Skip to main content

Advanced Oxidation Processes for Dye Removal

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

Textile wastewater is known for its high complexity and intense colour. Surface water bodies in developing countries like India are highly contaminated by the direct release of textile effluents. Due to the increase in water scarcity, the reuse of treated wastewater is mandatory in many countries, for high water use industries like textile industry. Dyes are the colour-causing compounds, which are inarguably considered as major pollutants in textile effluents, along with high COD, BOD, TOC and dissolved solids. Dyes are highly soluble in water and the presence of even 1 mg/L of dye concentration makes water unfit for reuse. The discharge of these dyes into the ecosystem is a serious problem as they are chemically and photolytically stable. It is medically proven that the existence of dyes even in smaller amounts is of major as they have carcinogenic, mutagenic and toxicity properties. Generally, dyes are not degradable under aerobic conditions or conventional biological processes. Physico-chemical technologies are ineffective for the mineralization of dyes. The advanced oxidation processes (AOPs) are considered as the effective technology to achieve the complete mineralization of complex structured textile dyes. This chapter discusses the various AOPs for the treatment of aqueous medium textile dyes and critically reviews their advantages, disadvantages and application in large-scale systems. The important operational and environmental parameters that affect the degradation efficiency of dyes by various AOPs are reviewed. The effectiveness of various PPT reactor configurations is also discussed. Various hybrid treatment systems employed for the reduction of various dyes from textile effluents are discussed. A detailed discussion of a novel hybrid treatment system incorporating Electrocoagulation–flotation (EC-F) with pulsed power plasma technology (PPT) for the degradation of anionic and cationic dyes is discussed. Also, hybrid EC-F and PPT systems were compared with other hybrid technologies for the degradation of dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi AR, Karimi M, Daasbjerg K (2017) Efficient removal of crystal violet and methylene blue from wastewater by ultrasound nanoparticles Cu-MOF in comparison with mechanosynthesis method. Ultrason Sonochem 37:182–191. https://doi.org/10.1016/j.ultsonch.2017.01.007

    Article  CAS  Google Scholar 

  2. Abdelrahman EA, Hegazey RM, El-Azabawy RE (2019) Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents. J Mater Res Technol 8:5301–5313. https://doi.org/10.1016/j.jmrt.2019.08.051

    Article  CAS  Google Scholar 

  3. Abdi G, Alizadeh A, Zinadini S, Moradi G (2018) Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J Memb Sci 552:326–335. https://doi.org/10.1016/j.memsci.2018.02.018

    Article  CAS  Google Scholar 

  4. Abu Ghalwa NM, Saqer AM (2015) Removal of Reactive Red 24 dye by clean electrocoagulation process using iron and aluminum electrodes. J Chem Eng Process Technol 07. https://doi.org/10.4172/2157-7048.1000269

  5. Adeyemo AA, Adeoye IO, Bello OS (2017) Adsorption of dyes using different types of clay: a review. Appl Water Sci 7:543–568. https://doi.org/10.1007/s13201-015-0322-y

    Article  CAS  Google Scholar 

  6. Aenor, ISO 14040:2006: Environmental management–...-Google Scholar [WWW Document], 2006. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AENOR%2C+ISO+14040%3A2006%3A+Environmental+management+−+Life+cycle+assessment+−+Principles+and+framework%2C+2006.&btnG=. Accessed 12 Jun 2020

    Google Scholar 

  7. Ahangarnokolaei MA, Ganjidoust H, Ayati B (2018) Optimization of parameters of electrocoagulation/ flotation process for removal of Acid Red 14 with mesh stainless steel electrodes. https://doi.org/10.2166/wrd.2017.091

  8. Ahmed AS, Ahamad T, Ahmad N, Khan MZ (2019) Removal enhancement of acid navy blue dye by GO-TiO2 nanocomposites synthesized using sonication method. Mater Chem Phys 238:121906. https://doi.org/10.1016/j.matchemphys.2019.121906

  9. Aichouni M, Touahmia M, Ghernaout D (2019) Mechanistic Insight into disinfection by electrocoagulation-a review. https://doi.org/10.5004/dwt.2019.23457

  10. Ajmal A, Majeed I, Malik RN, Iqbal M, Nadeem MA, Hussain I, Yousuf S, Zeshan, Mustafa G, Zafar MI, Nadeem MA (2016) Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders. J Environ Chem Eng 4:2138–2146. https://doi.org/10.1016/j.jece.2016.03.041

  11. Al-Mamun MR, Kader S, Islam MS, Khan MZH (2019) Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103248

  12. Al-Qodah Z, Al-Shannag M, Bani-Melhem K, Assirey E, Yahya MA, Al-Shawabkeh A (2018) Free radical-assisted electrocoagulation processes for wastewater treatment. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0711-1

  13. Alimohammadi M, Askari M, Dehghani MH, Dalvand A, Saeedi R, Yetilmezsoy K, Heibati B, McKay G (2017) Elimination of natural organic matter by electrocoagulation using bipolar and monopolar arrangements of iron and aluminum electrodes. Int J Environ Sci Technol 14:2125–2134. https://doi.org/10.1007/s13762-017-1402-3

    Article  CAS  Google Scholar 

  14. Alvarez RJ, Senff CJ, Langford AO, Weickmann AM, Law DC, Machol JL, ..., Banta RM (2011) Development and application of a compact, tunable, solid-state airborne ozone lidar system for boundary layer profiling. J Atmos Ocean Technol 28(10):1258–1272

    Google Scholar 

  15. Alvarez MD, Buscio V, López-Grimau V, Gutiérrez-Bouzán C (2020) LCA study of a new electrochemical and ultraviolet (EC-UV) combined system to decolourise and reuse textile saline effluents: Environmental evaluation and proposal to improve the production process. Chem Eng J 392. https://doi.org/10.1016/j.cej.2019.123696

  16. Amodu OS, Ojumu TV, Ntwampe SK, Ayanda OS (2015) Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J Encapsulation Adsorpt. Sci. 05:191–203. https://doi.org/10.4236/jeas.2015.54016

    Article  CAS  Google Scholar 

  17. An A, Guo J, Lee E, Jeong S, Zhao Y, Wang Z, Leiknes T (2017, undefined, n.d.) PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane. Elsevier

    Google Scholar 

  18. An Y, Zheng H, Yu Z, Sun Y, Wang Y, Zhao C, Ding W (2020) Functioned hollow glass microsphere as a self-floating adsorbent: rapid and high-efficient removal of anionic dye. J Hazard Mater 381:120971. https://doi.org/10.1016/j.jhazmat.2019.120971

  19. Anandan S, Lee GJ, Chen PK, Fan C, Wu JJ (2010) Removal of orange II dye in water by visible light assisted photocatalytic ozonation using Bi3O3 and Au/Bi2O3 nanorods. Industrial Eng Chem Res 49(20):9729–9737

    Google Scholar 

  20. Antonio M, Morales G (n.d.) Universidad Autónoma Del Estado De México Facultad De Química Evaluación De Tratamientos Terciarios Para La Reutilización De Agua Proveniente De Efluentes Industriales

    Google Scholar 

  21. Anwar F, Hussain S, Ramzan S, Hafeez F, Arshad M, Imran M, Maqbool Z, Abbas N, Anwar F, Hussain S, Maqbool Z, Abbas N, Ramzan S, Hafeez F, Arshad M (2014) Characterization of Reactive Red-120 decolorizing bacterial strain acinetobacter junii fa10 capable of simultaneous removal of azo dyes and hexavalent chromium. Water Air Soil Pollut 225:2017. https://doi.org/10.1007/s11270-014-2017-7

    Article  CAS  Google Scholar 

  22. Asif Tahir M, Bhatti HN, Iqbal M (2016) Solar Red and Brittle Blue direct dyes adsorption onto Eucalyptus angophoroides bark: Equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng 4:2431–2439. https://doi.org/10.1016/j.jece.2016.04.020

    Article  CAS  Google Scholar 

  23. Atrous M, Sellaoui L, Bouzid M, Lima EC, Thue PS, Bonilla-Petriciolet A, Ben Lamine A (2019) Adsorption of dyes acid red 1 and acid green 25 on grafted clay: modeling and statistical physics interpretation. J Mol Liq 294. https://doi.org/10.1016/j.molliq.2019.111610

  24. Azarian G, Nematollahi D, Reza Rahmani A, Godini K, Bazdar M, Zolghadrnasab H (2014) Monopolar electro-coagulation process for azo dye C.I. Acid Red 18 removal from aqueous solutions. ajehe.umsha.ac.ir 1:354. https://doi.org/10.5812/ajehe.354

  25. Bae JS, Freeman HS (2007) Aquatic toxicity evaluation of copper-complexed direct dyes to the Daphnia magna. Dye Pigment 73:126–132. https://doi.org/10.1016/j.dyepig.2005.10.019

    Article  CAS  Google Scholar 

  26. Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl Catal B Environ 134–135:93–102. https://doi.org/10.1016/j.apcatb.2012.12.031

    Article  CAS  Google Scholar 

  27. Bahadur N, Bhargava N (2019) Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. J Water Process Eng 32. https://doi.org/10.1016/j.jwpe.2019.100934

  28. Basturk E, Karatas M (2015) Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. J Photochem Photobiol A Chem 299:67–72. https://doi.org/10.1016/j.jphotochem.2014.11.003

    Article  CAS  Google Scholar 

  29. Bazin I, Ibn Hadj Hassine A, Haj Hamouda Y, Mnif W, Bartegi A, Lopez-Ferber M, De Waard M, Gonzalez C (2012) Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol Environ Saf 85:131–136. https://doi.org/10.1016/j.ecoenv.2012.08.003

  30. Behin J, Farhadian N, Ahmadi M, Parvizi M (2015) Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: application to decolorization of acid dye. J. Water Process Eng. 8:171–178. https://doi.org/10.1016/j.jwpe.2015.10.003

    Article  Google Scholar 

  31. Belalcázar-Saldarriaga A, Prato-Garcia D, Vasquez-Medrano R (2018) Photo-Fenton processes in raceway reactors: technical, economic, and environmental implications during treatment of colored wastewaters. J Clean Prod 182:818–829. https://doi.org/10.1016/j.jclepro.2018.02.058

  32. Beltrán FJ, Aguinaco A, Rey A, García-Araya JF (2012) Kinetic studies on black light photocatalytic ozonation of diclofenac and sulfamethoxazole in water. Ind Eng Chem Res 51:4533–4544. https://doi.org/10.1021/ie202525f

  33. Beltrán FJ, Rivas FJ, Gimeno O, Carbajo M (2005) Photocatalytic enhanced oxidation of fluorene in water with ozone. Comparison with other chemical oxidation methods. Ind Eng Chem Res 44:3419–3425. https://doi.org/10.1021/ie048800w

  34. Beluci de NCL, Mateus GAP, Miyashiro CS, Homem NC, Gomes RG, Fagundes-Klen MR, Bergamasco R, Vieira AMS (2019) Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO 2-modified membranes to improve the removal of reactive black 5 dye. Sci Total Environ 664:222–229. https://doi.org/10.1016/j.scitotenv.2019.01.199

  35. Benitez FJ, Acero JL, Real FJ, Rubio FJ, Leal AI (2001) The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions. Water Res 35:1338–1343. https://doi.org/10.1016/S0043-1354(00)00364-X

    Article  CAS  Google Scholar 

  36. Benkhaya S, Achiou B, Ouammou M, Bennazha J, Alami Younssi S, M’rabet S, El Harfi A (2019) Preparation of low-cost composite membrane made of polysulfone/polyetherimide ultrafiltration layer and ceramic pozzolan support for dyes removal. Mater Today Commun 19:212–219. https://doi.org/10.1016/j.mtcomm.2019.02.002

  37. Bermúdez YH, Truffault L, Pulcinelli SH, Santilli CV (2018) Sodium montmorillonite/ureasil-poly(oxyethylene) nanocomposite as potential adsorbent of cationic dye. Appl Clay Sci 152:158–165. https://doi.org/10.1016/j.clay.2017.11.009

    Article  CAS  Google Scholar 

  38. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Critical reviews in environmental science and technology biological methods for textile dye removal from wastewater: a review biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  39. Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. https://doi.org/10.1016/j.cej.2014.08.030

    Article  CAS  Google Scholar 

  40. Bilińska L, Blus K, Gmurek M, Ledakowicz S (2019) Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem Eng J 358:992–1001. https://doi.org/10.1016/j.cej.2018.10.093

  41. Bokare AD, Choi W (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2014.04.054

  42. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2014.11.016

  43. Bustillo-Lecompte CF, Knight M, Mehrvar M (2015) Assessing the performance of uv/H2 O2 as a pretreatment process in TOC removal of an actual petroleum refinery wastewater and its inhibitory effects on activated sludge. Can J Chem Eng 93:798–807. https://doi.org/10.1002/cjce.22180

  44. Buthiyappan A, Abdul Aziz AR, Wan Daud WMA (2016) Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev Chem Eng 32:1–47. https://doi.org/10.1515/revce-2015-0034

    Article  CAS  Google Scholar 

  45. Cai Y, Luo Y, Sun BC, Fan TX, Chu GW, Chen JF (2019) A novel plasma-assisted rotating disk reactor: enhancement of degradation efficiency of rhodamine B. Chem Eng J 377. https://doi.org/10.1016/j.cej.2018.09.058

  46. Cardoso JC, Bessegato GG, Boldrin Zanoni MV (2016) Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res 98:39–46. https://doi.org/10.1016/j.watres.2016.04.004

    Article  CAS  Google Scholar 

  47. Cavalcanti EB, Garcia-Segura S, Centellas F, Brillas E (2013) Electrochemical incineration of omeprazole in neutral aqueous medium using a platinum or boron-doped diamond anode: degradation kinetics and oxidation products. Water Res 47:1803–1815. https://doi.org/10.1016/j.watres.2013.01.002

    Article  CAS  Google Scholar 

  48. Cetinkaya AY, Bilgili L (2019) Life cycle comparison of membrane capacitive deionization and reverse osmosis membrane for textile wastewater treatment. Water Air Soil Pollut 230. https://doi.org/10.1007/s11270-019-4203-0

  49. Chaari I, Fakhfakh E, Medhioub M, Jamoussi F (2019) Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. J Mol Struct 1179:672–677. https://doi.org/10.1016/j.molstruc.2018.11.039

    Article  CAS  Google Scholar 

  50. Chacón JM, Leal MT, Sánchez M, Bandala ER (2006) Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes Pigm 69(3):144–150. https://doi.org/10.1016/j.dyepig.2005.01.020

  51. Chen S (2014) Dark and composite rogue waves in the coupled Hirota equations. Phys Lett Sect A Gen Solid State Phys 378:2851–2856. https://doi.org/10.1016/j.physleta.2014.08.004

    Article  CAS  Google Scholar 

  52. Chen J, Pu Y, Wang C, Han J, Zhong Y, Liu K (2018) Synthesis of a novel nanosilica-supported poly β-cyclodextrin sorbent and its properties for the removal of dyes from aqueous solution. Colloids Surfaces A Physicochem Eng Asp. 538:808–817. https://doi.org/10.1016/j.colsurfa.2017.11.048

    Article  CAS  Google Scholar 

  53. Chen B, Wang X, Wang C, Jiang W, Li S (2011) Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron. Ultrason Sonochem 18(5):1091–1096. https://doi.org/10.1016/j.ultsonch.2011.03.026

    Article  CAS  Google Scholar 

  54. Chen S, Wu Y, Li G, Wu J, Meng G, Guo X, Liu Z (2017) A novel strategy for preparation of an effective and stable heterogeneous photo-Fenton catalyst for the degradation of dye. Appl Clay Sci 136:103–111. https://doi.org/10.1016/j.clay.2016.11.016

    Article  CAS  Google Scholar 

  55. Chenna M, Chemlal R, Drouiche N, Messaoudi K, Lounici H (2016) Effectiveness of a physicochemical coagulation/flocculation process for the pretreatment of polluted water containing Hydron Blue Dye. Desalin Water Treat 57:27003–27014. https://doi.org/10.1080/19443994.2016.1165149

    Article  CAS  Google Scholar 

  56. Cheung WH, Szeto YS, McKay G (2007) Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour Technol 98:2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045

    Article  CAS  Google Scholar 

  57. Chezeau B, Boudriche L, Vial C, Boudjemaa A (2020) Treatment of dairy wastewater by electrocoagulation process: advantages of combined iron/aluminum electrodes. Sep Sci Technol 55:2510–2527. https://doi.org/10.1080/01496395.2019.1638935

    Article  CAS  Google Scholar 

  58. Chiong T, Lau SY, Lek ZH, Koh BY, Danquah MK (2016) Enzymatic treatment of methyl orange dye in synthetic wastewater by plant-based peroxidase enzymes. J Environ Chem Eng 4:2500–2509. https://doi.org/10.1016/j.jece.2016.04.030

    Article  CAS  Google Scholar 

  59. Chorghe D, Sari MA, Chellam S (2017) Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: mechanisms and limitations. Water Res 126:481–487. https://doi.org/10.1016/j.watres.2017.09.057

    Article  CAS  Google Scholar 

  60. Chouchane H, Mahjoubi M, Ettoumi B, Neifar M, Cherif A (2020) Environmental technology a novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal a novel thermally stable heteropolysaccharide-based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal. Ariana, Tunis. Environ Technol 39:859–872. https://doi.org/10.1080/09593330.2017.1313886

    Article  CAS  Google Scholar 

  61. Choudhary A, Mathur S (2017) Performance evaluation of 3D rotating anode in electro coagulation reactor: part II: effect of rotation. J Water Process Eng 19:352–362. https://doi.org/10.1016/j.jwpe.2017.08.019

    Article  Google Scholar 

  62. Copaciu F, Opriş O, Coman V, Ristoiu D, Niinemets Ü, Copolovici L (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Springer, p 224. https://doi.org/10.1007/s11270-013-1478-4

  63. Cotillas S, Llanos J, Cañizares P, Clematis D, Cerisola G, Rodrigo MA, Panizza M (2018) Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim Acta 263:1–7. https://doi.org/10.1016/j.electacta.2018.01.052

    Article  CAS  Google Scholar 

  64. De la Cruz N, Giménez J, Esplugas S, Grandjean D, De Alencastro LF, Pulgarín C (2012) Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Res 46:1947–1957. https://doi.org/10.1016/j.watres.2012.01.014

    Article  CAS  Google Scholar 

  65. Cuiping B, Xianfeng X, Wenqi G, Dexin F, Mo X, Zhongxue G, Nian X (2011) Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 278(1–3):84–90. https://doi.org/10.1016/j.desal.2011.05.009

    Article  CAS  Google Scholar 

  66. Da Silva DCC, Pietrobelli JMTDA (2019) Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: characterization, kinetic, thermodynamic and isotherm studies. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2019.103008

  67. Dasgupta J, Sikder J, Chakraborty S, Curcio S, Drioli E (2015) Remediation of textile effluents by membrane based treatment techniques: a state of the art review. J Environ Manage. https://doi.org/10.1016/j.jenvman.2014.08.008

  68. Daud M, Hai A, Banat F, Wazir MB, Habib M, Bharath G, Al-Harthi MA (2019) A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH)–containing hybrids as promising adsorbents for dyes removal. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.110989

  69. De Carvalho HP, Huang J, Zhao M, Liu G, Dong L, Liu X (2015) Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alexandria Eng J 54:777–786. https://doi.org/10.1016/j.aej.2015.04.003

  70. Demetrio EK, Nikolaos PX, Elefteria P, Dionissions M (2007) Photocatalytic degradation of reactive black 5 in aqueous solution: effect of operating conditions and coupling with ultrasound irradiation. Water Res 41:2236–2246

    Article  Google Scholar 

  71. Deowan SA, Galiano F, Hoinkis J, Johnson D, Altinkaya SA, Gabriele B, Hilal N, Drioli E, Figoli A (2016) Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. J Memb Sci 510:524–532. https://doi.org/10.1016/j.memsci.2016.03.002

    Article  CAS  Google Scholar 

  72. Desa AL, Hairom NHH, Ng LY, Ng CY, Ahmad MK, Mohammad AW (2019) Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. J Water Process Eng 31. https://doi.org/10.1016/j.jwpe.2019.100872

  73. Doggaz A, Attour A, Le Page Mostefa M, Tlili M, Lapicque F (2018) Iron removal from waters by electrocoagulation: investigations of the various physicochemical phenomena involved. Sep Purif Technol 203:217–225. https://doi.org/10.1016/j.seppur.2018.04.045

    Article  CAS  Google Scholar 

  74. Domínguez JR, Beltrán J, Rodríguez O (2005) Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82-). In: Catalysis today. Elsevier, pp 389–395. https://doi.org/10.1016/j.cattod.2005.03.010

  75. Dong H, Guo T, Zhang W, Ying H, Wang P, Wang Y, Chen Y (2019) Biochemical characterization of a novel azoreductase from Streptomyces sp.: application in eco-friendly decolorization of azo dye wastewater. Int J Biol Macromol 140:1037–1046. https://doi.org/10.1016/j.ijbiomac.2019.08.196

    Article  CAS  Google Scholar 

  76. Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clean Prod 208:656–665. https://doi.org/10.1016/j.jclepro.2018.10.112

    Article  CAS  Google Scholar 

  77. Doǧan D, Türkdemir H (2005) Electrochemical oxidation of textile dye indigo. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 80(8):916–923

    Google Scholar 

  78. Du C, Shi T, Sun Y, Zhuang X (2008) Decolorization of Acid Orange 7 solution by gas–liquid gliding arc discharge plasma. J Hazard Mater 154(1–3):1192–1197

    Article  CAS  Google Scholar 

  79. Duarte Baumer J, Valério A, de Souza SMAGU, Erzinger GS, Furigo A, de Souza AAU (2018) Toxicity of enzymatically decolored textile dyes solution by horseradish peroxidase. J Hazard Mater 360:82–88. https://doi.org/10.1016/j.jhazmat.2018.07.102

    Article  CAS  Google Scholar 

  80. Elazzouzi M, Haboubi K, Elyoubi MS (2019) Enhancement of electrocoagulation-flotation process for urban wastewater treatment using Al and Fe electrodes: techno-economic study. In: Materials today: proceedings. Elsevier Ltd., pp 549–555. https://doi.org/10.1016/j.matpr.2019.04.012

  81. Elshemy NS, EL-Sayad HS, Abd El-Rahman AA, Mashaly HM, Nassar SH (2019) Optimization and characterization of prepared nano-disperse dyes via a sonication process and their application in textile dyeing and printing. Fibers Polym 20:2540–2549. https://doi.org/10.1007/s12221-019-9135-1

  82. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manage 90:1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011

    Article  CAS  Google Scholar 

  83. Eyvaz M, Gürbulak E, Kara S, Yüksel E (2014) Preventing of cathode passivation/deposition in electrochemical treatment methods-a case study on winery wastewater with electrocoagulation. https://doi.org/10.5772/58580

  84. Fahmy A, El-Zomrawy A, Saeed AM, Sayed AZ, Ezz El-Arab MA, Shehata H, Friedrich J (2020) Degradation of organic dye using plasma discharge: optimization, pH and energy. Plasma Res Express 2:15009. https://doi.org/10.1088/2516-1067/ab6703

    Article  CAS  Google Scholar 

  85. Feijoo S, González-Rodríguez J, Fernández L, Vázquez-Vázquez C, Feijoo G, Moreira MT (2019) Fenton and photo-fenton nanocatalysts revisited from the perspective of life cycle assessment. Catalysts 10:23. https://doi.org/10.3390/catal10010023

    Article  CAS  Google Scholar 

  86. Feitz AJ (2005) Advanced oxidation processes and industrial wastewater treatment. Water 32:59–65

    Google Scholar 

  87. Ferhat MF, Ghezzar MR, Smaïl B, Guyon C, Ognier S, Addou A (2017) Conception of a novel spray tower plasma-reactor in a spatial post-discharge configuration: pollutants remote treatment. J Hazard Mater 321:661–671. https://doi.org/10.1016/j.jhazmat.2016.09.052

    Article  CAS  Google Scholar 

  88. Fernandes NC, Brito LB, Costa GG, Taveira SF, Cunha-Filho MSS, Oliveira GAR, Marreto RN (2018) Removal of azo dye using Fenton and Fenton-like processes: evaluation of process factors by Box-Behnken design and ecotoxicity tests. Chem Biol Interact 291:47–54. https://doi.org/10.1016/j.cbi.2018.06.003

    Article  CAS  Google Scholar 

  89. Fernandes S, Esteves Da Silva JCG, Pinto Da Silva L (2020) Materials life cycle assessment of the sustainability of enhancing the photodegradation activity of TiO2 with metal-doping. mdpi.com. https://doi.org/10.3390/ma13071487

  90. Figueredo M, Rodríguez EM, Rivas J, Beltrán FJ (2020) Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach. Environ Sci Water Res Technol 6:1176–1185. https://doi.org/10.1039/d0ew00064g

    Article  CAS  Google Scholar 

  91. Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess. https://doi.org/10.1065/lca2006.02.002

  92. Fiorentin LD, Trigueros DEG, Módenes AN, Espinoza-Quiñones FR, Pereira NC, Barros STD, Santos OAA (2010) Biosorption of reactive blue 5G dye onto drying orange bagasse in batch system: Kinetic and equilibrium modeling. Chem Eng J 163:68–77. https://doi.org/10.1016/j.cej.2010.07.043

    Article  CAS  Google Scholar 

  93. García MC, Mora M, Esquivel D, Foster JE, Rodero A, Jiménez-Sanchidrián C, Romero-Salguero FJ (2017) Microwave atmospheric pressure plasma jets for wastewater treatment: degradation of methylene blue as a model dye. Chemosphere 180:239–246. https://doi.org/10.1016/j.chemosphere.2017.03.126

    Article  CAS  Google Scholar 

  94. García-Morales MA, Roa-Morales G, Barrera-Díaz C, Martínez Miranda V, Balderas Hernández P, Pavón Silva TB (2013) Integrated advanced oxidation process (Ozonation) and electrocoagulation treatments for dye removal in denim effluents. Int J Electrochem Sci

    Google Scholar 

  95. Georgin J, Drumm FC, Grassi P, Franco D, Allasia D, Dotto GL, Caroline F, Patrícia D, Dison G, Guilherme F, Dotto L (2018) Potential of Araucaria angustifolia bark as adsorbent to remove Gentian Violet dye from aqueous effluents. https://doi.org/10.2166/wst.2018.448

  96. Ghuge SP, Saroha AK (2018) Catalytic ozonation of dye industry effluent using mesoporous bimetallic Ru-Cu/SBA-15 catalyst. Process Saf Environ Prot 118:125–132. https://doi.org/10.1016/j.psep.2018.06.033

    Article  CAS  Google Scholar 

  97. GilPavas E, Dobrosz-Gómez I, Gómez-García MÁ (2019) Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci Total Environ 651:551–560. https://doi.org/10.1016/j.scitotenv.2018.09.125

    Article  CAS  Google Scholar 

  98. Goh K, Setiawan L, Wei L, Si R, Fane AG, Wang R, Chen Y (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J Memb Sci 474:244–253. https://doi.org/10.1016/j.memsci.2014.09.057

    Article  CAS  Google Scholar 

  99. Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2008.04.017

    Article  Google Scholar 

  100. Grisales CM, Salazar LM, Garcia DP (2019) Treatment of synthetic dye baths by Fenton processes: evaluation of their environmental footprint through life cycle assessment. Environ Sci Pollut Res 26:4300–4311. https://doi.org/10.1007/s11356-018-2757-9

    Article  CAS  Google Scholar 

  101. Guadie A, Gessesse A, Xia S (2018) Halomonas sp. strain A55, a novel dye decolorizing bacterium from dye-uncontaminated Rift Valley Soda lake. Chemosphere 206:59–69. https://doi.org/10.1016/j.chemosphere.2018.04.134

    Article  CAS  Google Scholar 

  102. Gumuchian D, Cavadias S, Duten X, Tatoulian M, Da Costa P, Ognier S (2014) Organic pollutants oxidation by needle/plate plasma discharge: on the influence of the gas nature. Chem Eng Process Process Intensif 82:185–192. https://doi.org/10.1016/j.cep.2014.06.003

    Article  CAS  Google Scholar 

  103. Gupta SB, Bluhm H (2007) Pulsed underwater corona discharges as a source of strong oxidants: OH and H2O2. In: Water science and technology. IWA Publishing, pp 7–12. https://doi.org/10.2166/wst.2007.381

  104. Guzmán J, Mosteo R, Sarasa J, Alba JA, Ovelleiro JL (2016) Evaluation of solar photo-Fenton and ozone based processes as citrus wastewater pre-treatments. Sep Purif Technol 164:155–162. https://doi.org/10.1016/j.seppur.2016.03.025

    Article  CAS  Google Scholar 

  105. Haddad E, Haddad ME, Regti A, Laamari MR, Mamouni R, Saffaj N (2014) Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. J Mater Environ Sci 5:667–674

    Google Scholar 

  106. Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37:315–377. https://doi.org/10.1080/10643380601174723

    Article  CAS  Google Scholar 

  107. Han G, Liang CZ, Chung TS, Weber M, Staudt C, Maletzko C (2016) Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Res 91:361–370. https://doi.org/10.1016/j.watres.2016.01.031

    Article  CAS  Google Scholar 

  108. Handa T, Minamitani Y (2009) The effect of a water-droplet spray and gas discharge in water treatment by pulsed power. IEEE Trans Plasma Sci 37:179–183. https://doi.org/10.1109/TPS.2008.2007729

    Article  CAS  Google Scholar 

  109. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643380091184237

  110. Haque E, Jun JW, Jhung SH (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185:507–511. https://doi.org/10.1016/j.jhazmat.2010.09.035

    Article  CAS  Google Scholar 

  111. Hariharasuthan R, Nageswara Rao A, Bhaskaran A (2012) Adsorption studies on reactive blue 4 by varying the concentration of Mgo In Sorel’s Cement, theijes.com

    Google Scholar 

  112. Hassan MM, Carr CM (2018). A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.06.043

  113. Hayashi Y, Machmudah S (2014) Cite this article: Yui Hayashi et al. Jpn J Appl Phys Sel Top Appl Phys 53:10212. https://doi.org/10.7567/JJAP.53.010212

  114. Hayashi Y, Machmudah S, Takada N, Kanda H, Sasaki K, Goto M (2014) Cite this article: Yui Hayashi et al. Jpn J Appl Phys Sel Top Appl Phys 53:10212. https://doi.org/10.7567/JJAP.53.010212

  115. Hsing HJ, Chiang PC, Chang EE, Chen MY (2007) The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: a comparative study. J Hazard Mater 141:8–16. https://doi.org/10.1016/j.jhazmat.2006.05.122

    Article  CAS  Google Scholar 

  116. Hu E, Wu X, Shang S, Tao XM, Jiang SX, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718. https://doi.org/10.1016/j.jclepro.2015.06.127

    Article  CAS  Google Scholar 

  117. Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Suresh Kumar B (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-a comprehensive review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122636

  118. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2007) Ozone: science and engineering degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. https://doi.org/10.1080/01919510600985937

  119. Iqbal M (2016) Vicia faba bioassay for environmental toxicity monitoring: a review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2015.09.048

  120. Irki S, Ghernaout D, Wahib Naceur M, Alghamdi A, Aichouni M (2018) Decolorizing methyl orange by Fe-electrocoagulation process-a mechanistic insight. Int J Environ Chem 2:18–28. https://doi.org/10.11648/j.ijec.20180201.14

  121. Isanejad M, Arzani M, Mahdavi HR, Mohammadi T (2017) Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J Mol Liq 225:800–809. https://doi.org/10.1016/j.molliq.2016.11.007

    Article  CAS  Google Scholar 

  122. Ito T, Adachi Y, Yamanashi Y, Shimada Y (2016) Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Res 100:458–465. https://doi.org/10.1016/j.watres.2016.05.050

    Article  CAS  Google Scholar 

  123. Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322. https://doi.org/10.1016/j.watres.2008.12.032

    Article  CAS  Google Scholar 

  124. Jaafarzadeh N, Takdastan A, Jorfi S, Ghanbari F, Ahmadi M, Barzegar G (2018) The performance study on ultrasonic/Fe3O4/H2O2 for degradation of azo dye and real textile wastewater treatment. J Mol Liq 256:462–470. https://doi.org/10.1016/j.molliq.2018.02.047

    Article  CAS  Google Scholar 

  125. Jablonski M (2016) Novel photo-fenton oxidation with sand and carbon filtration of high concentration reactive dyes both with and without biodegradation. J Text Sci Eng 6. https://doi.org/10.4172/2165-8064.1000251

  126. Jamal M, Muneer M, International MI-C (2015, undefined) Photo-degradation of monoazo dye blue 13 using advanced oxidation process, bosaljournals.com

    Google Scholar 

  127. Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L (2016) Treatment of textile wastewater with membrane bioreactor: a critical review. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2016.01.006

  128. Jiang B, Zheng J, Liu Q, Wu M (2012) Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system. Chem Eng J 204–205:32–39. https://doi.org/10.1016/j.cej.2012.07.088

    Article  CAS  Google Scholar 

  129. Jin Y, Wu Y, Cao J, Wu Y (2014) Optimizing decolorization of methylene blue and methyl orange dye by pulsed discharged plasma in water using response surface methodology. J Taiwan Inst Chem Eng 45:589–595. https://doi.org/10.1016/j.jtice.2013.06.012

    Article  CAS  Google Scholar 

  130. Jo W-K, Park GT, Tayade RJ (2015) Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor. J Chem Technol Biotechnol 90:2280–2289. https://doi.org/10.1002/jctb.4547

    Article  CAS  Google Scholar 

  131. Kamali M, Suhas DP, Costa ME, Capela I, Aminabhavi TM (2019) Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem Eng J 368:474–494. https://doi.org/10.1016/j.cej.2019.02.075

    Article  CAS  Google Scholar 

  132. Kang YW, Hwang KY (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res 34(10):2786−2790.

    Google Scholar 

  133. Karagözoğlu B, Malkoç R (2017) The Investigation of the Removal of Reactive Orange 16 DYE From Textile Wastewater by Using Electrocoagulation Process. Cumhuriyet Sci J 38(3), 544–556

    Google Scholar 

  134. Karthikeyeni S, Siva Vijayakumar T, Vasanth S, Ganesh A, Vignesh V, Akalya J, Thirumurugan R, Subramanian P (2015) Decolourisation of Direct Orange S dye by ultra sonication using iron oxide nanoparticles. J Exp Nanosci 10:199–208. https://doi.org/10.1080/17458080.2013.822107

    Article  CAS  Google Scholar 

  135. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.06.060

  136. Kaur P, Sangal V, Kushwaha JP (2019, undefined, n.d.) Parametric study of electro-Fenton treatment for real textile wastewater, disposal study and its cost analysis. Springer. (Environmental, J.K.-I.J. of)

    Google Scholar 

  137. Kausar A, Iqbal M, Javed A, Aftab K, Nazli ZIH, Bhatti HN, Nouren S (2018) Dyes adsorption using clay and modified clay: a review. J Mol Liq. 256:395–407. https://doi.org/10.1016/j.molliq.2018.02.034

  138. Kazan H, Akgul D, Kerc A (2020, undefined, n.d.) Life cycle assessment of cotton woven shirts and alternative manufacturing techniques. Springer. (Policy, A.K.-C.T)

    Google Scholar 

  139. Kebaili M, Djellali S, Radjai M, Drouiche N, Lounici H (2018) Valorization of orange industry residues to form a natural coagulant and adsorbent. J Ind Eng Chem 64:292–299. https://doi.org/10.1016/j.jiec.2018.03.027

    Article  CAS  Google Scholar 

  140. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation-a review. J Environ Manage https://doi.org/10.1016/j.jenvman.2017.04.099

  141. Khalid NR, Majid A, Tahir MB, Niaz NA, Khalid S (2017) Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: a review. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.08.143

  142. Khandegar V, Saroha AK (2013) Electrocoagulation for the treatment of textile industry effluent–a review. J Environ Manage 128:949−963

    Google Scholar 

  143. Khanjani S, Morsali A (2014) Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red.” Ultrason Sonochem 21:1424–1429. https://doi.org/10.1016/j.ultsonch.2013.12.012

    Article  CAS  Google Scholar 

  144. Khatri A, Peerzada MH, Mohsin M, White M (2015) A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J Clean Prod. https://doi.org/10.1016/j.jclepro.2014.09.017

  145. Kiani A, Haratipour P, Ahmadi M, Zare-Dorabei R, Mahmoodi A (2017) Efficient removal of some anionic dyes from aqueous solution using a polymer-coated magnetic nano-adsorbent. J Water Supply Res Technol-AQUA 66:239–248. https://doi.org/10.2166/aqua.2017.029

    Article  Google Scholar 

  146. Kobya M, Gebologlu U, Ulu F, Oncel S, Demirbas E (2011) Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochim Acta 56:5060–5070. https://doi.org/10.1016/j.electacta.2011.03.086

    Article  CAS  Google Scholar 

  147. Kobya M, Omwene PI, Ukundimana Z (2020) Treatment and operating cost analysis of metalworking wastewaters by a continuous electrocoagulation reactor. J Environ Chem Eng. 8:103526. https://doi.org/10.1016/j.jece.2019.103526

  148. Kobya M, Demirbas E, Ulu F (2016) Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. J Environ Chem Eng 4(2):1484–1494

    Google Scholar 

  149. Kobya M, Can OT, Bayramoglu M (2003) Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J Hazard Mater 100(1–3):163–178

    Google Scholar 

  150. Koutahzadeh N, Esfahani MR, Arce PE (2016) Removal of Acid Black 1 from water by the pulsed corona discharge advanced oxidation method. J Water Process Eng 10:1–8. https://doi.org/10.1016/j.jwpe.2016.01.010

    Article  Google Scholar 

  151. Kumar MS, Sonawane SH, Pandit AB (2017) Degradation of methylene blue dye in aqueous solution using hydrodynamic cavitation based hybrid advanced oxidation processes. Chem Eng Process Process Intensif 122:288–295. https://doi.org/10.1016/j.cep.2017.09.009

    Article  CAS  Google Scholar 

  152. Kumar, M, Ponselvan FIA, Malviya JR, Srivastava VC, Mall ID (2009) Treatment of bio-digester effluent by electrocoagulation using iron electrodes. J Hazard Mater 165(1–3):345–352

    Google Scholar 

  153. Kunkel U, Radke M (2012) Fate of pharmaceuticals in rivers: deriving a benchmark dataset at favorable attenuation conditions. Water Res 46:5551–5565. https://doi.org/10.1016/j.watres.2012.07.033

    Article  CAS  Google Scholar 

  154. Kuppusamy S, Sethurajan M, Kadarkarai M, Aruliah R (2017) Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. J Environ Chem Eng 5:716–724. https://doi.org/10.1016/j.jece.2016.12.021

    Article  CAS  Google Scholar 

  155. Lafi R, Gzara L, Lajimi RH, Hafiane A (2018) Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process. Chem Eng Process-Process Intensif 132:105–113. https://doi.org/10.1016/j.cep.2018.08.010

    Article  CAS  Google Scholar 

  156. Landi S, Carneiro J, Ferdov S, Fonseca AM, Neves IC, Ferreira M, Parpot P, Soares OSGP, Pereira MFR (2017) Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. J Photochem Photobiol A Chem 346:60–69. https://doi.org/10.1016/j.jphotochem.2017.05.047

  157. De León MA, Castiglioni J, Bussi J, Sergio M (2008) Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catal Today 133–135:600–605. https://doi.org/10.1016/j.cattod.2007.12.130

    Article  CAS  Google Scholar 

  158. Li B, Dong Y, Ding Z (2013) Photoassisted degradation of CI Reactive Red 195 using an Fe(III)-grafted polytetrafluoroethylene fibre complex as a novel heterogeneous Fenton catalyst over a wide pH range. Color Technol 129:403–411. https://doi.org/10.1111/cote.12049

    Article  CAS  Google Scholar 

  159. Li B, Dong Y, Ding Z, Xu Y, Zou C (2013). Renovation and reuse of reactive dyeing effluent by a novel heterogeneous fenton system based on metal modified PTFE fibrous catalyst/H2O2. Int J Photoenergy 2013. https://doi.org/10.1155/2013/169493

  160. Liao T, Li T, Su X, Yu X, Song H, Zhu Y, Zhang Y (2018) La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. Bioresour Technol 263:207–213. https://doi.org/10.1016/j.biortech.2018.04.108

    Article  CAS  Google Scholar 

  161. Lin H, Oturan N, Wu J, Sharma VK, Zhang H, Oturan MA (2017) Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes. Chemo 167:220−227

    Google Scholar 

  162. Liu X, Lee DJ (2014) Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters. Bioresour Technol 160:24–31. https://doi.org/10.1016/j.biortech.2013.12.053

    Article  CAS  Google Scholar 

  163. Liu J, Li X, Luo J, Duan C, Hu H, Qian G (2014) Enhanced decolourisation of methylene blue by LDH-bacteria aggregates with bioregeneration. Chem Eng J 242:187–194. https://doi.org/10.1016/j.cej.2013.10.058

    Article  CAS  Google Scholar 

  164. Liu P, Zhu C, Mathew AP (2019) Mechanically robust high flux graphene oxide-nanocellulose membranes for dye removal from water. J Hazard Mater 371:484–493. https://doi.org/10.1016/j.jhazmat.2019.03.009

    Article  CAS  Google Scholar 

  165. Liu L, Zhang J, Tan Y, Jiang Y, Hu M, Li S (2014, undefined, n.d.) Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: Catalytic mechanism, analysis of products and degradation route. Elsevier (C.E.)

    Google Scholar 

  166. Lizama-Bahena C, Álvarez-Gallegos A, Hernandez JA, Silva-Martinez S (n.d.) Desalination and water treatment elimination of bio-refractory chlorinated herbicides like atrazine, alachlor, and chlorbromuron from aqueous effluents by Fenton, electro-Fenton, and peroxi-coagulation methods. https://doi.org/10.1080/19443994.2014.939858

  167. Lizama-Bahena C, Álvarez-Gallegos A, Hernandez JA., Silva-Martinez S (2015) Elimination of bio-refractory chlorinated herbicides like atrazine, alachlor, and chlorbromuron from aqueous effluents by Fenton, electro- Fenton, and peroxi-coagulation methods. Desalination Water Treat 55(13):3683–3693

    Google Scholar 

  168. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang J-S (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. ACS Publ. 45:882–905. https://doi.org/10.1021/ie050981u

    Article  CAS  Google Scholar 

  169. Loeb BL (2018) Forty years of advances in ozone technology. a review of ozone: science & engineering. Ozone Sci Eng 40:3–20. https://doi.org/10.1080/01919512.2017.1383129

    Article  CAS  Google Scholar 

  170. Lu N, Feng Y, Li J, Shang K, Wu Y (2015) Electrical characteristics of pulsed-discharge plasma for decoloration of dyes in water. IEEE Trans Plasma Sci 43:580–586. https://doi.org/10.1109/TPS.2015.2389238

    Article  CAS  Google Scholar 

  171. Lucas MS, Peres JA (2006) Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigments 71(3): 236–244

    Google Scholar 

  172. Ma H, Zhuo Q, Wang B (2009) Electro-catalytic degradation of methylene blue wastewater assisted by Fe2O3-modified kaolin. Chem Eng J 155:248–253. https://doi.org/10.1016/j.cej.2009.07.049

    Article  CAS  Google Scholar 

  173. Madhav S, Ahamad A, Singh P, Mishra PK (2018) A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ Qual Manag 27:31–41. https://doi.org/10.1002/tqem.21538

    Article  Google Scholar 

  174. Mahmoodi NM, Hayati B, Arami M, Lan C (2011) Adsorption of textile dyes on Pine Cone from colored wastewater: kinetic, equilibrium and thermodynamic studies. Desalination 268:117–125. https://doi.org/10.1016/j.desal.2010.10.007

    Article  CAS  Google Scholar 

  175. Malik MA (2010) Water purification by plasmas: Which reactors are most energy efficient? Plasma Chem Plasma Process 30:21–31. https://doi.org/10.1007/s11090-009-9202-2

    Article  CAS  Google Scholar 

  176. Malik SN, Ghosh PC, Vaidya AN, Mudliar SN (2020). Hybrid ozonation process for industrial wastewater treatment: principles and applications: a review. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2020.101193

  177. Man Y, Hu Y, Ren J (2019) Forecasting COD load in municipal sewage based on ARMA and VAR algorithms. Resour Conserv Recycl 144:56–64. https://doi.org/10.1016/j.resconrec.2019.01.030

    Article  Google Scholar 

  178. Mandal SK, Dutta K, Pal S, Mandal S, Naskar A, Pal PK, Bhattacharya TS, Singha A, Saikh R, De S, Jana D (2019) Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Mater Chem Phys 223:456–465. https://doi.org/10.1016/j.matchemphys.2018.11.002

    Article  CAS  Google Scholar 

  179. Manenti DR, Módenes AN, Soares PA, Espinoza-Quiñones FR, Boaventura RAR, Bergamasco R, Vilar VJP (2014) Assessment of a multistage system based on electrocoagulation, solar photo-Fenton and biological oxidation processes for real textile wastewater treatment. Chem Eng J 252:120–130. https://doi.org/10.1016/j.cej.2014.04.096

    Article  CAS  Google Scholar 

  180. Masomboon N, Chen CW, Anotai J, Lu MC (2010) A statistical experimental design to determine o-toluidine degradation by the photo-Fenton process. Chem Eng J 159:116–122. https://doi.org/10.1016/j.cej.2010.02.063

    Article  CAS  Google Scholar 

  181. Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J. https://doi.org/10.1016/j.cej.2014.10.112

  182. Menon P, Anantha Singh TS, Pani N, Nidheesh PV (2020) Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128739

  183. Merzouk B, Gourich B, Sekki A, Madani K, Vial C, Barkaoui M (2009) Studies on the decolorization of textile dye wastewater by continuous electrocoagulation process. Chem Eng J 149:207–214. https://doi.org/10.1016/j.cej.2008.10.018

    Article  CAS  Google Scholar 

  184. Merényi G, Lind J, Naumov S, Sonntag CV (2010) Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations. Environ Sci Technol 44:3505–3507. https://doi.org/10.1021/es100277d

    Article  CAS  Google Scholar 

  185. Michael I, Panagi A, Ioannou LA, Frontistis Z, Fatta-Kassinos D (2014) Utilizing solar energy for the purification of olive mill wastewater using a pilot-scale photocatalytic reactor after coagulation-flocculation. Water Res 60:28–40. https://doi.org/10.1016/j.watres.2014.04.032

    Article  CAS  Google Scholar 

  186. Minamitani Y, Shoji S, Ohba Y, Higashiyama Y (2008) Decomposition of dye in water solution by pulsed power discharge in a water droplet spray. IEEE Trans Plasma Sci 36:2586–2591. https://doi.org/10.1109/TPS.2008.2004234

    Article  CAS  Google Scholar 

  187. Misra N, Rawat S, Goel NK, Shelkar SA, Kumar V (2020) Radiation grafted cellulose fabric as reusable anionic adsorbent: a novel strategy for potential large-scale dye wastewater remediation. Carbohydr Polym 249. https://doi.org/10.1016/j.carbpol.2020.116902

  188. Modirshahla N, Behnajady MA, Rahbarfam R, Hassani A (2012) Effects of operational parameters on decolorization of C. I. Acid Red 88 by UV/H 2O 2 process: evaluation of electrical energy consumption. Clean-Soil, Air, Water 40:298–302. https://doi.org/10.1002/clen.201000574

    Article  CAS  Google Scholar 

  189. Modirshahla N, Abdoli M, Behnajady MA, Vahid B (2013) Decolourization of tartrazine from aqueous solutions by coupling electrocoagulation with ZnO photocatalyst. Environ Protect Eng 39(1)

    Google Scholar 

  190. Mokhtari N, Afshari M, Dinari M (2020) Synthesis and characterization of a novel fluorene-based covalent triazine framework as a chemical adsorbent for highly efficient dye removal. Polymer (Guildf) 195. https://doi.org/10.1016/j.polymer.2020.122430

  191. Mollah MY, Morkovsky P, Gomes JA, Kesmez M, Parga J, Cocke DL (2004) Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater 114(1–3):199–210

    Google Scholar 

  192. Moussavi G, Mahmoudi M (2009) Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem Eng J 152:1–7. https://doi.org/10.1016/j.cej.2009.03.014

    Article  CAS  Google Scholar 

  193. Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2016) A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466. https://doi.org/10.1080/10643389.2015.1103832

    Article  CAS  Google Scholar 

  194. Murali V, Ong SA, Ho LN, Wong YS (2013) Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange. Bioresour Technol 143:104–111. https://doi.org/10.1016/j.biortech.2013.05.122

    Article  CAS  Google Scholar 

  195. Mänttäri M, Kuosa M, Kallas J, Nyström M (2008) Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry. J Memb Sci 309:112–119. https://doi.org/10.1016/j.memsci.2007.10.019

    Article  CAS  Google Scholar 

  196. Naje AS, Chelliapan S, Zakaria Z, Abbas SA (2015) Treatment performance of textile wastewater using electrocoagulation (EC) process under combined electrical connection of electrodes. Int J Electrochem Sci 10:5924–5941

    CAS  Google Scholar 

  197. Naje AS, Chelliapan S, Zakaria Z, Abbas SA (2016a) Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. J Environ Manag 176:34–44

    Google Scholar 

  198. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Sopian K, Hasan HA (2016b) Electrocoagulation by solar energy feed for textile wastewater treatment including mechanism and hydrogen production using a novel reactor design with a rotating anode. RSC Adv 6(12):10192–10204

    Google Scholar 

  199. Nandi BK, Patel S (2017) Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arab J Chem 10:S2961–S2968. https://doi.org/10.1016/j.arabjc.2013.11.032

    Article  CAS  Google Scholar 

  200. Nasrullah M, Zularisam AW, Krishnan S, Sakinah M, Singh L, Fen YW (2019) High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chin J Chem Eng 27:208–217. https://doi.org/10.1016/j.cjche.2018.07.021

    Article  CAS  Google Scholar 

  201. Nayak MC, Isloor AM, Inamuddin, Prabhu B, Norafiqah NI, Asiri AM (2019) Novel polyphenylsulfone (PPSU)/nano tin oxide (SnO2) mixed matrix ultrafiltration hollow fiber membranes: fabrication, characterization and toxic dyes removal from aqueous solutions. React Funct Polym 139:170–180. https://doi.org/10.1016/j.reactfunctpolym.2019.02.015

  202. Neppolian B, Choi HC, Sakthivel S, Arabindoo B, Murugesan V (2002) Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemo 46(8):1173–1181

    Google Scholar 

  203. Ngulube T, Gumbo JR, Masindi V, Maity A (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manage. https://doi.org/10.1016/j.jenvman.2016.12.031

  204. Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD (2013) Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeterior Biodegrad 85:474–482. https://doi.org/10.1016/j.ibiod.2013.03.014

    Article  CAS  Google Scholar 

  205. Nguyen DD, Ngo HH, Kim SD, Yoon YS (2014) A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment. Bioresour Technol 169:52–61. https://doi.org/10.1016/j.biortech.2014.06.087

    Article  CAS  Google Scholar 

  206. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195

    Article  CAS  Google Scholar 

  207. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. https://doi.org/10.1039/c5ra02023a

  208. Nippatla N, Philip L (2019) Electrocoagulation-floatation assisted pulsed power plasma technology for the complete mineralization of potentially toxic dyes and real textile wastewater. Process Saf Environ Prot 125:143–156. https://doi.org/10.1016/j.psep.2019.03.012

    Article  CAS  Google Scholar 

  209. Nippatla N, Philip L (2020). Performance evaluation of a novel electrolytic reactor with rotating and non rotating bipolar disc electrodes for synthetic textile wastewater treatment. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2019.103462

  210. Noroozi B, Sorial GA (2013) Applicable models for multi-component adsorption of dyes: a review. J Environ Sci (China) 25:419–429. https://doi.org/10.1016/S1001-0742(12)60194-6

    Article  CAS  Google Scholar 

  211. Nose T, Hanaoka Y, Yokoyama Y, Minamitani Y (2013) Decomposition of sodium acetate by pulsed discharge in water droplet spray. IEEE Trans Plasma Sci 41:112–118. https://doi.org/10.1109/TPS.2012.2188307

    Article  CAS  Google Scholar 

  212. Nose T, Yokoyama Y, Nakamura A, Minamitani Y (2013) Effect of oxygen gas on the decomposition of dye by pulsed discharge in water droplet spray. Electr Eng Jpn 183:10–23. https://doi.org/10.1002/eej.22284

    Article  Google Scholar 

  213. Nose, T., Hanaoka, Y., & Yokoyama, Y. (2014). Initial concentration dependence of dimethyl sulfoxide oxidation by pulsed discharge plasma in air with water droplets spray. Journal of Advanced Oxidation Technologies, 17(2), 397-403. ,

    Google Scholar 

  214. Onga L, Kornev I, Preis S (2020) Oxidation of reactive azo-dyes with pulsed corona discharge: surface reaction enhancement. J Electrostat 103:103420. https://doi.org/10.1016/j.elstat.2020.103420

  215. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. a review. Crit Rev Environ Sci Technol 44:2577–2641. https://doi.org/10.1080/10643389.2013.829765

    Article  CAS  Google Scholar 

  216. Oualid HA, Abdellaoui Y, Laabd M, El Ouardi M, Brahmi Y, Lazza M, Oualid JA (2020) Eco-efficient green seaweed codium decorticatum biosorbent for textile dyes: characterization, mechanism, recyclability, and RSM optimization. https://doi.org/10.1021/acsomega.0c02311

  217. Ozyonar F, Karagozoglu B (2015) Treatment of pretreated coke wastewater by electrocoagulation and electrochemical peroxidation processes. Sep Purif Technol 150:268–277. https://doi.org/10.1016/j.seppur.2015.07.011

    Article  CAS  Google Scholar 

  218. Padmanaban VC, Geed SRR, Achary A, Singh RS (2016) Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1. Bioresour Technol 213:39–43. https://doi.org/10.1016/j.biortech.2016.02.126

    Article  CAS  Google Scholar 

  219. Palani R, AbdulGani A, Balasubramanian N (2016) Treatment of tannery effluent using a rotating disc electrochemical reactor. Water Environ Res 89:77–85. https://doi.org/10.2175/106143016x14609975746046

    Article  CAS  Google Scholar 

  220. Palma-Goyes RE, Silva-Agredo J, González I, Torres-Palma RA (2014) Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochim Acta 140:427–433. https://doi.org/10.1016/j.electacta.2014.06.096

    Article  CAS  Google Scholar 

  221. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. https://doi.org/10.1021/cr9001319

    Article  CAS  Google Scholar 

  222. Panorel I, Kornev I, Hatakka H (2011, undefined, n.d.) Pulsed corona discharge for degradation of aqueous humic substances. iwaponline.com. (-W.S)

    Google Scholar 

  223. Panorel I, Preis S, Kornev I, Hatakka H, Louhi-Kultanen M (2013) Oxidation of aqueous pharmaceuticals by pulsed corona discharge. Environ Technol (United Kingdom) 34:923–930. https://doi.org/10.1080/09593330.2012.722691

  224. Parisi ML, Maranghi S, Basosi R (2014) The evolution of the dye sensitized solar cells from Grätze

    Google Scholar 

  225. Paz A, Carballo J, Pérez MJ, Domínguez JM (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere 181:168–177. https://doi.org/10.1016/j.chemosphere.2017.04.046

    Article  CAS  Google Scholar 

  226. Paździor K, Wrębiak J, Klepacz-Smółka A, Gmurek M, Bilińska L, Kos L, Sójka-Ledakowicz J, Ledakowicz S (2017) Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. J Environ Manage 195:166–173. https://doi.org/10.1016/j.jenvman.2016.06.055

    Article  CAS  Google Scholar 

  227. Peternel I, Koprivanac N, Kusic H (2006) UV-based processes for reactive azo dye mineralization. Water Res 40(3):525–532

    Article  CAS  Google Scholar 

  228. Piadeh F, Alavi-moghaddam MR, Mardan S (2018) Assessment of sustainability of a hybrid of advanced treatment technologies for recycling industrial wastewater in developing countries: case study of Iranian industrial parks. J Clean Prod 170:1136–1150. https://doi.org/10.1016/j.jclepro.2017.09.174

    Article  Google Scholar 

  229. Pillai IMS, Gupta AK (2015) Batch and continuous flow anodic oxidation of 2,4-dinitrophenol: Modeling, degradation pathway and toxicity. J Electroanal Chem 756:108–117. https://doi.org/10.1016/j.jelechem.2015.08.020

    Article  CAS  Google Scholar 

  230. Pliego G, Zazo JA, Garcia-Muñoz P, Munoz M, Casas JA, Rodriguez JJ (2015) Trends in the intensification of the fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692. https://doi.org/10.1080/10643389.2015.1025646

    Article  CAS  Google Scholar 

  231. Popli S, Patel UD (2015) Destruction of azo dyes by anaerobic-aerobic sequential biological treatment: a review. Springer. https://doi.org/10.1007/s13762-014-0499-x

  232. Pothanamkandathil V, Singh RK, Philip L, Ramanujam S (2018) Effect of recycling overhead gases on pollutants degradation efficiency in gas-phase pulsed corona discharge treatment. J Environ Chem Eng 6:923–929

    Article  CAS  Google Scholar 

  233. Pouran S, Raman A, Daud W (2014, undefined, n.d.) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Elsevier. (Production, W.D.-J. of C.)

    Google Scholar 

  234. Punzi M, Mattiasson B, Jonstrup M (2012) Treatment of synthetic textile wastewater by homogeneous and heterogeneous photo-Fenton oxidation. J Photochem Photobiol A Chem 248:30–35. https://doi.org/10.1016/j.jphotochem.2012.07.017

    Article  CAS  Google Scholar 

  235. Raizada P, Sudhaik A, Singh P, Shandilya P, Saini AK, Gupta VK, Lim JH, Jung H, Hosseini-Bandegharaei A (2019) Fabrication of Ag3VO4 decorated phosphorus and sulphur co-doped graphitic carbon nitride as a high-dispersed photocatalyst for phenol mineralization and E. coli disinfection. Sep Purif Technol 212:887–900. https://doi.org/10.1016/j.seppur.2018.12.007

    Article  CAS  Google Scholar 

  236. Raman CD, Kanmani S (2016). Textile dye degradation using nano zero valent iron: a review. J Environ Manage. https://doi.org/10.1016/j.jenvman.2016.04.034

  237. Raschitor A, Fernandez CM, Cretescu I, Rodrigo MA, Cañizares P (2014) Sono-electrocoagulation of wastewater polluted with Rhodamine 6G. Sep Purif Technol 135:110–116. https://doi.org/10.1016/j.seppur.2014.08.003

    Article  CAS  Google Scholar 

  238. Rashid MM, Chowdhury M, Talukder MR (2020) Textile wastewater treatment by underwater parallel-multi-tube air discharge plasma jet. J Environ Chem Eng 8:2213–3437. https://doi.org/10.1016/j.jece.2020.104504

    Article  CAS  Google Scholar 

  239. Rashidi HR, Meriam N, Sulaiman N, Hashim NA, Rosmani C, Hassan C, Ramli MR (2014) Desalination and water treatment synthetic reactive dye wastewater treatment by using nano-membrane filtration Synthetic reactive dye wastewater treatment by using nano-membrane filtration. https://doi.org/10.1080/19443994.2014.912964

  240. Rayaroth MP, Aravind UK, Aravindakumar CT (2016) Degradation of pharmaceuticals by ultrasound-based advanced oxidation process. Environ Chem Lett. https://doi.org/10.1007/s10311-016-0568-0

  241. Resta B, Dotti S (2015) Environmental impact assessment methods for textiles and clothing. In: Handbook of Life Cycle Assessment (LCA) of textiles and clothing. Elsevier Inc., pp 149–191. https://doi.org/10.1016/B978-0-08-100169-1.00008-3

  242. Rivas FJ, Beltran FJ, Frades J, Buxeda P (2001) Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Res 35(2):387–396

    Google Scholar 

  243. Rodrigues CSD, Madeira LM, Boaventura RAR (2013) Optimization and economic analysis of textile wastewater treatment by photo-Fenton process under artificial and simulated solar radiation. https://doi.org/10.1021/ie401301h

  244. Ruma, Hosseini SHR, Yoshihara K, Akiyama M, Sakugawa T, Lukeš P, Akiyama H (2014) Properties of water surface discharge at different pulse repetition rates. J Appl Phys 116:123304

    Google Scholar 

  245. Saepurahman, Singaravel GP, Hashaikeh R (2016) Fabrication of electrospun LTL zeolite fibers and their application for dye removal. J Mater Sci 51:1133–1141. https://doi.org/10.1007/s10853-015-9444-8

  246. Sahni M, Locke BR (2006) Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Ind Eng Chem Res 45:5819–5825.

    Article  CAS  Google Scholar 

  247. Sahni M, Locke BR (2006) The effects of reaction conditions on liquid-phase hydroxyl radical production in gas-liquid pulsed-electrical-discharge reactors. Plasma Process Polym 3:668–681. https://doi.org/10.1002/ppap.200600020

    Article  CAS  Google Scholar 

  248. Sahni M, Locke BR (2006) Quantification of reductive species produced by high voltage electrical discharges in water. Plasma Process Polym 3:342–354. https://doi.org/10.1002/ppap.200600006

    Article  CAS  Google Scholar 

  249. Salazar R, Ureta-Zañartu MS, González-Vargas C, do Brito CN, Martinez-Huitle CA (2018) Electrochemical degradation of industrial textile dye disperse yellow 3: role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway. Chemosphere 198:21–29. https://doi.org/10.1016/j.chemosphere.2017.12.092

  250. Sardar M, Manna M, Maharana M, Sen S (2020) Remediation of dyes from industrial wastewater using low-cost adsorbents. Springer, Cham, pp 377–403. https://doi.org/10.1007/978-3-030-47400-3_15

  251. Sathishkumar K, AlSalhi MS, Sanganyado E. Devanesan S, Arulprakash A, Rajasekar A (2019) Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent. J Photochem Photobiol B Biol 200. https://doi.org/10.1016/j.jphotobiol.2019.111655

  252. Sathishkumar P, Mangalaraja RV, Anandan S (2016) Review on the recent improvements in sonochemical and combined sonochemical oxidation processes-a powerful tool for destruction of environmental contaminants. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.10.139

  253. Sein MM (2012) Related content. https://doi.org/10.1088/0022-3727/45/22/225203

  254. Shahedi A, Darban AK, Taghipour F, Jamshidi-Zanjani A (2020) A review on industrial wastewater treatment via electrocoagulation processes. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2020.05.009

  255. Sharma P, Kaur H, Sharma M, Sahore V, Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Env Monit Assess 183:151–195. https://doi.org/10.1007/s10661-011-1914-0

  256. Shu HY, Chang MC (2005) Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes. Dye Pigment 65:25–31. https://doi.org/10.1016/j.dyepig.2004.06.014

    Article  CAS  Google Scholar 

  257. Shukla D, Das M, Kasade D, Pandey M, Dubey AK, Yadav SK, Parmar AS (2020) Sandalwood-derived carbon quantum dots as bioimaging tools to investigate the toxicological effects of malachite green in model organisms. Chemosphere 248:125998. https://doi.org/10.1016/j.chemosphere.2020.125998

  258. Singh RK, Babu V, Philip L, Ramanujam S (2016) Applicability of pulsed power technique for the degradation of methylene blue. J. Water Process Eng. 11:118–129. https://doi.org/10.1016/j.jwpe.2016.04.002

    Article  Google Scholar 

  259. Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes-a review. Int Biodeterior Biodegrad. https://doi.org/10.1016/j.ibiod.2015.04.027

  260. Sivalingam S, Sen S (2019) Efficient removal of textile dye using nanosized fly ash derived zeolite-x: kinetics and process optimization study. J Taiwan Inst Chem Eng 96:305–314. https://doi.org/10.1016/j.jtice.2018.10.032

    Article  CAS  Google Scholar 

  261. Smith P, Baille J, McHattie LS (2017) Sustainable design futures: an open design vision for the circular economy in fashion and textiles. Des J 20:S1938–S1947. https://doi.org/10.1080/14606925.2017.1352712

    Article  Google Scholar 

  262. Soares PA, Silva TFCV, Ramos Arcy A, Souza SMAGU, Boaventura RAR, Vilar VJP (2016) Assessment of AOPs as a polishing step in the decolourisation of bio-treated textile wastewater: technical and economic considerations. J Photochem Photobiol A Chem 317:26–38. https://doi.org/10.1016/j.jphotochem.2015.10.017

    Article  CAS  Google Scholar 

  263. Song S, Yao J, He Z, Qiu J, Chen J (2008) Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation. J Hazard Mater 152:204–210. https://doi.org/10.1016/j.jhazmat.2007.06.104

    Article  CAS  Google Scholar 

  264. Song W, Li J, Wang Z, Zhang X (2019) A mini review of activated methods to persulfate-based advanced oxidation process. Water Sci Technol. https://doi.org/10.2166/wcc.2018.168

  265. Sreethawong T (2012) Mesoporous-assembled nanocrystal photocatalysts for degradation of azo dyes. In: Advances in water treatment and pollution prevention. Springer Netherlands, pp 147–175. https://doi.org/10.1007/978-94-007-4204-8_6

  266. Su CXH, Low LW, Teng TT, Wong YS (2016) Combination and hybridisation of treatments in dye wastewater treatment: a review. J Environ Chem Eng 4(3):3618–3631

    Google Scholar 

  267. Sugai T, Nguyen PT, Tokuchi A, Jiang W, Minamitani Y (2015) The effect of flow rate and size of water droplets on the water treatment by pulsed discharge in air. IEEE Trans Plasma Sci 43:3493–3499. https://doi.org/10.1109/TPS.2015.2450741

    Article  CAS  Google Scholar 

  268. Suhan MBK, Shuchi SB, Anis A, Haque Z, Islam MS (2020) Comparative degradation study of remazol black B dye using electro-coagulation and electro-Fenton process: kinetics and cost analysis. Environ Nanotechnol Monit Manag 14. https://doi.org/10.1016/j.enmm.2020.100335

  269. Sun B, Aye NN, Gao Z, Lv D, Zhu X, Sato M (2012) Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency. J Environ Sci 24(5):840–845. https://doi.org/10.1016/S1001-0742(11)60837-1

    Article  CAS  Google Scholar 

  270. Sun, Y, Cheng S, Lin Z, Yang J, Li C, Gu R (2020) Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. J Hazard Mater 384:121307

    Google Scholar 

  271. Suty H, De Traversay C, Cost M (2004) Applications of advanced oxidation processes: present and future

    Google Scholar 

  272. Särkkä H, Bhatnagar A, Sillanpää M (2015) Recent developments of electro-oxidation in water treatment-a review. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2015.06.016

  273. Tang S, Li N, Yuan D, Tang J, Li X, Zhang C, Rao Y (2019) Comparative study of persulfate oxidants promoted photocatalytic fuel cell performance: simultaneous dye removal and electricity generation. Chemosphere 234:658–667. https://doi.org/10.1016/j.chemosphere.2019.06.112

    Article  CAS  Google Scholar 

  274. Tariq M, Muhammad M, Khan J, Raziq A, Uddin MK, Niaz A, Ahmed SS, Rahim A (2020) Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst. J Mol Liq 312. https://doi.org/10.1016/j.molliq.2020.113399

  275. Tarkwa JB, Acayanka E, Jiang B, Oturan N, Kamgang GY, Laminsi S, Oturan MA (2019) Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma. Appl Catal B Environ 246:211–220. https://doi.org/10.1016/j.apcatb.2019.01.066

    Article  CAS  Google Scholar 

  276. Tatarova E, Bundaleska N, Sarrette JP, Ferreira CM (2014). Plasmas for environmental issues: from hydrogen production to 2D materials assembly. Plasma Sources Sci Technol. https://doi.org/10.1088/0963-0252/23/6/063002

  277. Tavangar T, Jalali K, Alaei Shahmirzadi MA, Karimi M (2019) Toward real textile wastewater treatment: membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation–nanofiltration process. Sep Purif Technol 216:115–125. https://doi.org/10.1016/j.seppur.2019.01.070

    Article  CAS  Google Scholar 

  278. Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation–flocculation and its application in wastewater treatment. Industrial Eng Chem Res 55(16):4363–4389

    Google Scholar 

  279. Tezcan Un U, Koparal AS, Bakir Ogutveren U (2013) Fluoride removal from water and wastewater with a bach cylindrical electrode using electrocoagulation. Chem Eng J 223:110–115. https://doi.org/10.1016/j.cej.2013.02.126

    Article  CAS  Google Scholar 

  280. Thue PS, Sophia AC, Lima EC, Wamba AGN, de Alencar WS, dos Reis GS, Rodembusch FS, Dias SLP (2018) Synthesis and characterization of a novel organic-inorganic hybrid clay adsorbent for the removal of acid red 1 and acid green 25 from aqueous solutions. J Clean Prod 171:30–44. https://doi.org/10.1016/j.jclepro.2017.09.278

    Article  CAS  Google Scholar 

  281. Tiaiba M, Merzouk B, Amour A (2017, undefined, n.d.) Influence of electrodes connection mode and type of current in electrocoagulation process on the removal of a textile dye. hal.univ-lorraine.fr. (Treatment MM-… and W.)

    Google Scholar 

  282. Turhan K, Durukan I, Ozturkcan SA, Turgut Z (2012) Decolorization of textile basic dye in aqueous solution by ozone. Dyes Pigm 92(3):897–901.

    Article  CAS  Google Scholar 

  283. Turhan K, Turgut Z (2009) Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination 242:256–263. https://doi.org/10.1016/j.desal.2008.05.005

    Article  CAS  Google Scholar 

  284. Vahedi S, Tavakoli O, Khoobi M, Ansari A, Ali Faramarzi M (2017) Application of novel magnetic β-cyclodextrin-anhydride polymer nano-adsorbent in cationic dye removal from aqueous solution. J Taiwan Inst Chem Eng 80:452–463. https://doi.org/10.1016/j.jtice.2017.07.039

    Article  CAS  Google Scholar 

  285. Vakili M, Rafatullah M, Salamatinia B, Abdullah A (2014, undefined, n.d.) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Elsevier. (… A.A.-C.)

    Google Scholar 

  286. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.07.007

  287. Venkatesh S, Quaff AR, Pandey ND, Venkatesh K (2014) Desalination and water treatment decolorization and mineralization of C.I. direct red 28 azo dye by ozonation decolorization and mineralization of C.I. direct red 28 azo dye by ozonation. https://doi.org/10.1080/19443994.2014.992047

  288. Vidal J, Villegas L, Peralta-Hernández JM, Salazar González R (2016) Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. J Environ Sci Heal-Part A Toxic/Hazardous Subst Environ Eng 51:289–296. https://doi.org/10.1080/10934529.2015.1109385

    Article  CAS  Google Scholar 

  289. Vikrant K, Giri B, Raza N, Roy K, Kim K, Rai B (2018, undefined, n.d.) Recent advancements in bioremediation of dye: current status and challenges. Elsevier. (… B.R.-B)

    Google Scholar 

  290. Wang T, He X, Li Y, Li J (2018) Novel poly(piperazine-amide) (PA) nanofiltration membrane based poly(m-phenylene isophthalamide) (PMIA) hollow fiber substrate for treatment of dye solutions. Chem Eng J 351:1013–1026. https://doi.org/10.1016/j.cej.2018.06.165

    Article  CAS  Google Scholar 

  291. Wang J, Ma T, Zhang Z, Zhang X, Jiang Y, Dong D, Zhang P, Li Y (2006) Investigation on the sonocatalytic degradation of parathion in the presence of nanometer rutile titanium dioxide (TiO2) catalyst. J Hazard Mater 137:972–980. https://doi.org/10.1016/j.jhazmat.2006.03.022

    Article  CAS  Google Scholar 

  292. Wang H, Shen Y, Shen C, Wen Y, Li H (2012) Enhanced adsorption of dye on magnetic Fe3O4 via HCl-assisted sonication pretreatment. Desalination 284:122–127. https://doi.org/10.1016/j.desal.2011.08.045

    Article  CAS  Google Scholar 

  293. Wang Q, Tang H, Ma Q, Mu R, Yuan X, Hong J, Zhang J, Zuo J, Mu Z, Cao S, Liu F (2019) Life cycle assessment and the willingness to pay of waste polyester recycling. J Clean Prod 234:275–284. https://doi.org/10.1016/j.jclepro.2019.06.123

    Article  CAS  Google Scholar 

  294. Wang C, Yediler A, Lienert D, Wang Z, Kettrup A (2003) Ozonation of an azo dye CI Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere 52(7):1225–1232. https://doi.org/10.1016/S0045-6535(03)00331-X

    Article  CAS  Google Scholar 

  295. Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135249

  296. Wang J, Qin L, Lin J, Zhu J, Zhang Y, Liu J (2017, undefined, n.d.) Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Elsevier. (-C.E.)

    Google Scholar 

  297. Wang Q, Wang Y (2019, undefined, n.d.) A green composite hydrogel based on cellulose and clay as efficient absorbent of colored organic effluent. Elsevier. (polymers, L.C.-C)

    Google Scholar 

  298. Wen D, Wu Z, Tang Y, Li M, Qiang Z (2018) Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: Impact of sulfamethazine concentration on reaction mechanism. J Hazard Mater 344:1181–1187. https://doi.org/10.1016/j.jhazmat.2017.10.032

    Article  CAS  Google Scholar 

  299. Weng CH, Huang V (2015) Application of Fe0 aggregate in ultrasound enhanced advanced Fenton process for decolorization of methylene blue. J Ind Eng Chem 28:153–160. https://doi.org/10.1016/j.jiec.2015.02.010

    Article  CAS  Google Scholar 

  300. Wijannarong S, Aroonsrimorakot S, Thavipoke P, Kumsopa A, Sangjan S (2013) Removal of reactive dyes from textile dyeing industrial effluent by ozonation process. APCBEE Proc 5:279–282. https://doi.org/10.1016/j.apcbee.2013.05.048

  301. Wu CH, Chang CL, Kuo CY (2008) Decolorization of Procion Red MX-5B in electrocoagulation (EC), UV/TiO2 and ozone-related systems. Dye Pigment 76:187–194. https://doi.org/10.1016/j.dyepig.2006.08.017

    Article  CAS  Google Scholar 

  302. Xia X, Lan S, Li X, Xie Y, Liang Y, Yan P, Chen Z, Xing Y (2018) Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere 206:701–708. https://doi.org/10.1016/j.chemosphere.2018.04.159

    Article  CAS  Google Scholar 

  303. Xiao M, Hu X, Gong Y, Gao D, Zhang P, Liu Q, Liu Y, Wang M (2015) Solid transformation synthesis of zeolites from fly ash. RSC Adv 5:100743–100749. https://doi.org/10.1039/c5ra17856h

    Article  CAS  Google Scholar 

  304. Xiao R, Luo Z, Wei Z, Luo S, Spinney R, Yang W, Dionysiou DD (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr Opin Chem Eng. https://doi.org/10.1016/j.coche.2017.12.005

  305. Xu L, Cao G, Xu X, He C, Wang Y, Huang Q, Yang M (2018) Sulfite assisted rotating disc electrocoagulation on cadmium removal: parameter optimization and response surface methodology. Sep Purif Technol 195:121–129. https://doi.org/10.1016/j.seppur.2017.12.010

    Article  CAS  Google Scholar 

  306. Xu R, Mao J, Peng N, Luo X, Chang C (2018b) Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes. Carbohydr Polym 188:143–150. https://doi.org/10.1016/j.carbpol.2018.01.073

    Article  CAS  Google Scholar 

  307. Yagub M, Sen T, Afroze S (2014, undefined, n.d.) Dye and its removal from aqueous solution by adsorption: a review. Elsevier. (interface, H.A.-A. in colloid and)

    Google Scholar 

  308. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2014.04.002

  309. Yang C, Xu W, Nan Y, Wang Y, Hu Y, Gao C, Chen X (2020) Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J Colloid Interface Sci 562:589–597. https://doi.org/10.1016/j.jcis.2019.11.075

    Article  CAS  Google Scholar 

  310. Yang B, Zhou M, Lei L (2005) Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen. Chemosphere 60:405–411. https://doi.org/10.1016/j.chemosphere.2004.11.091

    Article  CAS  Google Scholar 

  311. Yang L, Yao G, Huang S (2020) Enhanced degradation of atrazine in water by VUV/UV/Fe process: role of the in situ generated H2O2. Chem Eng J 388. https://doi.org/10.1016/j.cej.2020.124302

  312. Yasar A, Ahmad N, Amanat A, Khan A (2006) Energy requirement of ultraviolet and AOPs for the post-treatment of treated combined industrial effluent. Wiley Online Libr. 122:201–206. https://doi.org/10.1111/j.1478-4408.2006.00028.x

    Article  CAS  Google Scholar 

  313. Ye JS, Liu J, Ou HS, Wang LL (2016). Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: degradation pathway and intermediate impact on proteome of Escherichia coli. Chemosphere 165, 311–319. https://doi.org/10.1016/j.chemosphere.2016.09.031

  314. Yong K, Wu J, Andrews S (2005) Heterogeneous catalytic ozonation of aqueous reactive dye. Ozone Sci Eng 27:257–263. https://doi.org/10.1080/01919510591005888

    Article  CAS  Google Scholar 

  315. Yu W, Liu Y, Xu Y, Li R, Chen J, Liao BQ, Shen L, Lin H (2019) A conductive PVDF-Ni membrane with superior rejection, permeance and antifouling ability via electric assisted in-situ aeration for dye separation. J Memb Sci 581:401–412. https://doi.org/10.1016/j.memsci.2019.03.083

    Article  CAS  Google Scholar 

  316. Yıldırım AÖ, Gül Ş, Eren O, Kuşvuran E (2011) A comparative study of ozonation, homogeneous catalytic ozonation, and photocatalytic ozonation for C.I. Reactive Red 194 azo dye degradation. Clean-Soil Air Water 39:795–805. https://doi.org/10.1002/clen.201000192

    Article  CAS  Google Scholar 

  317. Zayani G, Bousselmi L, Mhenni F, Ghrabi A (2009) Solar photocatalytic degradation of commercial textile azo dyes: Performance of pilot plant scale thin film fixed-bed reactor. Desalination 246(1–3):344–352. https://doi.org/10.1016/j.desal.2008.03.059

    Article  CAS  Google Scholar 

  318. Zazou H, Afanga H, Akhouairi S, Ouchtak H, Addi AA, Akbour RA, Assabbane A, Douch J, Elmchaouri A, Duplay J, Jada A, Hamdani M (2019) Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J Water Process Eng 28:214–221. https://doi.org/10.1016/j.jwpe.2019.02.006

    Article  Google Scholar 

  319. Zeng G, He Y, Zhan Y, Zhang L, Pan Y, Zhang C, Yu Z (2016) Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J Hazard Mater 317:60–72. https://doi.org/10.1016/j.jhazmat.2016.05.049

    Article  CAS  Google Scholar 

  320. Zeng G, Ye Z, He Y, Yang X, Ma J, Shi H, Feng Z (2017) Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chem Eng J 323:572–583. https://doi.org/10.1016/j.cej.2017.04.131

    Article  CAS  Google Scholar 

  321. Zhang XD, Hao JD, Li WS, Jin HJ, Yang J, Huang QM, Lu DS, Xu HK (2009) Synergistic effect in treatment of C.I. Acid Red 2 by electrocoagulation and electrooxidation. J Hazard Mater 170:883–887. https://doi.org/10.1016/j.jhazmat.2009.05.050

    Article  CAS  Google Scholar 

  322. Zhang H, Li G, Deng L, Zeng H, Shi Z (2019) Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: performance and mechanism. J Colloid Interface Sci 543:183–191. https://doi.org/10.1016/j.jcis.2019.02.059

    Article  CAS  Google Scholar 

  323. Zhang J, Liu D, Bian W, Chen X (2012) Degradation of 2,4-dichorophenol by pulsed high voltage discharge in water. Desalination 304:49–56. https://doi.org/10.1016/j.desal.2012.01.027

    Article  CAS  Google Scholar 

  324. Zhang J, Tian B, Wang L, Xing M, Lei J (2018) Photocatalysis: fundamentals, materials and applications

    Google Scholar 

  325. Zhao X, Dong Y, Cheng B, Kang W (2013). Removal of textile dyes from aqueous solution by heterogeneous photo-Fenton reaction using modified PAN nanofiber Fe complex as catalyst. Int J Photoenergy 2013. https://doi.org/10.1155/2013/820165

  326. Zhou J, Lü QF, Luo JJ (2017) Efficient removal of organic dyes from aqueous solution by rapid adsorption onto polypyrrole–based composites. J Clean Prod 167:739–748. https://doi.org/10.1016/j.jclepro.2017.08.196

    Article  CAS  Google Scholar 

  327. Zhou Z, Ma Y, Liu Y, Lu S, Ren Z (2017) Formation of hydrogen peroxide and treatment of Sunset Yellow wastewater using pulsed high-voltage discharge system. Can J Chem Eng 95:290–296. https://doi.org/10.1002/cjce.22658

    Article  CAS  Google Scholar 

  328. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.05.072

  329. Zielińska B, Grzechulska J, Kaleńczuk RJ, Morawski AW (2003) The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide. Appl Catalysis B: Environ 45(4):293–300

    Google Scholar 

  330. Zoschke K, Börnick H, Worch E (2014) Vacuum-UV radiation at 185nm in water treatment-a review. Water Res. https://doi.org/10.1016/j.watres.2013.12.034

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligy Philip .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nippatlapalli, N., Philip, L. (2021). Advanced Oxidation Processes for Dye Removal. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_4

Download citation

Publish with us

Policies and ethics