Skip to main content

Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges

  • Chapter
  • First Online:
BioSensing, Theranostics, and Medical Devices

Abstract

Theranostics is a dual model field approach with therapeutic and diagnosis of a disease lies on single platform in health care. It has led to transitional change in nanomedicine field. Here, various nanotheranostics approaches are briefly described as quantum dots (QDs), electrospun fibers, biomacromolecule based platforms with applications ranging from cardiovascular diseases (CVD), cancer, Parkinson’s disease, antimicrobial resistance, and orthopedic diseases like arthritis and orthoporosis. Also, recent challenges relevant to theranostics and modifications in bio-conjugated QDs are emphasized for cancer, in vivo–in vitro imaging, and drug delivery applications. Different challenges in terms of translation at clinical and preclinical stage, toxicity, distribution, and cost-effectiveness have been explained. Efforts seeking better nanotheranostics clinical practices still need to be looked into for development of effective and efficient personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shetty, Y., Prabhu, P., & Prabhakar, B. (2019). Emerging vistas in theranostic medicine. International Journal of Pharmaceutics, 558, 29–42.

    Article  CAS  PubMed  Google Scholar 

  2. Navalkissoor, S., Gnanasegaran, G., & Baum, R. (2018). Theranostics and precision medicine special feature. The British Journal of Radiology, 91(1091), 20189004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Moek, K. L., Giesen, D., Kok, I. C., de Groot, D. J. A., Jalving, M., Fehrmann, R. S., Lub-de Hooge, M. N., Brouwers, A. H., & de Vries, E. G. (2017). Theranostics using antibodies and antibody-related therapeutics. Journal of Nuclear Medicine, 58(Supplement 2), 83S–90S.

    Article  CAS  PubMed  Google Scholar 

  4. Jo, S. D., Ku, S. H., Won, Y.-Y., Kim, S. H., & Kwon, I. C. (2016). Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics, 6(9), 1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.

    Article  CAS  Google Scholar 

  6. Kumar, A., Roy, S., Srivastava, A., Naikwade, M. M., Purohit, B., Mahato, K., Naidu, V., & Chandra, P. (2019). Nanotherapeutics: a novel and powerful approach in modern healthcare system. In Nanotechnology in modern animal biotechnology (pp. 149–161). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  7. Muthu, M. S., Leong, D. T., Mei, L., & Feng, S.-S. (2014). Nanotheranostics˗ application and further development of nanomedicine strategies for advanced theranostics. Theranostics, 4(6), 660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matea, C. T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., & Mocan, L. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine, 12, 5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, Y.-P., Zhou, B., Lin, Y., Wang, W., Fernando, K. S., Pathak, P., Meziani, M. J., Harruff, B. A., Wang, X., & Wang, H. (2006). Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 128(24), 7756–7757.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, J., Han, S., Ke, D., & Wang, R. (2012). Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications. Journal of Nanomaterials, 2012, 129041.

    Article  Google Scholar 

  11. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385), 2013–2016.

    Article  CAS  PubMed  Google Scholar 

  12. Chan, W. C., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385), 2016–2018.

    Article  CAS  PubMed  Google Scholar 

  13. Chandra, P., & Pandey, L. M. (2020). Biointerface engineering: prospects in medical diagnostics and drug delivery. Singapore: Springer.

    Book  Google Scholar 

  14. Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737.

    Article  CAS  PubMed  Google Scholar 

  15. Bailey, R. E., Smith, A. M., & Nie, S. (2004). Quantum dots in biology and medicine. Physica E: Low-dimensional Systems and Nanostructures, 25(1), 1–12.

    Article  CAS  Google Scholar 

  16. Pandey, A., Kulkarni, S., & Mutalik, S. (2020). Liquid metal based theranostic nanoplatforms: application in cancer therapy, imaging and biosensing. Nanomedicine: Nanotechnology, Biology and Medicine, 26, 102175.

    Article  CAS  Google Scholar 

  17. Li, C. (2014). A targeted approach to cancer imaging and therapy. Nature Materials, 13(2), 110–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sneider, A., VanDyke, D., Paliwal, S., & Rai, P. (2017). Remotely triggered nano-theranostics for cancer applications. Nanotheranostics, 1(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, T. H., Lee, S., & Chen, X. (2013). Nanotheranostics for personalized medicine. Expert Review of Molecular Diagnostics, 13(3), 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Purohit, B., Kumar, A., Mahato, K., Roy, S., & Chandra, P. (2019). Cancer cytosensing approaches in miniaturized settings based on advanced nanomaterials and biosensors. In Nanotechnology in modern animal biotechnology (pp. 133–147). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  21. Perecin, C., Cerize, N., Chitta, V., Gratens, X., Léo, P., de Oliveira, A., & Yoshioka, S. (2016). Magnetite nanoparticles encapsulated with PCL and poloxamer by nano spray drying technique. Nanoscience and Nanotechnology, 6(4), 68–73.

    Article  CAS  Google Scholar 

  22. Cleeton, C., Keirouz, A., Chen, X., & Radacsi, N. (2019). Electrospun nanofibers for drug delivery and biosensing. ACS Biomaterials Science & Engineering, 5(9), 4183–4205.

    Article  CAS  Google Scholar 

  23. Chandra, P., & Prakash, R. (2020). Nanobiomaterial engineering. Singapore: Springer.

    Book  Google Scholar 

  24. Rapti, K., Chaanine, A. H., & Hajjar, R. J. (2011). Targeted gene therapy for the treatment of heart failure. Canadian Journal of Cardiology, 27(3), 265–283.

    Article  CAS  Google Scholar 

  25. Pouton, C. W., & Seymour, L. W. (2001). Key issues in non-viral gene delivery. Advanced Drug Delivery Reviews, 46(1–3), 187–203.

    Article  CAS  PubMed  Google Scholar 

  26. Robbins, P. D., & Ghivizzani, S. C. (1998). Viral vectors for gene therapy. Pharmacology & Therapeutics, 80(1), 35–47.

    Article  CAS  Google Scholar 

  27. Chery, J. (2016). RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc Journal: A Journal of Postdoctoral Research and Postdoctoral Affairs, 4(7), 35.

    Article  Google Scholar 

  28. Mabrouk, M., Rajendran, R., Soliman, I. E., Ashour, M. M., Beherei, H. H., Tohamy, K. M., Thomas, S., Kalarikkal, N., Arthanareeswaran, G., & Das, D. B. (2019). Nanoparticle-and nanoporous-membrane-mediated delivery of therapeutics. Pharmaceutics, 11(6), 294.

    Article  CAS  PubMed Central  Google Scholar 

  29. Dass, C. R. (2002). Biochemical and biophysical characteristics of lipoplexes pertinent to solid tumour gene therapy. International Journal of Pharmaceutics, 241(1), 1–25.

    Article  CAS  PubMed  Google Scholar 

  30. Even-Chen, S., Cohen, R., & Barenholz, Y. (2012). Factors affecting DNA binding and stability of association to cationic liposomes. Chemistry and Physics of Lipids, 165(4), 414–423.

    Article  CAS  PubMed  Google Scholar 

  31. Dass, C. R. (2003). Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature. International Journal of Pharmaceutics, 267(1–2), 1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Fan, J., Liu, Y., Liu, L., Huang, Y., Li, X., & Huang, W. (2019). A multifunction lipid-based CRISPR-Cas13a genetic circuit delivery system for bladder Cancer gene therapy. ACS Synthetic Biology, 9(2), 343–355.

    Article  CAS  Google Scholar 

  33. Hosseini, E. S., Nikkhah, M., & Hosseinkhani, S. (2019). Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9. International Journal of Nanomedicine, 14, 4353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Gioia, S., & Conese, M. (2008). Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. Drug Design, Development and Therapy, 2, 163.

    Google Scholar 

  35. Dass, C. R., DeCruz, E. E., Walker, T. L., & Burton, M. A. (1997). Barriers to liposomal gene transfer into solid tumours. Australasian Biotechnology, 7, 155–159.

    CAS  Google Scholar 

  36. Blumenfeld, C. M., Schulz, M. D., Aboian, M. S., Wilson, M. W., Moore, T., Hetts, S. W., & Grubbs, R. H. (2018). Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles. Nature Communications, 9(1), 1–7.

    Article  CAS  Google Scholar 

  37. Thomson, D. A., Tee, E. H., Tran, N. T., Monteiro, M. J., & Cooper, M. A. (2012). Oligonucleotide and polymer functionalized nanoparticles for amplification-free detection of DNA. Biomacromolecules, 13(6), 1981–1989.

    Article  CAS  PubMed  Google Scholar 

  38. Miller, C. M., & Harris, E. N. (2016). Antisense oligonucleotides: treatment strategies and cellular internalization. RNA & Disease (Houston, TX), 3(4), e1393.

    Google Scholar 

  39. Uehara, H., Cho, Y., Simonis, J., Cahoon, J., Archer, B., Luo, L., Das, S. K., Singh, N., Ambati, J., & Ambati, B. K. (2013). Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR). The FASEB Journal, 27(1), 76–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uehara, H., Muddana, S. K., Zhang, X., Das, S. K., Bhuvanagiri, S., Liu, J., Wu, Y., Choi, S., Carroll, L. S., & Archer, B. (2017). Targeted delivery of FLT-morpholino using cyclic RGD peptide. Translational Vision Science & Technology, 6(3), 9–9.

    Article  Google Scholar 

  41. Frieden, M., & Orum, H. (2006). The application of locked nucleic acids in the treatment of cancer. IDrugs: The Investigational Drugs Journal, 9(10), 706–711.

    CAS  PubMed  Google Scholar 

  42. Thayer, M. B., Lade, J. M., Doherty, D., Xie, F., Basiri, B., Barnaby, O. S., Bala, N. S., & Rock, B. M. (2019). Application of locked nucleic acid oligonucleotides for siRNA preclinical bioanalytics. Scientific Reports, 9(1), 1–9.

    Article  CAS  Google Scholar 

  43. Choi, S., Uehara, H., Wu, Y., Das, S., Zhang, X., Archer, B., Carroll, L., & Ambati, B. K. (2018). RNA activating-double stranded RNA targeting FLT-1 promoter inhibits endothelial cell proliferation through soluble FLT-1 upregulation. PLoS One, 13(3), e0193590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mishra, P. J., & Merlino, G. (2009). MicroRNA reexpression as differentiation therapy in cancer. The Journal of Clinical Investigation, 119(8), 2119–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Crooke, S. T., Graham, M. J., Zuckerman, J. E., Brooks, D., Conklin, B. S., Cummins, L. L., Greig, M. J., Guinosso, C. J., Kornbrust, D., & Manoharan, M. (1996). Pharmacokinetic properties of several novel oligonucleotide analogs in mice. Journal of Pharmacology and Experimental Therapeutics, 277(2), 923–937.

    CAS  Google Scholar 

  46. Yoo, B. H., Bochkareva, E., Bochkarev, A., Mou, T. C., & Gray, D. M. (2004). 2′-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Research, 32(6), 2008–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wahlestedt, C., Salmi, P., Good, L., Kela, J., Johnsson, T., Hökfelt, T., Broberger, C., Porreca, F., Lai, J., & Ren, K. (2000). Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proceedings of the National Academy of Sciences, 97(10), 5633–5638.

    Article  CAS  Google Scholar 

  48. Hyrup, B., & Nielsen, P. E. (1996). Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorganic & Medicinal Chemistry, 4(1), 5–23.

    Article  CAS  Google Scholar 

  49. Pallan, P. S., Greene, E. M., Jicman, P. A., Pandey, R. K., Manoharan, M., Rozners, E., & Egli, M. (2011). Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA. Nucleic Acids Research, 39(8), 3482–3495.

    Article  CAS  PubMed  Google Scholar 

  50. Hayes, J., Peruzzi, P., & Lawler, S. (2014). MicroRNAs in cancer: biomarkers, functions and therapy. Trends in Molecular Medicine, 20(8), 460–469.

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh, R., Singh, L. C., Shohet, J. M., & Gunaratne, P. H. (2013). A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials, 34(3), 807–816.

    Article  CAS  PubMed  Google Scholar 

  52. Ekin, A., Karatas, O. F., Culha, M., & Ozen, M. (2014). Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. The Journal of Gene Medicine, 16(11–12), 331–335.

    Article  CAS  PubMed  Google Scholar 

  53. Crew, E., Rahman, S., Razzak-Jaffar, A., Mott, D., Kamundi, M., Yu, G., Tchah, N., Lee, J., Bellavia, M., & Zhong, C.-J. (2012). MicroRNA conjugated gold nanoparticles and cell transfection. Analytical Chemistry, 84(1), 26–29.

    Article  CAS  PubMed  Google Scholar 

  54. Xue, H.-Y., Liu, Y., Liao, J.-Z., Lin, J.-S., Li, B., Yuan, W.-G., Lee, R. J., Li, L., Xu, C.-R., & He, X.-X. (2016). Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget, 7(52), 86675.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., & Bruchez, M. P. (2003). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 21(1), 41–46.

    Article  CAS  PubMed  Google Scholar 

  56. Fountaine, T. J., Wincovitch, S. M., Geho, D. H., Garfield, S. H., & Pittaluga, S. (2006). Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Modern Pathology, 19(9), 1181–1191.

    Article  CAS  PubMed  Google Scholar 

  57. Bostick, R. M., Kong, K. Y., Ahearn, T. U., Chaudry, Q., Cohen, V., & Wang, M. D. (2006). Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. In 2006 international conference of the IEEE engineering in medicine and biology society (pp. 3313–3316). IEEE.

    Chapter  Google Scholar 

  58. Chen, C., Sun, S.-R., Gong, Y.-P., Qi, C.-B., Peng, C.-W., Yang, X.-Q., Liu, S.-P., Peng, J., Zhu, S., & Hu, M.-B. (2011). Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials, 32(30), 7592–7599.

    Article  CAS  PubMed  Google Scholar 

  59. Liu, M.-X., Chen, S., Ding, N., Yu, Y.-L., & Wang, J.-H. (2020). A carbon-based polymer dot sensor for breast cancer detection using peripheral blood immunocytes. Chemical Communications, 56(20), 3050–3053.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, T., Zhang, W., Zhang, X., Qiqige, X., Qimuge, W., Qimuge, A., Wang, H., Baila, B., Qimuge, A., & Yuan, M. (2017). Synthesis of fluorescent carbon dots by gastrointestinal fluid treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 8575162.

    Article  Google Scholar 

  61. Wang, J., Yong, W. H., Sun, Y. H., Vernier, P. T., Koeffler, H. P., Gundersen, M. A., & Marcu, L. (2007). Receptor-targeted quantum dots: fluorescent probes for brain tumor diagnosis. Journal of Biomedical Optics, 12(4), 044021.

    Article  PubMed  CAS  Google Scholar 

  62. Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H., Xie, Z., Gao, H., Jing, X., & Sun, Z. (2015). Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano, 9(11), 11455–11461.

    Article  CAS  PubMed  Google Scholar 

  63. Hamd-Ghadareh, S., Salimi, A., Fathi, F., & Bahrami, S. (2017). An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosensors and Bioelectronics, 96, 308–316.

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Y.-S., Sun, Y., Vernier, P. T., Liang, C.-H., Chong, S. Y. C., & Gundersen, M. A. (2007). pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. The Journal of Physical Chemistry C, 111(7), 2872–2878.

    Article  CAS  Google Scholar 

  65. Chu, T. C., Shieh, F., Lavery, L. A., Levy, M., Richards-Kortum, R., Korgel, B. A., & Ellington, A. D. (2006). Labeling tumor cells with fluorescent nanocrystal–aptamer bioconjugates. Biosensors and Bioelectronics, 21(10), 1859–1866.

    Article  CAS  PubMed  Google Scholar 

  66. Liu, T. C., Wang, J. H., Wang, H. Q., Zhang, H. L., Zhang, Z. H., Hua, X. F., Cao, Y. C., Zhao, Y. D., & Luo, Q. M. (2007). Bioconjugate recognition molecules to quantum dots as tumor probes. Journal of Biomedical Materials Research Part A, 83(4), 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  67. Kim, B. Y., Jiang, W., Oreopoulos, J., Yip, C. M., Rutka, J. T., & Chan, W. C. (2008). Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Letters, 8(11), 3887–3892.

    Article  CAS  PubMed  Google Scholar 

  68. Yezhelyev, M. V., Qi, L., O’Regan, R. M., Nie, S., & Gao, X. (2008). Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. Journal of the American Chemical Society, 130(28), 9006–9012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stroh, M., Zimmer, J. P., Duda, D. G., Levchenko, T. S., Cohen, K. S., Brown, E. B., Scadden, D. T., Torchilin, V. P., Bawendi, M. G., & Fukumura, D. (2005). Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 11(6), 678–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cai, W., Shin, D.-W., Chen, K., Gheysens, O., Cao, Q., Wang, S. X., Gambhir, S. S., & Chen, X. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6(4), 669–676.

    Article  CAS  PubMed  Google Scholar 

  71. Kim, S., Lim, Y. T., Soltesz, E. G., De Grand, A. M., Lee, J., Nakayama, A., Parker, J. A., Mihaljevic, T., Laurence, R. G., & Dor, D. M. (2004). Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology, 22(1), 93–97.

    Article  CAS  PubMed  Google Scholar 

  72. Gao, X., Cui, Y., Levenson, R. M., Chung, L. W., & Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22(8), 969–976.

    Article  CAS  PubMed  Google Scholar 

  73. Yang, S.-T., Cao, L., Luo, P. G., Lu, F., Wang, X., Wang, H., Meziani, M. J., Liu, Y., Qi, G., & Sun, Y.-P. (2009). Carbon dots for optical imaging in vivo. Journal of the American Chemical Society, 131(32), 11308–11309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hola, K., Zhang, Y., Wang, Y., Giannelis, E. P., Zboril, R., & Rogach, A. L. (2014). Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 9(5), 590–603.

    Article  CAS  Google Scholar 

  75. Bagalkot, V., Zhang, L., Levy-Nissenbaum, E., Jon, S., Kantoff, P. W., Langer, R., & Farokhzad, O. C. (2007). Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Letters, 7(10), 3065–3070.

    Article  CAS  PubMed  Google Scholar 

  76. Pardo, J., Peng, Z., & Leblanc, R. M. (2018). Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules, 23(2), 378.

    Article  PubMed Central  CAS  Google Scholar 

  77. Mingqian, T., & Aiguo, W. (2016). Nanomaterials for tumor targeting theranostics: a proactive clinical perspective. Singapore: World Scientific.

    Google Scholar 

  78. Zayed, D. G., AbdElhamid, A. S., Freag, M. S., & Elzoghby, A. O. (2019). Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine (London), 14(3), 225–228.

    Article  CAS  Google Scholar 

  79. Bakalova, R., Ohba, H., Zhelev, Z., Nagase, T., Jose, R., Ishikawa, M., & Baba, Y. (2004). Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Letters, 4(9), 1567–1573.

    Article  CAS  Google Scholar 

  80. Tao, H., Yang, K., Ma, Z., Wan, J., Zhang, Y., Kang, Z., & Liu, Z. (2012). In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 8(2), 281–290.

    Article  CAS  PubMed  Google Scholar 

  81. Wu, F., Yue, L., Su, H., Wang, K., Yang, L., & Zhu, X. (2018). Carbon dots@ platinum porphyrin composite as Theranostic Nanoagent for efficient photodynamic Cancer therapy. Nanoscale Research Letters, 13(1), 357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Samia, A. C., Chen, X., & Burda, C. (2003). Semiconductor quantum dots for photodynamic therapy. Journal of the American Chemical Society, 125(51), 15736–15737.

    Article  CAS  PubMed  Google Scholar 

  83. Solanki, A., Kim, J. D., & Lee, K.-B. (2008). Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (London, England), 3(4), 567–578.

    Article  CAS  Google Scholar 

  84. Li, X., Vinothini, K., Ramesh, T., Rajan, M., & Ramu, A. (2020). Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Delivery, 27(1), 791–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Obeso, J. A., Rodriguez-Oroz, M. C., Goetz, C. G., Marin, C., Kordower, J. H., Rodriguez, M., Hirsch, E. C., Farrer, M., Schapira, A. H., & Halliday, G. (2010). Missing pieces in the Parkinson's disease puzzle. Nature Medicine, 16(6), 653–661.

    Article  CAS  PubMed  Google Scholar 

  86. Mueller, J. C., Fuchs, J., Hofer, A., Zimprich, A., Lichtner, P., Illig, T., Berg, D., Wüllner, U., Meitinger, T., & Gasser, T. (2005). Multiple regions of α-synuclein are associated with Parkinson's disease. Annals of Neurology, 57(4), 535–541.

    Article  CAS  PubMed  Google Scholar 

  87. Koch, J., Bitow, F., Haack, J., d'Hedouville, Z., Zhang, J., Tönges, L., Michel, U., Oliveira, L., Jovin, T., & Liman, J. (2015). Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons. Cell Death & Disease, 6(7), e1811–e1811.

    Article  CAS  Google Scholar 

  88. Langston, J. W., Schüle, B., Rees, L., Nichols, R. J., & Barlow, C. (2015). Multisystem Lewy body disease and the other Parkinsonian disorders. Nature Genetics, 47(12), 1378.

    Article  CAS  PubMed  Google Scholar 

  89. Fonseca-Ornelas, L., Eisbach, S. E., Paulat, M., Giller, K., Fernández, C. O., Outeiro, T. F., Becker, S., & Zweckstetter, M. (2014). Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nature Communications, 5(1), 1–11.

    Article  CAS  Google Scholar 

  90. Bendor, J. T., Logan, T. P., & Edwards, R. H. (2013). The function of α-synuclein. Neuron, 79(6), 1044–1066.

    Article  CAS  PubMed  Google Scholar 

  91. Zondler, L., Miller-Fleming, L., Repici, M., Gonçalves, S., Tenreiro, S., Rosado-Ramos, R., Betzer, C., Straatman, K., Jensen, P. H., & Giorgini, F. (2014). DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson’s disease. Cell Death & Disease, 5(7), e1350–e1350.

    Article  CAS  Google Scholar 

  92. Jankovic, J., & Aguilar, L. G. (2008). Current approaches to the treatment of Parkinson’s disease. Neuropsychiatric Disease and Treatment, 4(4), 743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thomas, B. (2009). Parkinson's disease: from molecular pathways in disease to therapeutic approaches. Antioxidants & Redox Signaling, 11(9), 2077–2082.

    Article  CAS  Google Scholar 

  94. Li, Y., Liu, R., Ji, W., Li, Y., Liu, L., & Zhang, X. (2018). Delivery systems for theranostics in neurodegenerative diseases. Nano Research, 11(10), 5535–5555.

    Article  CAS  Google Scholar 

  95. Kumar, A., Chaudhary, R. K., Singh, R., Singh, S. P., Wang, S.-Y., Hoe, Z.-Y., Pan, C.-T., Shiue, Y.-L., Wei, D.-Q., & Kaushik, A. C. (2020). Nanotheranostic applications for detection and targeting neurodegenerative diseases. Frontiers in Neuroscience, 14, 305.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee, S.-J., Lim, H.-S., Masliah, E., & Lee, H.-J. (2011). Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neuroscience Research, 70(4), 339–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ali, I., Alsehli, M., Scotti, L., Tullius Scotti, M., Tsai, S.-T., Yu, R.-S., Hsieh, M. F., & Chen, J.-C. (2020). Progress in polymeric nano-medicines for theranostic cancer treatment. Polymers, 12(3), 598.

    Article  CAS  PubMed Central  Google Scholar 

  98. Rampado, R., Crotti, S., Caliceti, P., Pucciarelli, S., & Agostini, M. (2019). Nanovectors design for theranostic applications in colorectal cancer. Journal of Oncology, 2019, 2740923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Xiao, Y., Shen, M., & Shi, X. (2018). Design of functional electrospun nanofibers for cancer cell capture applications. Journal of Materials Chemistry B, 6(10), 1420–1432.

    Article  CAS  PubMed  Google Scholar 

  100. Jackson, J. M., Witek, M. A., Kamande, J. W., & Soper, S. A. (2017). Materials and microfluidics: enabling the efficient isolation and analysis of circulating tumour cells. Chemical Society Reviews, 46(14), 4245–4280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan, Z.-Y., Zhao, Y.-L., Zhu, X.-Y., Luo, Y., Shen, M.-W., & Shi, X.-Y. (2016). Folic acid modified electrospun poly (vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chinese Journal of Polymer Science, 34(6), 755–765.

    Article  CAS  Google Scholar 

  102. Zhao, Y., Zhu, X., Liu, H., Luo, Y., Wang, S., Shen, M., Zhu, M., & Shi, X. (2014). Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. Journal of Materials Chemistry B, 2(42), 7384–7393.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, N., Deng, Y., Tai, Q., Cheng, B., Zhao, L., Shen, Q., He, R., Hong, L., Liu, W., & Guo, S. (2012). Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Advanced Materials, 24(20), 2756–2760.

    Article  CAS  PubMed  Google Scholar 

  104. Zhao, L., Lu, Y. T., Li, F., Wu, K., Hou, S., Yu, J., Shen, Q., Wu, D., Song, M., & OuYang, W. H. (2013). High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Advanced Materials, 25(21), 2897–2902.

    Article  CAS  PubMed  Google Scholar 

  105. Xu, G., Tan, Y., Xu, T., Yin, D., Wang, M., Shen, M., Chen, X., Shi, X., & Zhu, X. (2017). Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomaterials Science, 5(4), 752–761.

    Article  CAS  PubMed  Google Scholar 

  106. Jain, A., Betancur, M., Patel, G. D., Valmikinathan, C. M., Mukhatyar, V. J., Vakharia, A., Pai, S. B., Brahma, B., MacDonald, T. J., & Bellamkonda, R. V. (2014). Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nature Materials, 13(3), 308–316.

    Article  CAS  PubMed  Google Scholar 

  107. Saha, S., Duan, X., Wu, L., Lo, P.-K., Chen, H., & Wang, Q. (2012). Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial–mesenchymal transition. Langmuir, 28(4), 2028–2034.

    Article  CAS  PubMed  Google Scholar 

  108. Paul, K. B., Singh, V., Vanjari, S. R. K., & Singh, S. G. (2017). One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125. Biosensors and Bioelectronics, 88, 144–152.

    Article  CAS  PubMed  Google Scholar 

  109. Ali, M. A., Mondal, K., Jiao, Y., Oren, S., Xu, Z., Sharma, A., & Dong, L. (2016). Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Applied Materials & Interfaces, 8(32), 20570–20582.

    Article  CAS  Google Scholar 

  110. Ruman, U., Fakurazi, S., Masarudin, M. J., & Hussein, M. Z. (2020). Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. International Journal of Nanomedicine, 15, 1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sasikala, A. R. K., Thomas, R. G., Unnithan, A. R., Saravanakumar, B., Jeong, Y. Y., Park, C. H., & Kim, C. S. (2016). Multifunctional nanocarpets for cancer theranostics: remotely controlled graphene nanoheaters for thermo-chemosensitisation and magnetic resonance imaging. Scientific Reports, 6, 20543.

    Article  CAS  Google Scholar 

  112. Hou, Z., Li, C., Ma, P. A., Cheng, Z., Li, X., Zhang, X., Dai, Y., Yang, D., Lian, H., & Lin, J. (2012). Up-conversion luminescent and porous NaYF4: Yb3+, Er3+@ SiO2 nanocomposite fibers for anti-cancer drug delivery and cell imaging. Advanced Functional Materials, 22(13), 2713–2722.

    Article  CAS  Google Scholar 

  113. Li, X., Wang, X., Zhao, C., Shao, L., Lu, J., Tong, Y., Chen, L., Cui, X., Sun, H., & Liu, J. (2019). From one to all: self-assembled theranostic nanoparticles for tumor-targeted imaging and programmed photoactive therapy. Journal of Nanobiotechnology, 17(1), 23.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nam, S., Lee, S. Y., & Cho, H.-J. (2017). Phloretin-loaded fast dissolving nanofibers for the locoregional therapy of oral squamous cell carcinoma. Journal of Colloid and Interface Science, 508, 112–120.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, J., Wang, G., Shan, H., Wang, X., Wang, C., Zhuang, X., Ding, J., & Chen, X. (2019). Gradiently degraded electrospun polyester scaffolds with cytostatic for urothelial carcinoma therapy. Biomaterials Science, 7(3), 963–974.

    Article  CAS  PubMed  Google Scholar 

  116. Xie, X., Zheng, X., Han, Z., Chen, Y., Zheng, Z., Zheng, B., He, X., Wang, Y., Kaplan, D. L., & Li, Y. (2018). A biodegradable stent with surface functionalization of combined-therapy drugs for colorectal cancer. Advanced Healthcare Materials, 7(24), 1801213.

    Article  CAS  Google Scholar 

  117. Bonadies, I., Maglione, L., Ambrogi, V., Paccez, J. D., Zerbini, L. F., e Silva, L. F. R., Picanço, N. S., Tadei, W. P., Grafova, I., & Grafov, A. (2017). Electrospun core/shell nanofibers as designed devices for efficient artemisinin delivery. European Polymer Journal, 89, 211–220.

    Article  CAS  Google Scholar 

  118. Xia, G., Zhang, H., Cheng, R., Wang, H., Song, Z., Deng, L., Huang, X., Santos, H. A., & Cui, W. (2018). Localized controlled delivery of gemcitabine via microsol electrospun fibers to prevent pancreatic cancer recurrence. Advanced Healthcare Materials, 7(18), 1800593.

    Article  CAS  Google Scholar 

  119. Ramachandran, R., Junnuthula, V. R., Gowd, G. S., Ashokan, A., Thomas, J., Peethambaran, R., Thomas, A., Unni, A. K. K., Panikar, D., & Nair, S. V. (2017). Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Scientific Reports, 7, 43271.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yohe, S. T., Herrera, V. L., Colson, Y. L., & Grinstaff, M. W. (2012). 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. Journal of Controlled Release, 162(1), 92–101.

    Article  CAS  PubMed  Google Scholar 

  121. Ferlay, J., Soerjomataram, I., & Ervik, M. (2013). GLOBOCAN 2012 v1.0 Cancer incidence and mortality worldwide: IARC CancerBase no. 11 [internet]. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  122. Nadar, R. A., van den Beucken, J. J., & Leeuwenburgh, S. C. (2020). Pharmacological interventions targeting bone diseases in adjunction with bone grafting. In Dental implants and bone grafts (pp. 251–280). Amsterdam: Elsevier.

    Google Scholar 

  123. Herrmann, K., Schwaiger, M., Lewis, J. S., Solomon, S. B., McNeil, B. J., Baumann, M., Gambhir, S. S., Hricak, H., & Weissleder, R. (2020). Radiotheranostics: a roadmap for future development. The Lancet Oncology, 21(3), e146–e156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Seidlin, S., Marinelli, L., & Oshry, E. (1946). Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of the thyroid. Journal of the American Medical Association, 132(14), 838–847.

    Article  CAS  PubMed  Google Scholar 

  125. Etchebehere, E., Brito, A. E., Rezaee, A., Langsteger, W., & Beheshti, M. (2017). Therapy assessment of bone metastatic disease in the era of 223 radium. European Journal of Nuclear Medicine and Molecular Imaging, 44(1), 84–96.

    Article  CAS  PubMed  Google Scholar 

  126. Qiao, H., Cui, Z., Yang, S., Ji, D., Wang, Y., Yang, Y., Han, X., Fan, Q., Qin, A., & Wang, T. (2017). Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano, 11(7), 7259–7273.

    Article  CAS  PubMed  Google Scholar 

  127. Madav, Y., Barve, K., & Prabhakar, B. (2020). Current trends in theranostics for rheumatoid arthritis. European Journal of Pharmaceutical Sciences, 145, 105240.

    Article  CAS  PubMed  Google Scholar 

  128. Allender, S., Scarborough, P., Peto, V., Rayner, M., Leal, J., Luengo-Fernandez, R., & Gray, A. (2008). European cardiovascular disease statistics. Eur Heart Netw, 3, 11–35.

    Google Scholar 

  129. Nandwana, V., Ryoo, S.-R., Kanthala, S., McMahon, K. M., Rink, J. S., Li, Y., Venkatraman, S. S., Thaxton, C. S., & Dravid, V. P. (2017). High-density lipoprotein-like magnetic nanostructures (HDL-MNS): theranostic agents for cardiovascular disease. Chemistry of Materials, 29(5), 2276–2282.

    Article  CAS  Google Scholar 

  130. McCarthy, J. R., Korngold, E., Weissleder, R., & Jaffer, F. A. (2010). A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small, 6(18), 2041–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. O’Brien, B., & Carroll, W. (2009). The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomaterialia, 5(4), 945–958.

    Article  PubMed  CAS  Google Scholar 

  132. Cyrus, T., Zhang, H., Allen, J. S., Williams, T. A., Hu, G., Caruthers, S. D., Wickline, S. A., & Lanza, G. M. (2008). Intramural delivery of rapamycin with αvβ3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(5), 820–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chorny, M., Fishbein, I., Yellen, B. B., Alferiev, I. S., Bakay, M., Ganta, S., Adamo, R., Amiji, M., Friedman, G., & Levy, R. J. (2010). Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proceedings of the National Academy of Sciences, 107(18), 8346–8351.

    Article  CAS  Google Scholar 

  134. Rentrop, K. P., & Feit, F. (2015). Reperfusion therapy for acute myocardial infarction: concepts and controversies from inception to acceptance. American Heart Journal, 170(5), 971–980.

    Article  PubMed  Google Scholar 

  135. Chen, H. H., Feng, Y., Zhang, M., Chao, W., Josephson, L., Shaw, S. Y., & Sosnovik, D. E. (2012). Protective effect of the apoptosis-sensing nanoparticle AnxCLIO-Cy5.5. Nanomedicine: Nanotechnology, Biology and Medicine, 8(3), 291–298.

    Article  CAS  Google Scholar 

  136. Tang, J., Lobatto, M. E., Read, J. C., Mieszawska, A. J., Fayad, Z. A., & Mulder, W. J. (2012). Nanomedical theranostics in cardiovascular disease. Curr Cardiovasc Imaging Rep, 5(1), 19–25.

    Article  PubMed  Google Scholar 

  137. Kirsch-De Mesmaeker, A., Jacquet, L., & Nasielsi, J. (1988). Ruthenium(II) complexes of 1,4,5,8-tetraazaphenanthrene (TAP) and 2,2′-bipyridine (bpy). Ground- and excited-state basicities of Ru2+(bpy)n(TAP)3-n (n = 0,1,2): their luminescence quenching by organic buffers. Inorganic Chemistry, 27, 4451–4458.

    Article  CAS  Google Scholar 

  138. Smitten, K. L., Fairbanks, S. D., Robertson, C. C., de la Serna, J. B., Foster, S. J., & Thomas, J. A. (2020). Ruthenium based antimicrobial theranostics–using nanoscopy to identify therapeutic targets and resistance mechanisms in Staphylococcus aureus. Chemical Science, 11(1), 70–79.

    Article  CAS  PubMed  Google Scholar 

  139. Zhao, Z., Yan, R., Yi, X., Li, J., Rao, J., Guo, Z., Yang, Y., Li, W., Li, Y.-Q., & Chen, C. (2017). Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano, 11(5), 4428–4438.

    Article  CAS  PubMed  Google Scholar 

  140. Das, B., Dadhich, P., Pal, P., Thakur, S., Neogi, S., & Dhara, S. (2020). Carbon nano dot decorated copper nanowires for SERS-fluorescence dual-mode imaging/anti-microbial activity and enhanced angiogenic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227, 117669.

    Article  CAS  Google Scholar 

  141. Dai, X., Fan, Z., Lu, Y., & Ray, P. C. (2013). Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Applied Materials & Interfaces, 5(21), 11348–11354.

    Article  CAS  Google Scholar 

  142. Setyawati, M. I., Kutty, R. V., Tay, C. Y., Yuan, X., Xie, J., & Leong, D. T. (2014). Novel theranostic DNA nanoscaffolds for the simultaneous detection and killing of Escherichia coli and Staphylococcus aureus. ACS Applied Materials & Interfaces, 6(24), 21822–21831.

    Article  CAS  Google Scholar 

  143. Ferreira, K., Hu, H. Y., Fetz, V., Prochnow, H., Rais, B., Müller, P. P., & Brönstrup, M. (2017). Multivalent siderophore–DOTAM conjugates as theranostics for imaging and treatment of bacterial infections. Angewandte Chemie International Edition, 56(28), 8272–8276.

    Article  CAS  PubMed  Google Scholar 

  144. He, X., Xiong, L.-H., Zhao, Z., Wang, Z., Luo, L., Lam, J. W. Y., Kwok, R. T. K., & Tang, B. Z. (2019). AIE-based theranostic systems for detection and killing of pathogens. Theranostics, 9(11), 3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Dhara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojha, A.K. et al. (2022). Nanotheranostics: Nanoparticles Applications, Perspectives, and Challenges. In: Borse, V., Chandra, P., Srivastava, R. (eds) BioSensing, Theranostics, and Medical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-2782-8_14

Download citation

Publish with us

Policies and ethics