Skip to main content

Design and Development of a Bed-Side Cardiac Health Monitoring Device

  • Chapter
  • First Online:
BioSensing, Theranostics, and Medical Devices

Abstract

World Health Organization (WHO) predicts cardiovascular ailments as one of the major causes of death worldwide. American Heart Association (AHA), in one of its reports in 2017, predicted the number of deaths due to cardiovascular diseases (CVD) to be 23.6 million by 2030. This alarming trend, in the advent of CVDs, calls for an accurate and cost-effective method for detection of precursors to CVDs.

Hemodynamic monitoring, such as pressure pulses, venous pressure, cardiac output, has been traditionally used by clinicians in the past. This type of hemodynamic monitoring is invasive in nature, costly, requires on-site supervision and also involves risks of surgical complications. In order to avoid these complications, an alternative non-invasive method, known as Impedance Cardiography (ICG) was proposed by various researchers. In impedance cardiography, an alternating current flows through the body fluid which has very low electrical resistance when applied to human body. When electric potential is applied to the human body, the tissue exhibits electrical property called the Bio-Impedance. Compared to bone, fat, or air, current flows easily through those parts of the body which are composed mostly of water (blood, urine, and muscle). This chapter discusses a cost-effective, easy-to-use device, based on ICG, for the detection of advent of any cardiac anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    a,b,c,d,e,f,g,h,i Reprinted from,“A 2d electrode-skin model for electrical & contact impedance char- acterization of bio impedance”, by S. Ghosh, M. Mahadevappa and J. Mukhopadhyay, 2016 IEEE Region 10 Conference (TENCON), pp. 2292–2295, IEEE, 2016, with permission from IEEE, (licence No.: 4943680947059)

  2. 2.

    1,2,3,4Reprinted from,“Estimation of echocardiogram parameters with the aid of impedance car- diography and artificial neural networks”, by S. Ghosh, B. P. Chattopadhyay, R. M. Roy, J. Mukherjee, and M. Mahadevappa, Artificial intelligence in medicine, vol. 96, pp. 45–58, 2019, with permission from Elsevier, (Licence No.: 4943690013102)

  3. 3.

    The authors declare that a patent has been filed for the device discussed in this chapter, vide application number KOL/201831001822

References

  1. Bigatello, L., & George, E. (2002). Hemodynamic monitoring. Minerva Anestesiologica, 68(4), 219–225.

    CAS  PubMed  Google Scholar 

  2. Kubicek, W. G. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37, 1208–1212.

    CAS  PubMed  Google Scholar 

  3. Dehghan, M., & Merchant, A. T. (2008). Is bioelectrical impedance accurate for use in large epidemiological studies? Nutrition Journal, 7(1), 26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Batyuk, L., & Kizilova, N. (2018). Modeling of dielectric permittivity of the erythrocytes membrane as a three-layer model. In Development trends in medical science and practice: the experience of countries of Eastern Europe and prospects of Ukraine: monograph (pp. 18–37).

    Google Scholar 

  5. Palko, T., & Galwas, B. (1999). Electrical properties of biological tissues, their mea- surements and biomedical applications. Automedica, 17(4), 343.

    Google Scholar 

  6. Wtorek, J., Polinski, A., Stelter, J., & Nowakowski, A. (1998). Cell for measurements of biological tissue complex conductivity. Technology and Health Care, 6(2), 177–193.

    Article  CAS  PubMed  Google Scholar 

  7. Martinsen, O. G., & Grimnes, S. (2011). Bioimpedance and bioelectricity basics. Academic Press.

    Google Scholar 

  8. Wtorek, J., & Polinski, A. (2005). The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Transactions on Biomedical Engineering, 52(1), 41–49.

    Article  PubMed  Google Scholar 

  9. Geddes, L. A., & Baker, L. E. (1967). The specific resistance of biological material–a compendium of data for the biomedical engineer and physiologist. Medical & Biological Engineering, 5(3), 271–293.

    Article  CAS  Google Scholar 

  10. Malmivuo, J., Plonsey, R., et al. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press.

    Book  Google Scholar 

  11. Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., Oswald-Mammosser, M., Mettauer, B., Geny, B., & Lonsdorfer, J. (2000). A new impedance cardio- graph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” fick method. European Journal of Applied Physiology, 82(4), 313–320.

    Article  CAS  PubMed  Google Scholar 

  12. Geddes, L., & Sadler, C. (1973). The specific resistance of blood at body temperature. Medical & Biological Engineering, 11(3), 336–339.

    Article  CAS  Google Scholar 

  13. Nyboer, J. (1950). Plethysmography. Impedance. Medical Physics, 2, 736–743.

    Google Scholar 

  14. Nyboer, J., Kreider, M. M., & Hannapel, L. (1950). Electrical impedance plethysmog- raphy: a physical and physiologic approach to peripheral vascular study. Circulation, 2(6), 811–821.

    Article  CAS  PubMed  Google Scholar 

  15. Boer, P., Roos, J., Geyskes, G., & Mees, E. (1979). Measurement of cardiac out- put by impedance cardiography under various conditions. The American Journal of Physiology - Heart and Circulatory Physiology, 237(4), H491–H496.

    Article  CAS  Google Scholar 

  16. Porter, J., & Swain, I. (1987). Measurement of cardiac output by electrical impedance plethysmography. Journal of Biomedical Engineering, 9(3), 222–231.

    Article  CAS  PubMed  Google Scholar 

  17. Ito, H., Yamakoshi, K., & Togawa, T. (1976). Transthoracic admittance plethysmo- graph for measuring cardiac output. Journal of Applied Physiology, 40(3), 451–454.

    Article  CAS  PubMed  Google Scholar 

  18. Keim, H. J., Wallace, J. M., Thurston, H., Case, D. B., Drayer, J., & Laragh, J. H. (1976). Impedance cardiography for determination of stroke index. Journal of Applied Physiology, 41(5), 797–799.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, F., Penney, B., Patwardhan, N., & Wheeler, H. (1980). Impedance plethys- mography: the origin of electrical impedance changes measured in the human calf. Medical & Biological Engineering & Computing, 18(2), 234–240.

    Article  Google Scholar 

  20. Kim, D. W., Baker, L., Pearce, J., & Kim, W. K. (1988). Origins of the impedance change in impedance cardiography by a three-dimensional finite element model. IEEE Transactions on Biomedical Engineering, 35(12), 993–1000.

    Article  CAS  PubMed  Google Scholar 

  21. Kosicki, J., Chen, L.-h., Hobbie, R., Patterson, R., & Ackerman, E. (1986). Contribu- tions to the impedance cardiogram waveform. Annals of Biomedical Engineering, 14(1), 67–80.

    Article  CAS  PubMed  Google Scholar 

  22. Patterson, R. P. (1985). Sources of the thoracic cardiogenic electrical impedance signal as determined by a model. Medical & Biological Engineering & Computing, 23(5), 411–417.

    Article  CAS  Google Scholar 

  23. Sakamoto, K., Muto, K., Kanai, H., & Iizuka, M. (1979). Problems of impedance car- diography. Medical & Biological Engineering & Computing, 17(6), 697–709.

    Article  CAS  Google Scholar 

  24. Shankar, T., Webster, J., & Shao, S. (1986). The contribution of vessel volume change to the electrical impedance pulse. IEEE Transactions on Biomedical Engineering, 1, 42–47.

    Google Scholar 

  25. Thomsen, A. (1979). Impedance cardiography. Intensive Care Medicine, 5(4), 206–206.

    Article  CAS  PubMed  Google Scholar 

  26. Raaijmakers, E., Faes, T., Goovaerts, H., De Vries, P., & Heethaar, R. (1997). The inaccuracy of kubicek’s one-cylinder model in thoracic impedance cardiography. IEEE Transactions on Biomedical Engineering, 44(1), 70–76.

    Article  CAS  PubMed  Google Scholar 

  27. Bonjer, F., Van Den Berg, J., & Dirken, M. (1952). The origin of the variations of body impedance occurring during the cardiac cycle. Circulation, 6(3), 415–420.

    Article  CAS  PubMed  Google Scholar 

  28. Penney, B. C. (1986). Theory and cardiac applications of electrical impedance measure- ments. Critical Reviews in Biomedical Engineering, 13(3), 227–281.

    CAS  PubMed  Google Scholar 

  29. Mohapatra, S. N. (1981). Non-invasive cardiovascular monitoring by electrical impedance technique. Pitman Med.

    Google Scholar 

  30. P. Chandra, Nanobiosensors for personalized and onsite biomedical diagnosis. The Institution of Engineering and Technology, 2016

    Book  Google Scholar 

  31. P. Chandra and L. M. Pandey, “Biointerface engineering: prospects in medical diagnostics and drug delivery,” 2020

    Book  Google Scholar 

  32. Purohit, B., Kumar, A., Mahato, K., & Chandra, P. (2020). Smartphone-assisted person- alized diagnostic devices and wearable sensors. Current Opinion Biomed Eng, 13, 42–50.

    Article  Google Scholar 

  33. Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengi- neering: design, operation, and implementation for biomolecular analysis. Sensors International, 100040.

    Google Scholar 

  34. Arshad, W., Duncan, A. M., Francis, D. P., O’sullivan, C. A., Gibson, D. G., & Henein, M. Y. (2004). Systole-diastole mismatch in hypertrophic cardiomyopathy is caused by stress induced left ventricular outflow tract obstruction. American Heart Journal, 148(5), 903–909.

    Article  PubMed  Google Scholar 

  35. G. P. Cybulski, Dynamic impedance Cardiography-the system and its applications. Polish Society of Medical Physics, 2005

    Google Scholar 

  36. Frey, M., & Doerr, B. (1983). Correlations between ejection times measured from the carotid pulse contour and the impedance cardiogram. Aviation, Space, and Environmental Medicine, 54(10), 894–897.

    CAS  PubMed  Google Scholar 

  37. Lewis, R. P., Boudoulas, H., Leier, C. V., Unverferth, D. V., & Weissler, A. M. (1982). Usefulness of the systolic time intervals in cardiovascular clinical cardiology. Transactions of the American Clinical and Climatological Association, 93, 108.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Weissler, A. M., Harris, W. S., & Schoenfeld, C. D. (1968). Systolic time intervals in heart failure in man. Circulation, 37(2), 149–159.

    Article  CAS  PubMed  Google Scholar 

  39. Weissler, A. M., Peeler, R. G., & Roehll, W. H., Jr. (1961). Relationships between left ventricular ejection time, stroke volume, and heart rate in normal individuals and patients with cardiovascular disease. American Heart Journal, 62(3), 367–378.

    Article  CAS  PubMed  Google Scholar 

  40. Penaz, J., Voigt, A., & Teichmann, W. (1976). Contribution to the continuous indirect blood pressure measurement. Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete, 31(24), 1030–1033.

    CAS  PubMed  Google Scholar 

  41. Miyamoto, Y., Higuchi, J., Abe, Y., Hiura, T., Nakazono, Y., & Mikami, T. (1983). Dy- namics of cardiac output and systolic time intervals in supine and upright exercise. Journal of Applied Physiology, 55(6), 1674–1681.

    Article  CAS  PubMed  Google Scholar 

  42. Miyamoto, Y., Hiura, T., Tamura, T., Nakamura, T., Higuchi, J., & Mikami, T. (1982). Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load. Journal of Applied Physiology, 52(5), 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  43. Miyamoto, Y., Takahashi, M., Tamura, T., Nakamura, T., Hiura, T., & Mikami, M. (1981). Continuous determination of cardiac output during exercise by the use of impedance plethysmography. Medical & Biological Engineering & Computing, 19(5), 638–644.

    Article  CAS  Google Scholar 

  44. Miles, D. S., Sawka, M. N., Hanpeter, D. E., Foster, J. E., Jr., Doerr, B. M., & Frey. (1984). Central hemodynamics during progressive upper-and lower-body ex- ercise and recovery. Journal of Applied Physiology, 57(2), 366–370.

    Article  CAS  PubMed  Google Scholar 

  45. Bogaard, H., Woltjer, H., Postmus, P., & De Vries, P. (1997). Assessment of the haemo- dynamic response to exercise by means of electrical impedance cardiography: method, validation and clinical applications. Physiological Measurement, 18(2), 95.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenberg, P., & Yancy, C. W. (2000). Noninvasive assessment of hemodynamics: an emphasis on bioimpedance cardiography. Current Opinion in Cardiology, 15(3), 151–155.

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, L., Yakimets, J., & Teo, K. K. (1995). A review of impedance cardiography. Heart & Lung: The Journal of Acute and Critical Care, 24(3), 183–193.

    Article  CAS  PubMed  Google Scholar 

  48. Lorne, E., Mahjoub, Y., Diouf, M., Sleghem, J., Buchalet, C., Guinot, P.-G., Petiot, S., Kessavane, A., Dehedin, B., & Dupont, H. (2014). Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal doppler. British Journal of Anaesthesia, 113(4), 596–602.

    Article  CAS  PubMed  Google Scholar 

  49. Sadauskas, S., Naudziuunas, A., Unikauskas, A., et al. (2016). Applicability of impedance cardiography during heart failure flare- ups. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 22, 3614.

    Article  Google Scholar 

  50. Silva, L. D. S., Reis, F. F., Silva, M. E. S., & Lima, D. V. M. D. (2018). Accuracy of impedance cardiography in acute myocardial infarction: a literature review. Int J Cardiovascular Sci, 31(3), 282–289.

    Google Scholar 

  51. Ghosh, S., Mahadevappa, M., & Mukhopadhyay, J. (2016). A 2d electrode-skin model for electrical & contact impedance characterization of bio impedance. In 2016 IEEE region 10 conference (TENCON), pp. 2292–2295. IEEE.

    Google Scholar 

  52. Cardu, R., Leong, P. H., Jin, C. T., & McEwan, A. (2012). Electrode contact impedance sensitivity to variations in geometry. Physiological Measurement, 33(5), 817.

    Article  PubMed  Google Scholar 

  53. Webster, J. G. (2009). Medical instrumentation application and design. John Wiley & Sons.

    Google Scholar 

  54. D. Andreuccetti, (2012). “An internet resource for the calculation of the dielectric prop- erties of body tissues in the frequency range 10 hz-100 ghz,” http://niremf.ifac.cnr.it/tissprop/

  55. Luna, J. L. V., Krenn, M., Ramırez, J. A. C., & Mayr, W. (2015). Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation. PLoS One, 10(5), e0125609.

    Article  Google Scholar 

  56. Hayt, W. H., Buck, J. A., et al. (1981). Engineering electromagnetics (Vol. 6). McGraw-Hill.

    Google Scholar 

  57. Ghosh, S., Giri, S., Kruthika, R., Chabhra, G. S., Mahadevappa, M., & Mukhopadhyay, J. (2016). Electrical impedance plethysmography based device for aortic pulse monitoring. In Systems in Medicine and Biology (ICSMB), 2016 Interna- tional conference on (pp. 124–127). IEEE.

    Chapter  Google Scholar 

  58. Ghosh, S., Chattopadhyay, B. P., Roy, R. M., Mukherjee, J., & Mahadevappa, M. (2019). Estimation of echocardiogram parameters with the aid of impedance cardiog- raphy and artificial neural networks. Artificial Intelligence in Medicine, 96, 45–58.

    Article  PubMed  Google Scholar 

  59. Ghosh, S., Chattopadhyay, B. P., Roy, R. M., Mukhopadhyay, J., & Ma-hadevappa, M. (2018). Stroke volume, ejection fraction and cardiac health monitoring us- ing impedance cardiography. In 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 4229–4232). IEEE.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunatha Mahadevappa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Mukhopadhyay, J., Mahadevappa, M. (2022). Design and Development of a Bed-Side Cardiac Health Monitoring Device. In: Borse, V., Chandra, P., Srivastava, R. (eds) BioSensing, Theranostics, and Medical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-2782-8_9

Download citation

Publish with us

Policies and ethics