Skip to main content

Nanocellulose-Based Membranes for the Removal of Dyes from Aquatic Systems

  • Chapter
  • First Online:
Novel Materials for Dye-containing Wastewater Treatment

Abstract

Conventional methods used in dye removal have limited efficiencies. Due to its eco-friendliness and other desirable characteristics, such as biodegradation, environmental friendliness, nontoxicity, excellent thermal and mechanical properties, and ease of modification, cellulose has found application in fabrication of membranes for dye removal from wastewater. Unlike the bulk form, the properties of nanocellulose include high mechanical strength and high surface area, giving it potential for the fabrication of high-efficiency membranes. This stems primarily from the abundant surface OH groups. Moreover, nanocellulose affords a high aspect ratio, a large population of active binding sites, resulting in high adsorption capacity for a range of pollutants including dyes. The major challenge in the design of nanocellulose-based membranes is ensuring adequate access to reactive sites, together with maintaining high flux and mechanical stability. Generally, incorporating nanomaterials into the membrane matrix reduces fouling. This chapter reviews literature on the use of nanocellulose-based membranes in the remediation of dye-polluted wastewater. The specific objectives are: (1) to evaluate literature on the synthesis and fabrication of nanocellulose-based membranes and (2) to link the physico-chemical properties of the membranes to their dye removal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soon CY, Rahman NA, Tee YB, Talib RA, Tan CH, Abdan K, Chan EWC (2019) Electrospun biocomposite: nanocellulose and chitosan entrapped within a poly(hydroxyalkanoate) matrix for Congo red removal. J Mater Res Technol 8(6):5091–5102

    Google Scholar 

  2. Ao C, Zhao J, Li Q, Zhang J, Huang B, Wang Q, Gai J, Chen Z, Zhang W, Lu C (2020) Biodegradable all-cellulose composite membranes for simultaneous oil/water separation and dye removal from water. Carbohydr Polym 250:116872

    Google Scholar 

  3. Tan H-F, Ooi BS, Leo CP (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng 37:101502

    Google Scholar 

  4. Farooq, A, Patoary MK, Zhang M, Mussana H, Li M, Naeem MA, Mushtaq M, Farooq A, Liu L (2020) Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 154:1050–1073

    Google Scholar 

  5. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Johan MRB, Fen LB (2020) Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 110:103884

    Google Scholar 

  6. Dai H, Ou S, Huang Y, Huang H (2018) Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25:1743–1756

    Article  CAS  Google Scholar 

  7. Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol 152:616–632

    Google Scholar 

  8. Amiralian N, Mustapi M, Hossain MSA, Wang C, Konarova M, Tang J, Na J, Khan A, Rowan A (2020) Magnetic nanocellulose: A potential material for removal of dye from water. J Hazard Mater 394:122571

    Google Scholar 

  9. Yin X, Zhang Z, Ma H, Venkateswaran S, Hsiao BS (2020) Ultra-fine electrospun nanofibrous membranes for multicomponent wastewater treatment: Filtration and adsorption. Sep Purif Technol 242:116794

    Google Scholar 

  10. Ditzel FI, Prestes E, Carvalho BM, Demiate IM, Pinheiro LA (2017) Nanocrystalline cellulose extracted from pine wood and corncob. Carbohyd Polym 157:1577–1585

    Article  CAS  Google Scholar 

  11. Feng X, Meng X, Zhao J, Miao M, Shi L, Zhang S, Fang J (2015) Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22:1763–1772

    Article  CAS  Google Scholar 

  12. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99

    Article  CAS  Google Scholar 

  13. Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616

    Article  CAS  Google Scholar 

  14. Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls. Ind Crop Prod 42:480–488

    Google Scholar 

  15. Santos RMD, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agrowaste. Ind Crop Prod 50:707–714

    Google Scholar 

  16. Klemm D, Cranston E, Fischer D, Gama M, Kedzior S, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfuß F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21:720–748

    Article  CAS  Google Scholar 

  17. Shahnaz T, Fazil MM, Padmanaban VC, Narayanasamy S (2020) Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int J Biol Macromol 151:322–332

    Google Scholar 

  18. Poletto M, Pistor V, Zattera AJ (2013) Structural characteristics and thermal properties of native cellulose. In: Cellulose—fundamental aspects, Chapter 2. IntechOpen, pp 45–68

    Google Scholar 

  19. Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282

    Google Scholar 

  20. Khalil HPS, Saurabh CK, Adnan AS, Fazita MR, Syakira MI, Davoudpoura Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosancellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr Polym 150:216–226

    Google Scholar 

  21. Bai L, Liu Y, Bossa N, Ding A, Ren N, Li G, Liang H, Wiesner MR (2018) incorporation of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration membranes for enhanced separation performance and antifouling properties. Environ Sci Technol 52:11178–11187

    Article  CAS  Google Scholar 

  22. Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428

    Google Scholar 

  23. Wang Z, Zhang W, Yu J, Zhang L, Liu L, Zhou X, Huang C, Fan Y (2019) Preparation of nanocellulose/filter paper (NC/FP) composite membranes for high-performance filtration. Cellulose 26:1183–1194

    Article  CAS  Google Scholar 

  24. Ang MBMY, Devanadera KPO, Duena ANR, Luo Z, Chiao Y, Millare JC, Aquino RR, Huang S, Lee K (2021) Modifying cellulose acetate mixed-matrix membranes for improved oil–water separation: Comparison between sodium and organo-montmorillonite as particle additives. Membranes 11:80. https://doi.org/10.3390/membranes11020080

  25. Karim Z, Matthew AP, Grahn M, Mouzan J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydr Polym 112:668–676

    Article  CAS  Google Scholar 

  26. Mohammed S, Hegab H, Ou R, Liu S, Ma H, Chen X, Sridhar T, Wang H (2020) Effect of oxygen plasma treatment on the nanofiltration performance of reduced graphene oxide/cellulose nanofiber composite membranes. Green Chem Eng. https://doi.org/10.1016/j.gce.2020.12.001

    Article  Google Scholar 

  27. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Google Scholar 

  28. Yu S, Chen Z, Cheng Q, Lü Z, Liu M, Gao C (2012) Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions. Sep Purif Technol 88:121–129

    Google Scholar 

  29. Chen Q, Yu P, Huang W, Yu S, Liu M, Gao C (2015) High-flux composite hollow fiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal. J Membr Sci 492:312–321

    Google Scholar 

  30. Falca G, Musteata V, Behzad AR, Chisca S, Nunes SP (2019) Cellulose hollow fibers for organic resistant nanofiltration. J Membr Sci 586:151–161

    Google Scholar 

  31. Liang Y, Ma H, Taha AA, Hsiao BS (2020) High-flux anti-fouling nanofibrous composite ultrafiltration membranes containing negatively charged water channels. J Membr Sci 612:118382

    Google Scholar 

  32. Soyekwo F, Zhang Q, Gao R, Yan Qu, Lin C, Huang X, Zhu A, Liu Q (2017) Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification. J Membr Sci 524:174–185

    Google Scholar 

  33. Sukma FM, Çulfaz-Emecen PZ (2018) Cellulose membranes for organic solvent nanofiltration. J Membr Sci 545:329–336

    Google Scholar 

  34. Nair SS, Zhu JY, DengY RAJ (2014) High performance green barriers based on nanocellulose. Sustain Chem Process 2:23

    Article  Google Scholar 

  35. Bai L, Liu Y, Ding A, Ren N, Li G, Liang H (2019) Surface coating of UF membranes to improve antifouling properties: a comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Chemosphere 217:76–84

    Article  CAS  Google Scholar 

  36. Tang J, Song Y, Zhao F, Spinney S, Bernardes JS, Tam KC (2019) Compressible cellulose nanpfibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412

    Article  CAS  Google Scholar 

  37. Vilela C, Moreirinha C, Almeida A, Silverstre AJD, Freire CSR (2019) Zwitterionic nanocellulose-based membranes for organic dye removal. Materials 12(9):1404–1420

    Article  CAS  Google Scholar 

  38. Xie K, Zhao W, He X (2011) Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr Polym 83:1516–1520

    Article  CAS  Google Scholar 

  39. Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2016) Effective removal of cationic dyes using carboxylated-functionalized cellulose nanocrystals. Chemosphere 141:297–303

    Article  Google Scholar 

  40. Jin L, Li W, Xu Q, Sun Q (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456

    Article  CAS  Google Scholar 

  41. Jin L, Sun Q, Xu Q, Xu Y (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355

    Article  CAS  Google Scholar 

  42. Zhu W, Liu L, Liao Q, Chen X, Qian Z, Shen J, Liang J, Yao J (2016) Functionalization of cellulose with hyperbranched polyethylenimine for selective dye adsorption and separation. Cellulose 23:3785–3797

    Article  CAS  Google Scholar 

  43. Muqeet M, Mahar RB, Gadhi TA, Halima NB (2020) Insight into cellulose-based-nanomaterials—a pursuit of environmental remedies. Int J Biol Macromol 163:1480–1486

    Article  CAS  Google Scholar 

  44. Putro JN, Santoso SP, Soetaredjo FE, Ismadji S, Ju Y (2019) Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal. Environ Nanotechnol Monit Manag 12:100260.

    Google Scholar 

  45. Teo HL, Wahab RA (2020) Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: a review. Int J Biol Macromol 161:1414–1430

    Article  CAS  Google Scholar 

  46. Wang DA (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701

    Article  CAS  Google Scholar 

  47. Hu Y, Yue M, Yuan F, Yang L, Chen C, Sun D (2021) Bio-inspired fabrication of highly permeable and anti-fouling ultrafiltration membranes based on bacterial cellulose for efficient removal of soluble dyes and insoluble oils. J Membr Sci 621:118982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhamo Chaukura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaukura, N., Masilompane, T.M., Motsamai, M., Hunt, A., Phungula, K.V. (2021). Nanocellulose-Based Membranes for the Removal of Dyes from Aquatic Systems. In: Muthu, S.S., Khadir, A. (eds) Novel Materials for Dye-containing Wastewater Treatment . Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-2892-4_6

Download citation

Publish with us

Policies and ethics