Skip to main content

Microbial Action on Degradation of Pesticides

  • Chapter
  • First Online:
Microbial Technology for Sustainable Environment

Abstract

The ultimate end fate of chemical pesticide degradations in the environment depends on microbial activity. The degradation of any biomaterial depends on the decomposers for their necessary recycling. So, in the same way, pesticide degradation is one of the major tasks to prevent their accumulation in the food chain known as bioaccumulation or may be somewhat disastrous known as biomagnification at each trophic level of the ecosystem. The extensive implication of pesticides globally causes a serious imbalance in the soil, air, and finally the potable water. Pesticide degradation does not only safe as after degradation the resultant products are more harmful and noxious. Instead, it forms a new chemical product that may be more or less toxic than the original chemical compound. Generally, they are broken into resultant smaller and smaller pieces until only the formation of carbon dioxide, water, and minerals is left. Microbes often play a large role in this process of harmful product formation. Some of the pesticides also cause restriction in the growth of algae via the release of various biochemicals that are important for the growth of algae known as an algal bloom. Worldwide, a large fraction of pests causes loss, damage to crops, and subsequently productivity. Pesticides have been used extensively from ancient times, but due to increased application up to date, their release by a various chemical processes in the environment causes serious ecological problems. Use of pesticides in an unregulated way causes adverse effect to humans, animals, and non-targeted plants. The non-biodegradable and recalcitrant pesticides persist in the environment and cause serious health hazards. Despite of their restriction and ban by the government, their continuous use is ever increasing. So, it is mandatory to restrict their use to reduce risk related to the environment as well as to humans and animals. It means the indiscriminate application of pesticides causes an adverse effect on different life forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Protect 2:432–448

    Article  CAS  Google Scholar 

  • Barbosa P, Fernanda P (2019) Int J Electrochem Sci 14:3418–3433

    Article  CAS  Google Scholar 

  • Bhandari G, Bhatt P (2020) Concepts and application of plant microbe interaction in remediation of heavy metals. In: Sharma A (ed) Microbes and signaling biomolecules against plant stress. Rhizosphere biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7094-0_4

    Chapter  Google Scholar 

  • Bhandari G, Bagheri AR, Bhatt P, Bilal M (2021) Occurrence, potential ecological risks, and degradation of endocrine disrupter, nonylphenol from the aqueous environment. Chemosphere 275:130013. https://doi.org/10.1016/j.chemosphere.2021.130013

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P (2018) In silico tools to study the bioremediation in microorganisms. In: Pathak V, Navneet (eds) Handbook of research on microbial tools for environmental waste management. IGI Global, Hershey, PA, pp 389–395. https://doi.org/10.4018/978-1-5225-3540-9.ch018

    Chapter  Google Scholar 

  • Bhatt P, Barh A (2018) Bioinformatic tools to study the soil microorganisms: an in silico approach for sustainable agriculture. In: Choudhary D, Kumar M, Prasad R, Kumar V (eds) In silico approach for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_10

    Chapter  Google Scholar 

  • Bhatt K, Bhatt P (2020) Rhizosphere biology: alternate tactics for enhancing sustainable agriculture. In: Phytomicrobiome interactions and sustainable agriculture. John Wiley & Sons, New York, NY. ISBN: 9781119644620

    Google Scholar 

  • Bhatt P, Nailwal TK (2018) Chapter: 11Crop improvement through microbial technology: a Step towards sustainable agriculture. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, Amsterdam, pp 245–253. https://doi.org/10.1016/B978-0-444-63987-5.00011-6

    Chapter  Google Scholar 

  • Bhatt P, Bisht TS, Pathak VM, Barh A, Chandra D (2015a) Optimization of amylase production from the fungal isolates of Himalayan region Uttarakhand. Ecol Environ Conserv 21(3):1517–1521

    Google Scholar 

  • Bhatt P, Negi G, Gangola S, Khati P, Srivastava A, Sharma A (2015b) Optimization of sulfosulfuron biodegradation through response surface methodology using indigenous bacterial strain isolated from contaminated agriculture field. Int J Curr Microbiol App Sci 4(8):105–112

    Google Scholar 

  • Bhatt P, Negi G, Gangola S, Khati P, Kumar G, Srivastava A, Sharma A (2016a) Differential expression and characterization of cypermethrin degrading potential proteins in Bacillus thuringiensis strain, SG4. 3 Biotech 6:225

    Google Scholar 

  • Bhatt P, Sharma A, Gangola S, Khati P, Kumar G, Srivastava A (2016b) Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech 6:45

    Google Scholar 

  • Bhatt P, Huang Y, Zhan H, Chen S (2019a) Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front Microbiol 10:1778

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt P, Pal K, Bhandari G, Barh A (2019b) Modeling of methyl halide biodegradation on bacteria and its effect on other environmental systems. Pestic Biochem Physiol 158:88–100

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G, Sharma A, Srivastava A (2019c) Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in Indigenous Bacillus spp. Bioremed J 23(1):42–52

    Article  CAS  Google Scholar 

  • Bhatt P, Joshi D, Kumar N, Kumar N (2019d) Recent trends to study the functional analysis of mycorrhizosphere. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore. https://doi.org/10.1007/978-981-13-6480-8_11

    Chapter  Google Scholar 

  • Bhatt P, Pathak VM, Joshi S, Bisht TS, Singh K, Chandra D (2019e) Chapter 12: Major metabolites after degradation of xenobiotics and enzymes involved in these pathways. In: Smart bioremediation technologies: microbial enzymes, pp 205–215. https://doi.org/10.1016/B978-0-12-818307-6.00012-3

    Chapter  Google Scholar 

  • Bhatt P, Rene ER, Kumar AJ, Kumar AJ, Zhang W, Chen S (2020a) Binding interaction of allethrin with esterase: bioremediation potential and mechanism. Bioresour Technol 315:13845. https://doi.org/10.1016/j.biortech.2020.123845

    Article  CAS  Google Scholar 

  • Bhatt P, Verma A, Verma S, Anwar MS, Prasher P, Mudila H, Chen S (2020b) Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability 12:5446

    Article  CAS  Google Scholar 

  • Bhatt P, Huang Y, Rene ER, Kumar AJ, Chen S (2020c) Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Bioresour Technol 305:123074

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Zhang W, Lin Z, Pang S, Huang Y, Chen S (2020d) Biodegradation of allethrin by a novel fungus Fusarium proliferatum strain CF2, Isolated from Contaminated. Soils. Microorganisms 8:593

    Article  CAS  Google Scholar 

  • Bhatt P, Huang Y, Zhang W, Sharma A, Chen S (2020e) Enhanced cypermethrin degradation kinetics and metabolic pathway in Bacillus thuringiensis strain, SG4. Microorganisms 8:223

    Article  CAS  PubMed Central  Google Scholar 

  • Bhatt P, Bhatt K, Huang Y, Ziqiu L, Chen S (2020f) Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere 244:125507

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Zhou X, Huang Y, Zhang W, Chen S (2021a) Characterization of the role of esterases in the biodegradation of organophosphate, carbamate and pyrethroid group pesticides. J Hazard Mater 411:125026

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Joshi T, Bhatt K, Zhang W, Huang Y, Chen S (2021b) Binding interaction of glyphosate oxidoreductase and C-P lyase: molecular docking and molecular dynamics simulation studies. J Hazard Mater 409:124927

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Bhatt K, Sharma A, Zhang W, Mishra S, Chen S (2021c) Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit Rev Biotechnol 41:317. https://doi.org/10.1080/07388551.2020.1853032

    Article  PubMed  Google Scholar 

  • Bhatt P, Sethi K, Gangola S, Bhandari G, Verma A, Adnan M, Singh Y, Chaube S (2021d) Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1846623

  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S (2021e) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827. https://doi.org/10.1016/j.chemosphere.2020.128827

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Sharma A, Rene ER, Kumar AJ, Zhang W, Chen S (2021f) Bioremediation mechanism, kinetics of fipronil degradation using Bacillus sp. FA3 and resource recovery potential from contaminated environments. J Water Process Eng 39:101712

    Article  Google Scholar 

  • Bourquin AW (1977) Degradation of malathion by salt-marsh microorganisms. Appl Environ Microbiol 33:356–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro CE, Wade RS, Balser NO (1985) Bio-dehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry 24:204–210

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Ye T, Li Q, Bhatt P, Zhang L, Chen S (2020) Potential of a quorum quenching bacteria isolate Ochrobactrum intermedium D-2 against soft rot pathogen Pectobacterium carotovorum subsp. Carotovora. Front Microbiol 11:898

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Huang Y, Zhan H, Bhatt P, Chen S (2020) An overview of strobilurin fungicide degradation: current status and future perspective. Front Microbiol 11:389

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangola S, Bhatt P, Chaudhary P, Khati P, Kumar N, Sharma A (2018a) Bioremediation of industrial waste using microbial metabolic diversity. In: Pankaj, Sharma A (eds) Microbial biotechnology in environmental monitoring and cleanup. IGI Global, Hershey, PA, pp 1–27. https://doi.org/10.4018/978-1-5225-3126-5.ch001

    Chapter  Google Scholar 

  • Gangola S, Sharma A, Bhatt P, Khati P, Chaudhary P (2018b) Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci Rep 8:12755. https://doi.org/10.1038/s41598-018-31082-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Bhatt P, Chaturvedi P (2018) Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World J Microbiol Biotechnol 34:111

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zhan H, Bhatt P, Chen S (2019) Paraquat degradation from contaminated environments: current achievements and perspectives. Front Microbiol 10:1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Lin Z, Zhang W, Pang S, Bhatt P, Rene ER, Kumar AJ, Chen S (2020) New insights into the microbial degradation of D-cyphenothrin in contaminated water/soil environments. Microorganisms 8:473

    Article  CAS  PubMed Central  Google Scholar 

  • Huang Y, Zhang W, Pang S, Chen J, Bhatt P, Mishra S, Chen S (2021) Insights into the microbial degradation and catalytic mechanism of chlorpyrifos. Environ Res 194:110660

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Kha-lid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Khati P, Sharma A, Gangola S, Kumar R, Bhatt P, Kumar G (2017a) Impact of agriusable nanocompounds on soil microbial activity: an indicator of soil health. Soil, Air, Water 45(5):1600458

    Article  CAS  Google Scholar 

  • Khati P, Parul, Gangola S, Bhatt P, Sharma A (2017b) Nanochitosan induced growth of Zea Mays with soil health maintenance. 3 Biotech 7(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  • Khati P, Gangola S, Bhatt P, Kumar R, Sharma A (2018a) Application of nanocompounds for sustainable agriculture system. In: Pankaj, Sharma A (eds) Microbial biotechnology in environmental monitoring and cleanup. IGI Global, Hershey, PA, pp 194–211. https://doi.org/10.4018/978-1-5225-3126-5.ch012

    Chapter  Google Scholar 

  • Khati P, Parul, Bhatt P, Nisha Kumar R, Sharma A (2018b) Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3 Biotech 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar G, Arya K, Verma A, Pankaj, Khati P, Gangola S, Kumar R, Sharma A, Singh H (2017) Bioremediation of petrol engine oil polluted soil using microbial consortium and wheat crop. J Pure Appl Microbiol 11(3):1583–1588

    Article  CAS  Google Scholar 

  • Lin Z, Zhang W, Pang S, Huang Y, Mishra S, Bhatt P, Chen S (2020) Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. Molecules 25:738

    Article  CAS  PubMed Central  Google Scholar 

  • Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S (2020) Carbofuran toxicity and its microbial degradation in contaminated environments. Chemosphere 259:127429

    Article  CAS  Google Scholar 

  • Nadeau LJ, Fu-Min M, Breen A (1994) Sayler GS Aerobic degradation of (1,1,1 trichloro-2,2-bis (4-chlorophenyl) ethane) DDT by Alcaligenes eutrophus A5. Appl Environ Microbiol 60:51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang S, Lin Z, Zhang W, Mishra S, Bhatt P, Chen S (2020) Insights into the microbial degradation and biochemical mechanisms of neonicotinoids. Front Microbiol 11:868

    Article  PubMed  PubMed Central  Google Scholar 

  • Parekh NR, Hartmann A, Charnay MP, Fournier JC (1995) Diversity of carbofuran-degrading soil bacteria and detection of plasmid-encoded sequences homologous to the mcd gene. FEMS Microbiol Ecol 17:149–160

    Article  CAS  Google Scholar 

  • Parte GS et al (2017) Microbial degradation of pesticide: a review. Afr J Microbiol Res 11(24):992–1001

    Article  CAS  Google Scholar 

  • Pizzul L, Castillo MP, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20:751–759

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Bhatt P (2016) Chapter 3: Bioremediation: a microbial technology for improvising wildlife. In: Wildlife management concept analysis and conservation, pp 29–40

    Google Scholar 

  • Sharma A, Pankaj, Khati P, Gangola S, Kumar G (2016) Chapter 6: Microbial degradation of pesticides for environmental cleanup. In: Bioremediation of industrial pollutants. Write and Print Publication, New Delhi, pp 178–205

    Google Scholar 

  • Singh K, Gera R, Sharma R, Maithani D, Chandra D, Bhat AM, Kumar R, Bhatt P (2021) Mechanism and application of Sesbania root nodulating bacteria: an alternative for chemical fertilizers and sustainable development. Arch Microbiol 203:1259. https://doi.org/10.1007/s00203-020-02137-x

    Article  CAS  PubMed  Google Scholar 

  • Sulbhi V, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Techn Environ Policy. https://doi.org/10.1007/s10098-021-02029-8

  • Torres RD (2003) El papel de los microorganismo en la biodegradación de compuestos tóxicos. Ecosistemas 2:1–5

    Google Scholar 

  • Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Vischetti C, Monaci E, Cardinali A, Casucci C, Perucci P (2008) The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere 72:1739–1743

    Article  CAS  PubMed  Google Scholar 

  • Ye T, Zhou T, Fan X, Bhatt P, Zhang L, Chen S (2019) Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. Campestris. Front Microbiol 10:2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan H, Huang Y, Lin Z, Bhatt P, Chen S (2020) New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ Res 182:109138

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Pang S, Lin Z, Mishra S, Bhatt P, Chen S (2020a) Biotransformation of perfluoroalkyl acid precursors from various environmental system: advances and perspectives. Environ Pollut 272:115908

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Lin Z, Pang S, Bhatt P, Chen S (2020b) Insights into the biodegradation of lindane (γ-Hexachlorocyclohexane) using a microbial system. Front Microbiol 11:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gariya, H.S., Bhatt, A. (2021). Microbial Action on Degradation of Pesticides. In: Bhatt, P., Gangola, S., Udayanga, D., Kumar, G. (eds) Microbial Technology for Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-3840-4_8

Download citation

Publish with us

Policies and ethics