Skip to main content

Recent Updates on Bacterial Secondary Metabolites to Overcome Antibiotic Resistance in Gram-Negative Superbugs: Encouragement or Discontinuation?

  • Chapter
  • First Online:
Antimicrobial Resistance

Abstract

The rapid spread of COVID-19 has dramatically changed our perspective about how we should be well prepared for upcoming health disasters in the future. Like COVID-19, the world does not seem prepared to fight the slow-moving pandemic, i.e., antimicrobial resistance (AMR). At present, more than 7,00,000 people per year across the globe succumb to drug-resistant infections. According to several reports, if we fail to respond, AMR could lead to the loss of ten million lives and trillions of money by 2050. Among the different pathogens affecting human health, the World Health Organization (WHO) has recently announced a priority list of drug-resistant bacteria to pave the way for the development of new antibiotics. Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most notorious ones and are responsible for the majority of healthcare-associated infections. These pathogens come under the critical threat category because they express resistance to all of the current antibiotics. The modern combinatorial chemistry approaches and chemical genomics have been unsuccessful to provide enough new antibiotics. In stark contrast to this, natural products have been gifted with remarkable chemical diversity and biological activity. Our modern antibiotic armamentarium was built from microbes’ natural products, especially Streptomyces spp. and Bacillus spp. isolated in the golden era. Today, the antibiotic discovery pipeline has almost dried up, in part due to the rediscovery of already known compounds from bacteria, and no new classes emerged from bacteria until recently. These novel natural antibacterial agents from bacteria resurged a spark in the exploitation of bacteria to find new chemical entities. This chapter mainly focuses on natural antimicrobials and adjuvants isolated from the bacterial domain in the last two decades, i.e., from 2001 to 2020, and their status to fight drug-resistant Gram-negative superbugs. We have also described briefly the discovery of synthetic compounds based on natural scaffolds. In conclusion, the bacterial natural products comprise a goldmine to fight superbugs, and future research should be focused on exploring new antimicrobials from bacterial diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHLs:

Acyl-homoserine lactones

AMR:

Antimicrobial resistance

BAM:

β-barrel assembly machinery

BLIs:

β-lactamase inhibitors

CDC:

Centers for Disease Control and Prevention

CRE:

Carbapenem-resistant Enterobacteriaceae

Da:

Dalton

EPIs:

Efflux pump inhibitors

EPS:

Extracellular polymeric substances

ESBL:

Extended-spectrum β-lactamase

FDA:

Food and Drug Administration

g:

Grams

h:

Hour

IC50:

Half-maximal inhibitory concentration

ICU:

Intensive care unit

LD50:

Lethal dose, 50%

LPS:

Lipopolysaccharides

M.S.:

Mass spectrometry

MBC:

Minimum bactericidal concentration

mcr :

Mobilized colistin-resistant gene

MDR:

Multiple drug resistant

MIC:

Minimum inhibitory concentration

mM:

Millimolar

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

MW:

Molecular weight

NMR:

Nuclear magnetic resonance

NRP(s):

Nonribosomal peptide(s)

NRPS:

Nonribosomal peptide synthetases

OM:

Outer membrane

PK:

Pharmacokinetics

PABA:

Para-aminobenzoic acid

PD:

Pharmacodynamics

PDR:

Pan drug resistant

PNBA:

Para-nitrobenzoic acid

QS:

Quorum sensing

QSIs:

Quorum sensing inhibitors

RBCs:

Red blood cells

Ripp(s):

Ribosomally synthesized and posttranslationally modified peptide(s)

RMAs:

Resistance modifying agents

RND:

Resistance nodulation and cell division

SAR:

Structure-activity relationship

WHO:

World Health Organization

XDR:

Extensively drug resistant

μg:

Microgram

μl:

Microliter

References

  • Abou Fayad A, Herrmann J, Müller R (2018) Octapeptins: lipopeptide antibiotics against multidrug-resistant superbugs. Cell Chem Biol 25:351–353

    Article  CAS  PubMed  Google Scholar 

  • Aggen JB et al (2009) Synthesis, structure and in vitro activity of the neoglycoside ACHN-490. In: 49th annual interscience conference on antimicrobial agents and chemotherapy (ICAAC), California, pp 12–15

    Google Scholar 

  • Aggen JB et al (2010) Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother 54:4636–4642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Ayed K, Ballantine RD, Zhong Z, Li Y, Cochrane S, Martin N (2021) Total synthesis of the Brevicidine and Laterocidine family of lipopeptide antibiotics

    Google Scholar 

  • Amaral L, Martins A, Spengler G, Molnar J (2014) Efflux pumps of Gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol 4:168

    Article  PubMed Central  PubMed  Google Scholar 

  • Aoki T et al (2018) A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multidrug resistant bacteria: structure activity relationship. Eur J Med Chem 155:847–868

    Article  CAS  PubMed  Google Scholar 

  • Balan SS, Kumar CG, Jayalakshmi S (2016) Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK-47: purification, characterization and its biological evaluation. Process Biochem 51:2198–2207

    Article  CAS  Google Scholar 

  • Bann SJ, Ballantine RD, Cochrane SA (2021) The tridecaptins: nonribosomal peptides that selectively target gram-negative bacteria. RSC Med Chem 12:538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baumann S et al (2014) Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed 53:14605–14609

    Article  CAS  Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385

    Article  Google Scholar 

  • Blanco P, Sanz-García F, Hernando-Amado S, Martínez JL, Alcalde-Rico M (2018) The development of efflux pump inhibitors to treat Gram-negative infections. Expert Opin Drug Discovery 13:919–931

    Article  CAS  Google Scholar 

  • Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M (2016) New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21:877

    Article  PubMed Central  Google Scholar 

  • Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336

    Article  CAS  PubMed  Google Scholar 

  • Brown P, Dawson MJ (2017) Development of new polymyxin derivatives for multidrug resistant Gram-negative infections. J Antibiot 70:386–394

    Article  CAS  Google Scholar 

  • Butler MS, Paterson DL (2020) Antibiotics in the clinical pipeline in October 2019. J Antibiot 73:329–364

    Article  CAS  Google Scholar 

  • Ch’ng J-H, Chong KK, Lam LN, Wong JJ, Kline KA (2019) Biofilm-associated infection by enterococci. Nat Rev Microbiol 17:82–94

    Article  PubMed  Google Scholar 

  • Chang H, Zhou J, Zhu X, Yu S, Chen L, Jin H, Cai Z (2017) Strain identification and quorum sensing inhibition characterization of marine-derived rhizobium sp. NAO1. R Soc Open Sci 4:170025

    Article  PubMed Central  PubMed  Google Scholar 

  • Cho KW, Lee H-S, Rho J-R, Kim TS, Mo SJ, Shin J (2001) New lactone-containing metabolites from a marine-derived bacterium of the genus Streptomyces. J Nat Prod 64:664–667

    Article  CAS  PubMed  Google Scholar 

  • Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541

    Article  CAS  PubMed  Google Scholar 

  • Coates AR, Halls G, Hu Y (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163:184–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cochrane SA, Vederas JC (2014) Unacylated tridecaptin A1 acts as an effective sensitiser of gram-negative bacteria to other antibiotics. Int J Antimicrob Agents 44:493–499

    Article  CAS  PubMed  Google Scholar 

  • Control CfD, Prevention (2013) Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, U.S. Department of Health and Human Services

    Google Scholar 

  • Corbett D et al (2017) Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother 61:8

    Article  Google Scholar 

  • Courtwright DT (2009) Forces of habit. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim et Biophys Acta 1794:808–816

    Article  CAS  Google Scholar 

  • Dobretsov S, Teplitski M, Alagely A, Gunasekera SP, Paul VJ (2010) Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environ Microbiol Rep 2:739–744

    Article  CAS  PubMed  Google Scholar 

  • Elemam A, Rahimian J, Doymaz M (2010) In vitro evaluation of antibiotic synergy for polymyxin B-resistant carbapenemase-producing Klebsiella pneumoniae. J Clin Microbiol 48:3558–3562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elgaher WA et al (2020) Cystobactamid 507: concise synthesis, mode of action and optimization toward more potent antibiotics. Chemistry: European J 26:7219

    Article  CAS  Google Scholar 

  • Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM (2019) Plazomicin: a novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 79:243–269

    Article  CAS  PubMed  Google Scholar 

  • Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol 36:26–36

    Article  CAS  PubMed  Google Scholar 

  • FDA USFaDA (2015) Drugs@FDA data files

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226

    CAS  PubMed Central  Google Scholar 

  • Flemming H-C, Wuertz S (2019) Bacteria and archaea on earth and their abundance in biofilms. Nat Rev Microbiol 17:247–260

    Article  CAS  PubMed  Google Scholar 

  • Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M (2006) High-throughput screening: update on practices and success. J Biomol Screen 11:864–869

    Article  PubMed  Google Scholar 

  • Giorgi EE (2016) The antibacterial resistance threat: are we heading toward a postantibiotic era? http://www.huffingtonpost.in/entry/the-antibacterial-resista_b_9579234. Accessed 3 Oct 2016

  • Gowrishankar S, Pandian SK, Balasubramaniam B, Balamurugan K (2019) Quorum quelling efficacy of marine cyclic dipeptide-cyclo (L-leucyl-L-prolyl) against the uropathogen Serratia marcescens. Food Chem Toxicol 123:326–336

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Huang E, Yuan C, Zhang L, Yousef AE (2012) Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic. Appl Environ Microbiol 78:3156–3165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RK, Setia S, Harjai K (2011) Expression of quorum sensing and virulence factors are interlinked in Pseudomonas aeruginosa: an in vitro approach. Am J Biomed Sci 3:116–125

    Article  CAS  Google Scholar 

  • Hassan R, Shaaban MI, Abdel Bar FM, El-Mahdy AM, Shokralla S (2016) Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil. Front Microbiol 7:659

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang E (2013) A novel broad-spectrum lipopeptide antimicrobial agent, paenibacterin, against drug-resistant bacteria: structural elucidation, biosynthesis, and mechanisms of action

    Google Scholar 

  • Huang E, Yang X, Zhang L, Moon SH, Yousef AE (2017) New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol Lett 364:8

    Article  Google Scholar 

  • Hunt D et al. (2010) TP-434 is a novel broad-spectrum fluorocycline. In: 50th interscience conference on antimicrobial agents and chemotherapy conference, Boston

    Google Scholar 

  • Hüttel S et al (2017) Discovery and total synthesis of natural Cystobactamid derivatives with superior activity against gram-negative pathogens. Angew Chem Int Ed 56:12760–12764

    Article  Google Scholar 

  • Imai Y et al (2019) A new antibiotic selectively kills gram-negative pathogens. Nature 576:459–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jangra M, Raka V, Nandanwar H (2020) In vitro evaluation of antimicrobial peptide Tridecaptin M in combination with other antibiotics against multidrug resistant Acinetobacter baumannii. Molecules 25:3255

    Article  CAS  PubMed Central  Google Scholar 

  • Jangra M et al (2018) Purification, characterization and in vitro evaluation of polymyxin a from Paenibacillus dendritiformis: an underexplored member of the polymyxin family. Front Microbiol 9:2864

    Article  PubMed Central  PubMed  Google Scholar 

  • Jangra M et al (2019) Tridecaptin M, a new variant discovered in mud bacterium, shows activity against colistin-and extremely drug-resistant Enterobacteriaceae. Antimicrob Agents Chemother 63:6

    Article  Google Scholar 

  • Jeffreys D (2008) Aspirin: the remarkable story of a wonder drug. Bloomsbury Publishing, New York

    Google Scholar 

  • Jukes TH (1985) Some historical notes on chlortetracycline. Rev Infect Dis 7:702–707

    Article  CAS  PubMed  Google Scholar 

  • Kollef MH, Golan Y, Micek ST, Shorr AF, Restrepo MI (2011) Appraising contemporary strategies to combat multidrug resistant gram-negative bacterial infections–proceedings and data from the gram-negative resistance summit. Clin Infect Dis 53:S33–S55

    Article  PubMed Central  PubMed  Google Scholar 

  • Kunz AN, Brook I (2010) Emerging resistant Gram-negative aerobic bacilli in hospital-acquired infections. Chemotherapy 56:492–500

    Article  CAS  PubMed  Google Scholar 

  • Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13:e1001974

    Article  PubMed Central  PubMed  Google Scholar 

  • Laxminarayan R et al (2013) Antibiotic resistance—the need for global solutions. Lancet Infect Dis 13:1057–1098

    Article  PubMed  Google Scholar 

  • Lebreton F et al (2013) Emergence of epidemic multidrug-resistant enterococcus faecium from animal and commensal strains. MBio 4:e00534

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee MD et al (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56:81–85

    Article  CAS  PubMed  Google Scholar 

  • Lee YR, Burton CE (2019) Eravacycline, a newly approved fluorocycline. Eur J Clin Microbiol Infect Dis 38:1787–1794

    Article  CAS  PubMed  Google Scholar 

  • Leese RA (2013) Antibiotic compositions for the treatment of gram negative infections. Google Patents

    Google Scholar 

  • Lewis K (2012) Antibiotics: recover the lost art of drug discovery. Nature 485:439

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2017) New approaches to antimicrobial discovery. Biochem Pharmacol 134:87–98

    Article  CAS  PubMed  Google Scholar 

  • Li Y-X, Zhong Z, Zhang W-P, Qian P-Y (2018) Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Commun 9:1–9

    Google Scholar 

  • Line J et al (2008) Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother 52:1094–1100

    Article  CAS  PubMed  Google Scholar 

  • Ling LL et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu J, Smith PA, Steed DB, Romesberg F (2013) Efforts toward broadening the spectrum of arylomycin antibiotic activity. Bioorg Med Chem Lett 23:5654–5659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu X, Xu QZ, Shen Y, Liu X, Jiao B, Zhang W, Ni K (2008) Macrolactin S, a novel macrolactin antibiotic from marine Bacillus sp. Nat Prod Res 22:342–347

    Article  CAS  PubMed  Google Scholar 

  • MacNair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, Brown ED (2018) Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat Commun 9:1–8

    Article  CAS  Google Scholar 

  • Macone A, Donatelli J, Dumont T, Levy S, Tanaka S, Levy S (2003) In-vitro activity of PTK0796 against gram-positive and gram-negative organisms. In: Proceedings of the 43rd interscience conference on antimicrobial agents and chemotherapy, American Society of Microbiology, Washington, DC

    Google Scholar 

  • Macone A et al (2014) In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline. Antimicrob Agents Chemother 58:1127–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magiorakos AP et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281

    Article  CAS  PubMed  Google Scholar 

  • Maiti PK, Das S, Sahoo P, Mandal S (2020) Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci Rep 10:1–12

    Article  Google Scholar 

  • Maiti PK, Mandal S (2019) Majority of actinobacterial strains isolated from Kashmir Himalaya soil are rich source of antimicrobials and industrially important biomolecules. Adv Microbiol 9:220

    Article  CAS  Google Scholar 

  • McKenzie NL, Thaker M, Koteva K, Hughes DW, Wright GD, Nodwell JR (2010) Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. J Antibiot 63:177–182

    Article  CAS  Google Scholar 

  • Miao L, Xu J, Yao Z, Jiang Y, Zhou H, Jiang W, Dong K (2017) The anti-quorum sensing activity and bioactive substance of a marine derived Streptomyces. Biotechnol Biotechnol Equip 31:1007–1015

    Article  CAS  Google Scholar 

  • Naghmouchi K, Le Lay C, Baah J, Drider D (2012) Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants. Res Microbiol 163:101–108

    Article  CAS  PubMed  Google Scholar 

  • Naik D, Wahidullah S, Meena R (2013) Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate–derived Streptomyces sp. Lett Appl Microbiol 56:197–207

    Article  CAS  PubMed  Google Scholar 

  • Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32

    Article  CAS  PubMed  Google Scholar 

  • Ohadi M, Forootanfar H, Dehghannoudeh G, Eslaminejad T, Ameri A, Shakibaie M, Adeli-Sardou M (2020) Antimicrobial, anti-biofilm, and anti-proliferative activities of lipopeptide biosurfactant produced by Acinetobacter junii B6. Microb Pathog 138:103806

    Article  CAS  PubMed  Google Scholar 

  • Pantel L et al (2018) Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol Cell 70:83–94

    Article  CAS  PubMed  Google Scholar 

  • Project AR (2019) Antibiotics currently in global clinical development. The PEW Charitable Trusts, Philadelphia

    Google Scholar 

  • Qian C-D et al (2012) Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant gram-negative bacteria. Antimicrob Agents Chemother 56:1458–1465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quale J et al (2012) Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary gram-negative pathogens in New York City. Microb Drug Resist 18:132–136

    Article  CAS  PubMed  Google Scholar 

  • Racine E, Gualtieri M (2019) From worms to drug candidate: the story of odilorhabdins, a new class of antimicrobial agents. Front Microbiol 10:2893

    Article  PubMed Central  PubMed  Google Scholar 

  • Racine E et al (2018) In vitro and in vivo characterization of NOSO-502, a novel inhibitor of bacterial translation. Antimicrob Agents Chemother 62:9

    Article  Google Scholar 

  • Rebuffat SF, Telhig S, Said LB, Zirah S, Ismail F (2020) Bacteriocins to thwart bacterial resistance in Gram-negative bacteria. Front Microbiol 11:2807

    Google Scholar 

  • Reich F, Atanassova V, Klein G (2013) Extended-spectrum β-lactamase-and AmpC-producing enterobacteria in healthy broiler chickens. Germany Emerg Infect Dis 19:1253–1259

    Article  CAS  PubMed  Google Scholar 

  • Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081

    Article  PubMed  Google Scholar 

  • Rossiter SE, Fletcher MH, Wuest WM (2017) Natural products as platforms to overcome antibiotic resistance. Chem Rev 117:12415–12474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sacco LP, Castellane TCL, Polachini TC, de Macedo Lemos EG, LMC A (2019) Exopolysaccharides produced by Pandoraea shows emulsifying and anti-biofilm activities. J Polymer Res 26:1–11

    Article  CAS  Google Scholar 

  • Saga T, Yamaguchi K (2009) History of antimicrobial agents and resistant bacteria. JMAJ 52:103

    Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:1–8

    Article  Google Scholar 

  • Sarciaux M et al (2018) Total synthesis and structure–activity relationships study of Odilorhabdins, a new class of peptides showing potent antibacterial activity. J Med Chem 61:7814–7826

    Article  CAS  PubMed  Google Scholar 

  • Satputea KS, Banpurkar GA, Banat MI, Sangshetti NJ, Patil HR, Gade NW (2016) Multiple roles of biosurfactants in biofilms. Curr Pharm Des 22:1429–1448

    Article  CAS  PubMed  Google Scholar 

  • Saurav K, Costantino V, Venturi V, Steindler L (2017) Quorum sensing inhibitors from the sea discovered using bacterial N-acyl-homoserine lactone-based biosensors. Mar Drugs 15:53

    Article  PubMed Central  Google Scholar 

  • Saurav K et al (2016) In search of alternative antibiotic drugs: Quorum-quenching activity in sponges and their bacterial isolates. Front Microbiol 7:416

    Article  PubMed Central  PubMed  Google Scholar 

  • Schimana J et al (2002) Arylomycins a and B, new Biaryl-bridged Lipopeptide antibiotics produced by Streptomyces sp. Tü 6075 I. J Antibiotics 55:565–570

    Article  CAS  Google Scholar 

  • Smith PA et al (2018) Optimized arylomycins are a new class of gram-negative antibiotics. Nature 561:189–194

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A et al (2011) New target for inhibition of bacterial RNA polymerase:‘switch region’. Curr Opin Microbiol 14:532–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stratton CF, Newman DJ, Tan DS (2015) Cheminformatic comparison of approved drugs from natural product versus synthetic origins. Bioorg Med Chem Lett 25:4802–4807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutcliffe J, O'Brien W, Fyfe C, Grossman T (2013) Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 57:5548–5558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutherland R (1991) β-lactamase inhibitors and reversal of antibiotic resistance. Trends Pharmacol Sci 12:227–232

    Article  PubMed  Google Scholar 

  • Svetoch E et al (2009) Antimicrobial activities of bacteriocins E 50–52 and B 602 against antibiotic-resistant strains involved in nosocomial infections. Probiot Antimicrob Protein 1:136–142

    Article  CAS  Google Scholar 

  • Tacconelli E et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327

    Article  PubMed  Google Scholar 

  • Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC (2011) Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Marine Biotechnol 13:722–732

    Article  CAS  Google Scholar 

  • Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572

    Article  CAS  PubMed  Google Scholar 

  • Testolin G et al (2020) Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high in vivo efficacy. Chem Sci 11:1316–1334

    Article  CAS  Google Scholar 

  • Tzouvelekis L, Markogiannakis A, Psichogiou M, Tassios P, Daikos G (2012) Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaara M (2019) Polymyxins and their potential next generation as therapeutic antibiotics. Front Microbiol 10:1689

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750

    Article  PubMed  Google Scholar 

  • van der Mee-Marquet N et al (2011) Emergence of unusual bloodstream infections associated with pig-borne–like Staphylococcus aureus ST398 in France. Clin Infect Dis 52:152–153

    Article  PubMed  Google Scholar 

  • Vasoo S, Barreto JN, Tosh PK (2015) Emerging issues in gram-negative bacterial resistance: an update for the practicing clinician. In: Mayo clinic proceedings, vol 3. Elsevier, Amsterdam, pp 395–403

    Google Scholar 

  • Velkov T, Roberts KD (2019) Discovery of novel polymyxin-like antibiotics polymyxin antibiotics: from laboratory bench to bedside. Springer, Cham, pp 343–362

    Book  Google Scholar 

  • Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting gram-negative ‘superbugs’. ACS Chem Biol 9:1172–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velkov T et al (2018) Structure, function, and biosynthetic origin of octapeptin antibiotics active against extensively drug-resistant gram-negative bacteria. Cell Chem Biol 25:380–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y et al (2012) Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS One 7:e37152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein MJ, Marquez JA, Testa RT, Wagman GH, Oden EM, Waitz JA (1970) Antibiotic 6640, a new micromonospora-produced aminoglycoside antibiotic. Journal of Antibiotics 23:551–554

    Article  CAS  PubMed  Google Scholar 

  • Whalen KE, Poulson-Ellestad KL, Deering RW, Rowley DC, Mincer TJ (2015) Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3, 4-dibromopyrrole-2, 5-dione isolated from a Pseudoalteromonas sp. J Nat Prod 78:402–412

    Article  CAS  PubMed  Google Scholar 

  • WHO (2016) Antimicrobial resistance: fact sheet. http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed 2 Oct 2016

  • Wright GD (2014) Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol 60:147–154

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2017) Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 34:694–701

    Article  CAS  PubMed  Google Scholar 

  • Zhanel GG et al (2019) Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 79:271–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang RG et al (2002) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Lepak AJ, Marchillo K, VanHecker J, Andes DR (2018) In vivo pharmacodynamic characterization of a novel odilorhabdin antibiotic, NOSO-502, against Escherichia coli and Klebsiella pneumoniae in a murine thigh infection model. Antimicrob Agents Chemother 62:5

    Article  Google Scholar 

  • Zhu T et al (2013) Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis: miniperspective. J Med Chem 56:6560–6572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zipperer A et al (2016) Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemraj Nandanwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jangra, M. et al. (2022). Recent Updates on Bacterial Secondary Metabolites to Overcome Antibiotic Resistance in Gram-Negative Superbugs: Encouragement or Discontinuation?. In: Kumar, V., Shriram, V., Paul, A., Thakur, M. (eds) Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-3120-7_14

Download citation

Publish with us

Policies and ethics