Skip to main content

Extremophiles in Saline Environment: Potential for Sustainable Agriculture

  • Chapter
  • First Online:
Microbial Communities and their Interactions in the Extreme Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 32))

  • 646 Accesses

Abstract

Soil salinity is a major issue world-wide degrading agriculture lands and disturbing soil biological process. Exerting adverse effects on seed germination, root system, nutrient acquisition plant physiology leads to drastic reduction in plant growth and soil productivity. The adverse effects of salt stress on soil microbial activity, diversity, and numbers have been studied extensively. The understanding of the adaptive properties of soil microbes makes it possible to use them in restoring abandoned salt affected lands. The salt-tolerant microorganisms are essential components of carbon, nitrogen and phosphorus cycling. Soil microbes are known to play important role in soil biochemical processes, nutrient cycling through their ability to fix atmospheric nitrogen, solubilize phosphate, or by enhancing decomposition of plant residues. Over the past decades, plant associated microorganisms have been utilized to enhance plant growth and resistance to versatile abiotic stresses such as drought, salinity and temperature maintaining agricultural productivity under abiotic stresses. These stress tolerant microbes have a great biotechnological potential to improve soil productivity and plant health of saline soils under arid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah AS, Moffat CS, Lopez-Ruiz FJ et al (2017) Host–multi–pathogen warfare: pathogen interactions in coinfected plants. Front Plant Sci 8:1–12

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microb Res 163:173–181

    Article  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Ahanger MA et al (2018) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NACL toxicity. Russ J Plant Physiol 65(1):104–114

    Article  CAS  Google Scholar 

  • Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Müller R, Moelbak L, Liu F, Roitsch T (2020) Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front Plant Sci 11:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Akram NA, Shafiq F, Ashraf M et al (2020) Advances in salt tolerance of some major fiber crops through classical and advanced biotechnological tools: a review. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10158-5

  • Amna XY, Farooq MA, Javed NT (2020) Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem 151:640–649

    Article  CAS  PubMed  Google Scholar 

  • Ansari M, Shekari F, Mohammadi MH et al (2019) Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol Plant 41:1–13

    Article  CAS  Google Scholar 

  • Arora NK, Fatima T, Mishra J et al (2020) Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J Adv Res. https://doi.org/10.1016/j.jare.2020.07.003

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheatseedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40(3):157–162

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran GJ et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Batool R, Rehman SU, Rafique M et al (2019) Biocontrol potential of Bacillus gibsonii and Brevibacterium frigoritolerans in suppression of Fusarium stalk rot of maize: a sustainable approach. Asian J Agric Biol 7:320–333

    Google Scholar 

  • Berg G, Alavi M, Schmidt CS et al (2013) Biocontrol and osmoprotection for plants under salinated conditions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  • Canfora L, Bacci G, Pinzari F et al (2014) Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 9(9):e106662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G (2015) Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ Microbiol 7(1):239–252

    Article  CAS  Google Scholar 

  • Castro D, Torres M, Sampedro I et al (2020) Biological control of Verticillium wilt on olive trees by the salt-tolerant strain Bacillus velezensis XT1. Microorganisms 8:1080

    Article  CAS  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress. Regulation mechanisms from whole plant to cell. Ann Bot 103(2009):551–560. https://doi.org/10.1093/aob/mcn125

    Article  CAS  PubMed  Google Scholar 

  • Chen XY, Zhang YY, Fu XC, Li Y, Wang Q (2016) Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol Technol 115:113–121

    Article  CAS  Google Scholar 

  • Cho ST, Chang HH, Egamberdieva D et al (2015) Genome analysis of Pseudomonas fluorescens PCL1751: a rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS One. https://doi.org/10.1371/journal.pone.0140231

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. J Plant Growth Regul 35(1):276–300

    Article  CAS  Google Scholar 

  • Danish S, Zafar-ul-Hye M, Mohsin F, Hussain M (2020) ACC-deaminase producing plant growth promoting rhizobacteria and biochar mitigate adverse effects of drought stress on maize growth. PLoS ONE 15(4):e0230615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deketelaere S, Tyvaert L, França SC et al (2017) Desirable traits of a good biocontrol agent against Verticillium wilt. Front Microbiol 8:1–23

    Article  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D (2012a) Pseudomonas chlororaphis: a salt tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiol Plant 34:751–756

    Article  CAS  Google Scholar 

  • Egamberdieva D (2012b) Colonisation of Mycobacterium phlei in the rhizosphere of wheat grown under saline condition. Turk J Biol 36:487–492

    Google Scholar 

  • Egamberdieva D, Renella G, Wirth S, Islam R (2010) Secondary salinity effects on soil microbial biomass. Biol Fertil Soils 46(5):445–449

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K et al (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root colonising Pseudomonas. Plant Soil 369(1):453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Wirth S, Shurigin V et al (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 28(8):1887

    Article  Google Scholar 

  • Egamberdieva D, Wirth S, Dorothea Bellingrath-Kimura S et al (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:1–18

    Article  Google Scholar 

  • Egamberdiyeva D (2005) Characterization of Pseudomonas species isolated from the rhizosphere of plants grown in serozem soil, semi arid region of Uzbekistan. Sci World J 5:501–509

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003a) Influence of growth promoting bacteria on the growth of wheat at different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Höflich G (2003b) The effect of associative bacteria from different climates on plant growth of pea at different soils and temperatures. Arch Agron Soil Sci 49(2):203–213

    Article  Google Scholar 

  • Egamberdiyeva D, Mamiev M, Poberejskaya S (2001) The influence of mineral fertilizer combined with a nitrification inhibitor on microbial populations and activities in calcareous Uzbekistanian soil under cotton cultivation. Sci World J 1(S2):108–113

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Qarshieva D, Davranov K (2004) Growth and yield of soybean inoculated with Bradyrhizobium spp in calcareous soil. Biol Fertil Soils 4:144–146

    Article  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress related genes expression. Environ Exp Bot 159:55–65

    Article  CAS  Google Scholar 

  • Etesami H (2018) Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agric Ecosyst Environ 253:98–112

    Article  CAS  Google Scholar 

  • Fatima T, Mishra I, Verma R, Arora NK (2020) Mechanisms of halotolerant plant growth promoting Alcaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech 10:361

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia MM, Pereira LC, Braccini AL et al (2017) Effects of Azospirillum brasilense on growth and yield compounds of maize grown at nitrogen limiting conditions. Rev Ciênc Agrár 40(2):353–362

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Torres MS, Bergen MS et al (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. https://doi.org/10.1038/nrmicro1129

    Article  CAS  PubMed  Google Scholar 

  • Hahm MS, Son JS, Hwang YJ, Kwon DK, Ghim SY (2017) Alleviation of salt stress in pepper (Capsicum annum L.) plants by plant growth-promoting rhizobacteria. J Microbiol Biotechnol 27(10):1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Haidar R, Fermaud M, Calvo-garrido C et al (2016) Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol Mediterr 55:301–322

    CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi A et al (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Plant Sci 7:1089

    Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Hidri R, Barea JM, Mahmoud OM, Abdelly C, Azcón R (2016) Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41

    Article  CAS  PubMed  Google Scholar 

  • Irwin JA (2010) Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol 39:99–1014

    Google Scholar 

  • Islam F, Yasmeen T, Arif MS et al (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jiang H, Li W, Birkeland NK, Egamberdieva D (2019) Thermophilic and halophilic extremophiles in Eurasian environments. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00379

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kamran M, Parveen A, Ahmar S et al (2019) An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int J Mol Sci 21:1–27

    Article  CAS  Google Scholar 

  • Kang SM, Shahzad R, Bilal S et al (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Gupta MK, Kumar N et al (2017) Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere 4:62–69

    Article  Google Scholar 

  • Kaymakanova M (2009) Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotech Biotechnol Equip 23(1):326–329

    Article  Google Scholar 

  • Khan AL, Hamayun M, Kim YH et al (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan MA, Asaf S, Khan AL et al (2019) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. Biomed Res Int 2019:1–15

    Google Scholar 

  • Kim M, Radhakrishnan R, Kang S et al (2017) Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity. Physiol Mol Biol Plants 23:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R et al (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Latef AAH, Hashem A, Rasool S et al (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Biol 59:407–426

    Article  CAS  Google Scholar 

  • Li Y, Li X, Liu Y, Wang ET et al (2016) Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline–alkaline soils. Syst Appl Microbiol 39(3):195–202

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lei P, Pang X et al (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  • Li-Hua C, Jin-Hai Z, Xiao-Hou S et al (2016) Effects of Trichoderma harzianum T83 on Suaeda salsa L. in coastal saline soil. Ecol Eng 91:58–64

    Article  Google Scholar 

  • Lijuan C, Changsheng L, Qi F et al (2017) Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. Sci Total Environ 598:64–70

    Article  CAS  Google Scholar 

  • Litalien A, Zeeb B (2020) Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ 698:1–15

    Article  CAS  Google Scholar 

  • Liu YH, Guo JW, Li L et al (2017) Endophytic bacteria associated with endangered plant Ferula sinkiangensis KM Shen in an arid land: diversity and plant growth-promoting traits. J Arid Land 9(3):432–445

    Article  Google Scholar 

  • Liu Y, Mohamad OAA, Salam N et al (2019) Diversity, community distribution and growth promotion activities of endophytes associated with halophyte Lycium ruthenicum Murr. Biotech 9:144

    Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomanas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Bruijn FJ (ed) Mol microb ecol rhizosphere. John Wiley & Sons, New York, pp 559–573

    Chapter  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth management practices to prevent and mitigate soil salinization. Horticulturae 3:1–13

    Article  Google Scholar 

  • Marasco R, Rolli E, Vigani G et al (2013) Are drought-resistance promoting bacteria cross compatible with different plant models? Plant Signal Behav 8:e26741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: theomics strategies. Front Plant Sci 8:172. https://doi.org/10.3389/fpls.2017.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Merino N, Aronson HS, Bojanova DP et al (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780. https://doi.org/10.3389/fmicb.2019.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra BK, Meena KK, Dubey PN et al (2016) Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacteria isolates. Ecol Eng 97:327–333

    Article  Google Scholar 

  • Mwando E, Angessa TT, Han Y et al (2020) Salinity tolerance in barley during germination—homologs and potential genes. Biomed Biotechnol 21:93–121

    CAS  Google Scholar 

  • Naseem H, Ahsan M, Shahid MA, Khan N (2018) Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol 58(12):1009–1022

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in the rhizosphere microbial community 482 structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    Article  CAS  Google Scholar 

  • Pahari A, Dangar TK, Mishra B (2016) Siderophore quantification of bacteria from sundarban and its effect on growt of brinjal (Solanum Melongena L.). Bioscan 11(4):2147–2151

    CAS  Google Scholar 

  • Panosyan H, Hakobyan A, Birkeland NK, Trchounian A (2018) Bacilli community of saline-alkaline soils from the Ararat Plain (Armenia) assessed by molecular and culture-based methods. Syst Appl Microbiol 41(3):232–240

    Article  PubMed  Google Scholar 

  • Piccoli P, Travaglia C, Cohen A, Sosa L, Cornejo P, Masuelli R, Bottini R (2011) An endophytic bacterium isolated from roots of the halophyte Prosopis strombulifera produces ABA, IAA, gibberellins A1 and A3 and jasmonic acid in chemically-defined culture medium. Plant Growth Regul 64:207–210

    Article  CAS  Google Scholar 

  • Pitman MG, Lauchli A (2002) Global impact of salinity and agriculture ecosystems. In: Lauchi A, Luttge U (eds) Salinity: environment-plants-molecules. Springer, Dordrecht, pp 3–20

    Google Scholar 

  • Qessaoui R, Bouharroud R, Furze JN et al (2019) Applications of New Rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci Rep 9:12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput L, Imran A, Mubeen F et al (2013) Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45:1955–1962

    Google Scholar 

  • Salwan R, Sharma A, Sharma V (2019) Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil 442:1–22

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M et al (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62(1):21–30

    Article  CAS  Google Scholar 

  • Saralov AI (2019) Adaptively of archaeal and bacterial extremophiles. Microbiology 88:379–401

    Article  CAS  Google Scholar 

  • Sarkar A, Ghosh PK, Pramanik K et al (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Microbiol Res 169:20–32

    Article  CAS  Google Scholar 

  • Sarwar S, Khaliq A, Yousra M et al (2020) Screening of siderophore-producing PGPRs isolated from groundnut (Arachis hypogaea L.) rhizosphere and their influence on iron release in soil. Com Soil Sci Plant Anal 51:1680–1692

    Article  CAS  Google Scholar 

  • Schmidt R, Cordovez V, de Boer W, Raaijmakers J, Garbeva P (2015) Volatile affairs in microbial interactions. ISME J 9(11):2329–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah G, Jan M, Afreen M, Anees M, Rehman S, Daud MK, Malook I, Jamil M (2017) Halophilic bacteria mediated phytoremediation of salt-affected soils cultivated with rice. J Geochem Explor 174:59–65

    Article  CAS  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Asaf S, Khan MA, Kang SM et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Shurigin V, Egamberdieva D, Li L et al (2019) Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb. ex Boiss. – diversity and plant beneficial traits. J Arid Land. https://doi.org/10.1007/s40333-020-0019-4

  • Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS One 11:e0155026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh DP, Singh V, Gupta VK et al (2020) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 10:4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882

    Article  CAS  PubMed  Google Scholar 

  • Tanveer M, Shah AN (2017) An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pol 24:16531–16535

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484

    Article  CAS  PubMed  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68(1–3):99–108

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sustain 1:49–59

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Verma M, Singh A, Dwivedi H, Arora NKA (2020) Zinc and phosphate solubilizing Rhizobium radiobacter (LB2) for enhancing quality and yield of loose leaf lettuce in saline soil. Environ Sustain 3:209–218

    Article  CAS  Google Scholar 

  • Wang W, Wu Z, He Y, Huang Y, Li X (2018) Plant growth promotion and alleviation of salinity stress in Capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang. Ecotox Environ Safe 164:520–529

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Khare T et al (2020) Engineering salinity tolerance in plants: progress and prospects. Planta 251:1–29

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Hu J, Long X, Liu Z, Rengel Z (2016) Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep 6:20687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphereroot–soil–microbe interactions for crop production. Curr Opin Microbiol 37:8–14

    Article  PubMed  Google Scholar 

  • Zhang K, Shi Y, Cui X et al (2019) Salinity is a key determinant for soil microbial communities in a desert ecosystem. Ecol Evol Sci 4:e00225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Egamberdieva, D., Alimov, J., Alaylar, B., Karadayi, M., Arora, N.K. (2021). Extremophiles in Saline Environment: Potential for Sustainable Agriculture. In: Egamberdieva, D., Birkeland, NK., Li, WJ., Panosyan, H. (eds) Microbial Communities and their Interactions in the Extreme Environment. Microorganisms for Sustainability, vol 32. Springer, Singapore. https://doi.org/10.1007/978-981-16-3731-5_1

Download citation

Publish with us

Policies and ethics