IICA, Bolivia, La Paz, Bolivia

    Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Mishra BK, Chandel KPS, Pant KC (1980) Major food constituents of rice bean (Vigna umbellata). J Food Sci Technol 17:23

    Google Scholar 

  • Siqueira MVBM (2011) Yam: a neglected and underutilized crop in Brazil. Hortic Bras 29:16–20. https://doi.org/10.1590/S0102-05362011000100003

    Article  Google Scholar 

  • Smykal P, Nelson MN, Berger JD, von Wettberg EJB (2018) The impact of genetic changes during crop domestication. Agronomy 8:119

    Article  Google Scholar 

  • Solh ME (2016) Importance, challenges and potential of neglected and underutilized crops. FAO Regional Initiative on Zero Hunger. Regional consultation on scoping and mapping of neglected and underutilized crop species in Asia. FAO, Bangkok

    Google Scholar 

  • Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS et al (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Stamp P, Messmer R, Walter A (2012) Competitive underutilized crops will depend on the state funding of breeding programmes: an opinion on the example of Europe. Plant Breed 131:461–464

    Article  Google Scholar 

  • Sthapit B, Padulosi S, Mal B (2010) Role of on-farm/in situ conservation and underutilized crops in the wake of climate change. Indian J Plant Genet Resour 23:145–156

    Google Scholar 

  • Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T et al (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci U S A 107:5792–5797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney MT, Thomson MJ, Pfeil BE, McCouch S (2006) Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 18:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadele Z (2018) African orphan crops under abiotic stresses: challenges and opportunities. Scientifica (Cairo) 2018:1–19. https://doi.org/10.1155/2018/1451894

    Article  CAS  Google Scholar 

  • Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A 105:4062–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D et al (2008) Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet 40:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Thies E (2000) Promising and underutilized species crops and breed. Eschborn, Germany. https://cgspace.cgiar.org/bitstream/handle/10568/3682/thies

    Google Scholar 

  • Thompson J, Hodgkin T, Atta-Krah K, Jarvis D, Hoogendoorn C, Padulosi S (2007) Biodiversity in agroecosystems. In: Scherr SJ, McNeely JA (eds) Farming with nature: the science and practice of ecoagriculture. Island Press, New York, pp 46–60

    Google Scholar 

  • Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci U S A 107:8563–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RJ, Banafar RNS (1995) Studies on the nutritive constituents, yield and yield attributing characters in some ber (Zizyphus jujuba) genotypes. Indian J Plant Physiol 38(1995):88–89

    Google Scholar 

  • Tiwari S, Kumar S (2013) Neglected oil crop biotechnology. In: Biotechnology of neglected and underutilized crops. Springer, Dordrecht, pp 117–171

    Chapter  Google Scholar 

  • Toda E et al (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5:363–368

    Article  CAS  PubMed  Google Scholar 

  • Triantaphylides C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci 14:219–228

    Article  CAS  PubMed  Google Scholar 

  • Uarrota VG, de Bairros A d FM, Gindri D, Leolato LS, de Andrade GC, Nerling D, Stefen D, Arijama M, Razão EH, Rocha M (2019) From neglected and underutilized crops to powerful sources of vitamin A: three case studies of Mozambican cultivated Tacca leontopetaloides, cowpea, and cassava. In: Zepka LQ, de Rosso VV, Jacob-Lopes E (eds) Vitamin A. IntechOpen. https://doi.org/10.5772/intechopen.84829. https://www.intechopen.com/books/vitamin-a/from-neglected-and-underutilized-crops-to-powerful-sources-of-vitamin-a-three-case-studies-of-mozamb

    Chapter  Google Scholar 

  • Uawonggul N, Chaveerach A, Thammasirirak S, Arkaravichien T, Chuachan C, Daduang S (2006) Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis. J Ethnopharmacol 103:201–207

    Article  PubMed  Google Scholar 

  • Ueta R, Abe C, Watanabe T, Sugano SS, Ishihara R, Ezura H et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:1–8. https://doi.org/10.1038/s41598-017-00501-4

    Article  CAS  Google Scholar 

  • UN (2008) Achieving sustainable development and promoting development cooperation, dialogues at the economic and social council. Department of Economic and Social Affairs Office for ECOSOC Support and Coordination, United Nations Publications, New York, p 295. ISBN: 978-92-1-104587-1

    Google Scholar 

  • van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour 8:1–15

    Article  Google Scholar 

  • Van Eck J (2018) Genome editing and plant transformation of solanaceous food crops. Curr Opin Biotechnol 49:35–41

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Nextgeneration sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DA, Balazs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100:893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verdcourt B (1970) Studies in the Leguminosae-Papilionoïdeae for the “Flora of tropical East Africa”: IV. Kew Bull 24:507–569

    Article  Google Scholar 

  • Vijaya Bhaskar AV, Nithya DJ, Raju S, Bhavani RV (2017) Establishing integrated agriculture-nutrition programmes to diversify household food and diets in rural India. Food Secur 9:981–999. https://doi.org/10.1007/s12571-017-0721-z

    Article  Google Scholar 

  • Virmani R, Virmani T, Singh C, Sorout G, Gupta J (2017) Hidden potential of natural herb Carissa carandas (Karonda). Res Pharm Health Sci 3:294–302

    Google Scholar 

  • Wang R-L, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection during maize domestication. Nature 398:236–239

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H et al (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S et al (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Weaver CM, Dwyer J, Fulgoni VL, King JC, Leveille GA, MacDonald RS, Ordovas J, Schnakenberg D (2014) Processed foods: contributions to nutrition. Am J Clin Nutri 99(6):1525–1542. https://doi.org/10.3945/ajcn.114.089284

    Article  CAS  Google Scholar 

  • Weinberger K (2003) Impact analysis of mungbean research in south and Southeast Asia. AVRDC—The World Vegetable Center, Tainan

    Google Scholar 

  • Weinberger K (2007) Are indigenous vegetables underutilized crops? Some evidence from Eastern Africa and Southeast Asia. Acta Hortic 2007(752):29–34

    Article  Google Scholar 

  • Williams JT, Haq N (2002) Global research on underutilized crops. An assessment of current activities and proposals for enhanced cooperation. ICUC, Southampton

    Google Scholar 

  • Woods D, Capcara J, Downey R (1991) The potential of mustard (Brassica juncea (L.) Coss) as an edible oil crop on the Canadian Prairies. Can J Plant Sci 71:195–198

    Article  Google Scholar 

  • Wu W, Yu Q, You L, Chen K, Tang H, Liu J (2018) Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76:515–525. https://doi.org/10.1016/j.landusepol.2018.02.032

    Article  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Xu C et al (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kashojiya S, Kamimura S, Kameyama T, Ariizumi T, Ezura H, Miura K (2018) Application and development of genome editing technologies to the Solanaceae plants. Plant Physiol Biochem 131:37–46

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang RY, Keding GB (2009) Nutritional contributions of important African indigenous vegetables. African indigenous vegetables in urban agriculture. Earthscan, London, pp 105–144

    Google Scholar 

  • Zhang F, Batley J (2020) Exploring the application of wild species for crop improvement in a changing climate. Curr Opin Plant Biol 56:218–222. https://doi.org/10.1016/j.pbi.2019.12.013

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Lu X, Yin Z, Wang D, Wang J, Fan W, Wang S, Zhang T, Ye W (2017) Genome-wide identification and structural analysis of pyrophosphatase gene family in cotton. Genomics Mol Genet Biotechnol 56(4):1831–1840

    Google Scholar 

  • Zhu BF, Si L, Wang Z, Zhou Y, Zhu J, Shangguan Y, Lu D, Fan D, Li C, Lin H et al (2011) Genetic control of a transition from black to straw-white seed hull in rice domestication. Plant Physiol 155:1301–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C et al (2018) Rewiring of the fruit metabolome in tomato breeding. Cell 172:249–261.e12

    Article  CAS  PubMed  Google Scholar 

  • Zsögön A, Cermak T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol. https://doi.org/10.1038/nbt.4272

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, A. et al. (2021). Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Changing Climate?. In: Zargar, S.M., Masi, A., Salgotra, R.K. (eds) Neglected and Underutilized Crops - Towards Nutritional Security and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-3876-3_1

Download citation

Publish with us

Policies and ethics