Skip to main content

Nanosized Additives for Enhancing Storage Quality of Horticultural Produce

  • Chapter
  • First Online:
Edible Food Packaging

Abstract

Use of nanosized materials for preventing spoilage and active packaging of horticultural produce has increased rapidly over the past two decades. Nanoparticles, like metal oxides, nanoemulsions, and nanocomposites, have the ability to enhance mechanical and barrier properties while acting as antimicrobial agent. The presence of higher surface to volume ratio provides better contact with the microorganism and consequently long-lasting antimicrobial efficacy. Present chapter encompasses recent advances in the area of application of nanosized additives for antimicrobial activity, and nanocomposite active and smart packaging of fruits, vegetables, and flowers are presented. The material used, preparation techniques, characterization, efficacy, and degradation are discussed. Moreover, there is little knowledge regarding the pharmacokinetics, toxicity, and pharmacodynamics of nanomaterials in humans, but still there are many conceivable advantages of such technology. Developments on regulatory aspects and specific directives for the same have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Kader HH, Hamza AM, Elbaz TT, Eissa SM (2017) Effects of some chemicals on vase life of some cut flowers I. Effect of 8-Hydroxyquinoline sulfate, silver nitrate, silver nano particles and chitosan on vase life and quality of cut rose flowers (Rosa hybrida. Cv.“Black Magic”). J Plant Prodn 8(1):49–53

    Google Scholar 

  • Acevedo-Del-Castillo A, Águila-Toledo E, Maldonado-Magnere S, Aguilar-Bolados H (2021) A brief review on the high-energy electromagnetic radiation-shielding materials based on polymer nanocomposites. Int J Mol Sci 22(16):9079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal R, Verma AK, Satlewal A (2016) Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innovative Food Sci Emerg Technol 33:472–482

    Article  CAS  Google Scholar 

  • Akbar A, Anal AK (2014) Zinc oxide nanoparticles loaded active packaging a challenge study against Salmonella typhimurium and Staphylococcus aureus in ready-to-eat poultry meat. Food Control 38:88–95

    Article  CAS  Google Scholar 

  • Alaraby M, Hernández A, Marcos R (2020) Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO2 nanomaterials: a systematic in vivo study using Drosophila melanogaster. J Hazard Mater 124474

    Google Scholar 

  • Ali A, Noh NM, Mustafa MA (2015) Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Pack Shelf Life 3:56–61

    Article  Google Scholar 

  • Almoudi M, Hussein AS, Hassan MIA, Zain NM (2018) A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dental J 30(4):283–291

    Article  Google Scholar 

  • Al-Naamani L, Dutta J, Dobretsov S (2018) Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of Okra (Abelmoschus esculentus). Nanomaterials 8(7):479

    Article  PubMed Central  Google Scholar 

  • Amin OA (2017) Influence of nanosilver and stevia extract on cut Anthurium inflorescences. Middle East J Appl Sci 7(2):299–313

    Google Scholar 

  • Andón FT, Kapralov A, Yanamala N, Feng W, Baygan A, Chambers BJ, Kagan VE (2013) Biodegradation of single walled carbon nanotubes by eosinophil peroxidase. Small 9(16):2721–2729

    Article  PubMed  PubMed Central  Google Scholar 

  • Ansari MA, Khan HM, Khan A, Pal R, Cameotra S (2013) Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15(10):1–12

    Article  Google Scholar 

  • Anugrah DSB, Alexander H, Pramitasari R, Hudiyanti D, Sagita CP (2020) A review of polysaccharide-zinc oxide nanocomposites as safe coating for fruits preservation. Coatings 10(10):988

    Article  CAS  Google Scholar 

  • Arabpoor B, Yousefi S, Weisany W, Ghasemlou M (2021) Multifunctional coating composed of Eryngium campestre essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll 111:106394

    Article  CAS  Google Scholar 

  • Ashammakhi N, Darabi MA, Clebi Saltik B, Tutar R, Hartel MC, Lee J, Khademhosseini A (2020) Microphysiological systems: next generation systems for assessing toxicity and therapeutic effects of nanomaterials. Small Methods 4(1):1900589

    Article  CAS  PubMed  Google Scholar 

  • Ayuk EL, Ugwu MO, Aronimo SB (2017) A review on synthetic methods of nanostructured materials. Chem Res J 2(5):97–123

    CAS  Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and-negative bacterial strains. Int J Nanomedicine 7:3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicol 8(1):1–16

    Article  CAS  Google Scholar 

  • Blanke M, Shekarriz R (2010) Gold nanoparticles and sensor technology for sensitive ethylene detection. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010) 934:255–262

    Google Scholar 

  • Boddolla S, Thodeti S (2018) A review on characterization techniques of nanomaterials. Int J Eng Sci Maths 7(1):169–175

    Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SCG, Susan WP, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Busolo MA, Fernandez P, Ocio MJ, Lagaron JM (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27:1617–1626

    Article  CAS  Google Scholar 

  • Carrillo-López LM, Morgado-González A, Morgado-González A (2016) Biosynthesized silver nanoparticles used in preservative solutions for Chrysanthemum cv. puma. J Nanomat 2016:1769250

    Article  Google Scholar 

  • Chalandar HE, Ghorbani HR, Attar H, Alavi SA (2017) Antifungal effect of copper and copper oxide nanoparticles against Penicillium on orange fruit. Biosci Biotechnol Res Asia 14(1):279–284

    Article  Google Scholar 

  • Chandrasekaran G, Choi SK, Lee YC, Kim GJ, Shin HJ (2014) Oxidative biodegradation of single-walled carbon nanotubes by partially purified lignin peroxidase from Sparassis latifolia mushroom. J Indus Engg Chem 20(5):3367–3374

    Article  CAS  Google Scholar 

  • Chaudhry Q, Laurence C (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):595–603

    Article  CAS  Google Scholar 

  • Chen M, Qin X, Zeng G (2017) Biodegradation of carbon nanotubes, graphene, and their derivatives-review. Trends Biotechnol 35(9):836

    Article  CAS  PubMed  Google Scholar 

  • Chi H, Song S, Luo M, Zhang C, Li W, Li L, Qin Y (2019) Effect of PLA nanocomposite films containing bergamot essential oil, TiO2 nanoparticles, and Ag nanoparticles on shelf life of mangoes. Sci Hortic 249:192–198

    Article  CAS  Google Scholar 

  • Chouhan RS, Qureshi A, Yagci B, Gülgün MA, Ozguz V, Niazi JH (2016) Biotransformation of multi-walled carbon nanotubes mediated by nanomaterial resistant soil bacteria. Chem Eng J 298:1–9

    Article  CAS  Google Scholar 

  • Costa CA, Buonocore G, Del Nobile MA (2011) Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol 148(3):164–167

    CAS  PubMed  Google Scholar 

  • Cousins BG, Allison HE, Doherty PJ, Edwards C, Garvey MJ, Martin DS, Williams RL (2007) Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. J Appl Microbiol 102(3):757–765

    Article  CAS  PubMed  Google Scholar 

  • Creighton JR, Ho P (2001) Introduction to chemical vapor deposition (CVD). Chem Vap Depos 2:1–22

    CAS  Google Scholar 

  • Cui L, Pan G, Li L, Yan J, Zhang A, Bian R, Chang A (2012) The reduction of wheat Cd uptake in contaminated soil via biochar amendment: a two-year field experiment. Bioresources 7(4):5666–5676

    Article  Google Scholar 

  • Cwiek-Ludwicka K, Ludwicki JK (2017) Nanomaterials in food contact materials; considerations for risk assessment. Rocz Panstw Zakl Hig 68(4)

    Google Scholar 

  • De Azeredo HM (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69

    Article  Google Scholar 

  • Deepshikha G, Verma AL, Monika T (2018) Application of ZnO nanoparticles in enhancing shelf life of cut flowers with special reference to Gerbera jamesonii. Res J Chem Environ 22(8)

    Google Scholar 

  • Dhapte V, Kadam S, Moghe A, Pokharkar V (2014) Probing the wound healing potential of biogenic silver nanoparticles. J Wound Care 23(9):431–441

    Article  CAS  PubMed  Google Scholar 

  • Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espitia PJP, Soares NDF, Teófilo RF, dos Reis Coimbra JS, Vitor DM, Batista RA, Medeiros EA (2013) Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94(1):199–208

    Article  CAS  PubMed  Google Scholar 

  • Fellahi O, Sarma RK, Das MR, Saikia R, Marcon L, Coffinier Y, Boukherroub R (2013) The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. Nanotechnology 24(49):495101

    Article  PubMed  Google Scholar 

  • Foltynowicz Z, Bardenshtein A, Sängerlaub S, Antvorskov H, Kozak W (2017) Nanoscale, zero-valent iron particles for application as an oxygen scavenger in food packaging. Food Packag Shelf Life 11:74–83

    Article  Google Scholar 

  • Gol NB, Chaudhari ML, Rao TR (2015) Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. J Food Sci Technol 52(1):78–91

    Article  CAS  Google Scholar 

  • Govers M, Termont D, Vanaken GA, Vandermeer R (1994) Characterization of the adsorption of conjugated and unconjugated bile-acids to insoluble amorphous calcium phosphate. J Lipid Res 35(5):741–748

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Rajesh K, Abdelwahab O (2013) Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. Int School Res Not

    Google Scholar 

  • Haghighi F, RoudbarMohammadi S, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol 1(1):33–38

    Google Scholar 

  • Hellmann C, Andreas G, Joachim WH (2011) Design of pheromone releasing nanofibers for plant protection. Poly Adv Technol 22(4):407–413

    Article  CAS  Google Scholar 

  • Hernandez CC, Dos Santos RD (2016) Extraction of cellulose Nanowhiskers: natural fibers source, methodology and application. Matrix 3:16

    Google Scholar 

  • Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    Article  CAS  PubMed  Google Scholar 

  • Huang JI, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45:187–199

    Article  CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–0

    Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar A, Heera KV, Sumi TS, Joseph M, Mathew S, Praveen G, Radhakrishnan EK (2019) Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int J Biol Macromol 136:395–403

    Article  CAS  PubMed  Google Scholar 

  • Jerish JJ, Dhinesh V (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 3(4):80

    Google Scholar 

  • Jin T, He Y (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res 13(12):6877–6885

    Article  CAS  Google Scholar 

  • Kalia A, Kaur M, Shami A, Jawandha SK, Alghuthaymi MA, Thakur A, Abd-Elsalam KA (2021) Nettle-leaf extract derived zno/cuo nanoparticle-biopolymer-based antioxidant and antimicrobial nanocomposite packaging films and their impact on extending the post-harvest shelf life of guava fruit. Biomol Ther 11(2):224

    CAS  Google Scholar 

  • Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199

    Article  CAS  PubMed  Google Scholar 

  • Karimirad R, Behnamian M, Dezhsetan S (2020) Bitter orange oil incorporated into chitosan nanoparticles: preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocol 100:105387

    Article  CAS  Google Scholar 

  • Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phy Rev Lett 96(4):045901

    Article  Google Scholar 

  • Kim M, Osone S, Kim T, Higashi H, Seto T (2017) Synthesis of nanoparticles by laser ablation: a review. KONA Powder Part J 2017009

    Google Scholar 

  • Kord B, Roohani M (2016) Biodegradation and migration behavior of cellulose nanocrystal-nanoclay reinforced PLA composites. Iran J Wood Paper Sci Res 31(1)

    Google Scholar 

  • Krug HF, Wick P (2011) Nanotoxicology: an interdisciplinary challenge. Angew Chem Int Ed Engl 50:1260–1278

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bhardwaj K, Kuča K, Kalia A, Nepovimova E, Verma R, Kumar D (2020) Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance. Nanomaterials 10(4):766

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol 19(1):1–25

    Article  Google Scholar 

  • Lade BD, Shanware AS (2020) Phytonanofabrication: methodology and factors affecting biosynthesis of nanoparticles. Smart Nanosystems for Biomed, Optoelectronics and Catalysis, Intech open publications

    Google Scholar 

  • Lanza GA, Perez-Taborda JA, Avila A (2019) Time-temperature indicators (Ttis) based on silver nanoparticles for monitoring of perishables products. J Phys Conf Ser 1247(1):012055

    Article  CAS  Google Scholar 

  • Li B, Logan BE (2004) Bacterial adhesion to glass and metal-oxide surfaces. Collds Surf B Biointerfaces 36(2):81–90

    Article  CAS  PubMed  Google Scholar 

  • Li H, Feng L, Lin W, Jianchun S, Zhihong X, Liyan Z, Hongmei X, Yonghua Z, Qiuhui H (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. Var. Inermis (Bunge) Rehd). Food Chem 114(2):547–552

    Article  CAS  Google Scholar 

  • Li M, Lin D, Zhu L (2013) Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environ Pollut 173:97–102

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li L, Cao Y, Lan T, Chen H, Qin Y (2017) Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials 7(8):207

    Article  PubMed Central  Google Scholar 

  • Lima E, Guerra R, Lara V, Guzmán A (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7(1):1–7

    Article  Google Scholar 

  • Liu D, Dong Y, Liu Y, Ma N, Sui G (2019) Cellulose Nanowhisker (Cnw)/graphene Nanoplatelet (Gn) composite films with simultaneously enhanced thermal, electrical and mechanical properties. Front Mater 6:235

    Article  Google Scholar 

  • Lizundia E, Ruiz Rubio L, Vilasjl LLM (2016) Poly (L-Lactide)/Zno nanocomposites as efficient UV-shielding coatings for packaging applications. J Appl Pol Sci 133(2)

    Google Scholar 

  • Lomer MC, Thompson RP, Powell JJ (2002) Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with crohn’s disease. Proc Nutr Soc 61(1):123–130

    Article  PubMed  Google Scholar 

  • López De Dicastillo C, Velásquez E, Rojas A, Guarda A, Galotto MJ (2020) The use of nanoadditives within recycled polymers for food packaging: properties, recyclability and safety. Compr Rev Food Sci Food Saf 19(4):1760–1776

    Article  PubMed  Google Scholar 

  • Maisanaba S, Guzmán-Guillén R, Puerto M, Gutiérrez-Praena D, Ortuño N, Jos Á (2018) In vitro toxicity evaluation of new silane-modified clays and the migration extract from a derived polymer-clay nanocomposite intended to food packaging applications. J Hazard Mater 341:313–320

    Article  PubMed  Google Scholar 

  • Maity TR, Samanta A, Saha B, Datta S (2019) Evaluation of Piper betle mediated silver nanoparticle in post-harvest physiology in relation to vase life of cut spike of Gladiolus. Bull Natl Res Centre 43(1):1–11

    Article  Google Scholar 

  • Malekzadeh M, Rohani P, Keskar M, Swihart MT (2018) Laser pyrolysis synthesis of novel nanoparticles using spray-based precursor delivery. In: AIChE Annual Meeting. AIChE. https://www.aiche.org/conferences/aiche-annual-meeting/2018/proceeding/paper/375i-laser-pyrolysis-synthesis-novel-nanoparticles-using-spray-based-precursor-delivery

    Google Scholar 

  • Maneerat C, Hayata Y (2006) Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int J Food Microbiol 107:99–103

    Article  CAS  PubMed  Google Scholar 

  • Marian B, Steliana R, Alina B (2019) Application of silver nanoparticles on fresh fruits preservation, proceedings of the 5th World Congress on New Technologies (Newtech'19) Lisbon, Portugal Paper No. ICNFA 156

    Google Scholar 

  • Martınez-Flores E, Negrete J, Villasenor GT (2003) Structure and properties of Zn–Al–cu alloy reinforced with alumina particles. Mater Des 24(4):281–286

    Article  Google Scholar 

  • Mierzwa JC, Arieta V, Verlage M, Carvalho J, Vecitis CD (2013) Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes. Desalination 314:147–158

    Article  CAS  Google Scholar 

  • Mohammad G, Mishra VK, Pandey HP (2008) Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Dig J Nanomat Biostruct 3(4):159–162

    Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol Tech 110:203–213

    Article  CAS  Google Scholar 

  • Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A (2002) Factors affecting the moisture permeability of lipid-based edible films: a review. Crit Rev Food Sci Nutr 42(1):67–89

    Article  CAS  PubMed  Google Scholar 

  • Naing AH, Win NM, Han JS, Lim KB, Kim CK (2017) Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Front Plant Sci 8:1590

    Article  PubMed  PubMed Central  Google Scholar 

  • Namita R (2015) Methods of preparation of nanoparticles – a review. Int J Adv Eng Technol 7(4):1806–1811

    Google Scholar 

  • Nič M, Jirát J, Košata B, Jenkins A, McNaught A (2020) IUPAC compendium of chemical terminology. IUPAC, Research Triangle Park; 2009

    Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect:823–839

    Google Scholar 

  • Opara L (2004) Emerging technological innovation triad for smart agriculture in the 21st century. Part I. Prospects and Impacts of Nanotechnology in Agriculture

    Google Scholar 

  • Park DY, Naing AH, Ai TN, Han JS, Kang IK, Kim CK (2017) Synergistic effect of nano-sliver with sucrose on extending vase life of the carnation cv. Edun. Front Plant Sci 8:1601

    Article  PubMed  PubMed Central  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. Adv Nanomater Nanotechnol:301–309

    Google Scholar 

  • Potemkin DI, Maslov DK, Loponov K, Snytnikov PV, Shubin YV, Plyusnin PE et al (2018) Porous nanocrystalline silicon supported bimetallic Pd-Au catalysts: preparation, characterization, and direct hydrogen peroxide synthesis. Front Chem 6:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman MM, Ahmad SH, Mohamed MTM, Ab Rahman MZ (2019) Improving the vase life of cut Mokara red orchid flower using leaf extracts with silver nanoparticles. Proc Natl Acad Sci India Sect B Biol Sci 89(4):1343–1350

    Article  CAS  Google Scholar 

  • Rodino S, Butu M, Butu A (2019) Application of biogenic silver nanoparticles for berries preservation. Dig J Nanomater Biostruct 14:601–606

    Google Scholar 

  • Rokayya S, Jia F, Li Y, Nie X, Xu J, Han R, Helal M (2021) Application of nano-titanum dioxide coating on fresh highbush blueberries shelf life stored under ambient temperature. LWT 137:110422

    Article  CAS  Google Scholar 

  • Rudakiya D, Patel Y, Chhaya U, Gupte A (2019) Carbon nanotubes in agriculture: production, potential, and prospects. In: Nnanotechnology for agriculture. Springer, Singapore, pp 121–130

    Chapter  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  PubMed  Google Scholar 

  • Saekow M, Naradisorn M, Tongdeesoontorn W, Hamauzu Y (2019) Effect of carboxymethyl cellulose coating containing ZnO-nanoparticles for prolonging shelf life of persimmon and tomato fruit. J Food Sci Agric Technol 5:41–48

    Google Scholar 

  • Salem EA, Nawito MAS, Abd El-Raouf AER (2019) Effect of silver nano-particles on gray mold of tomato fruits. J Nanotechnol Res 1(4):108–118

    Google Scholar 

  • Salloom HT (2017) Third order optical nonlinearity of silver nanoparticles prepared by chemical reduction method. Al-Nahrain J Sci 20(3):99–104

    Google Scholar 

  • Siddiqi KS, Husen A (2017a) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12(1):1–18

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017b) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  CAS  PubMed  Google Scholar 

  • Simpson CA, Salleng KJ, Cliffel DE, Feldheim DL (2013) In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 9(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Sami R, Elhakem A, Alharbi M, Benajiba N, Almatrafi M, Jing J, Helal M (2020) Effect of titanium dioxide nanocomposite material and antimicrobial agents on mushrooms shelf-life preservation. PRO 8(12):1632

    CAS  Google Scholar 

  • Sami R, Almatrafi M, Elhakem A, Alharbi M, Benajiba N, Helal M (2021) Effect of nano silicon dioxide coating films on the quality characteristics of fresh-cut cantaloupe. Membranes 11(2):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar K, Hu X, Chelliah R, Oh DH, Kathiresan K, Wang MH (2020a) Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biol Technol 160:111039

    Article  CAS  Google Scholar 

  • Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Xiaowen H, Wang MH (2020b) Physical and bioactivities of biopolymeric films incorporated with cellulose, sodium alginate and copper oxide nanoparticles for food packaging application. Int J Biol Macromol 153:207–214

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Sudhakar RS (2018) Methods of nanomaterials. IJRASET 6(1):2321–8653

    Google Scholar 

  • Shadia J (2014) Characterization of nanomaterials. Springer J Mineral 16:28–29

    Google Scholar 

  • Shah SWA, Jahangir M, Qaisar M, Khan SA, Mahmood T, Saeed M, Liaquat M (2015) Storage stability of kinnow fruit (Citrus reticulata) as affected by CMC and guar gum-based silver nanoparticle coatings. Molecules 20(12):22645–22661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Wan Y, Ibrahim NA, Sha-banzadeh P, Ghaffari-Moghadam M (2011) Synthesis and characterization of silver /montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity. Intt J Nanomed 6:271–284

    Article  CAS  Google Scholar 

  • Simpson CA, Salleng KJ, Cliffel DE, Feldheim DL (2013) In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 9(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Singaravelan R, Alwar SB (2015) Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl Nano Sci 5(8):983–991

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    Article  CAS  Google Scholar 

  • Song H, Yuan W, Jin P, Wang W, Wang X, Yang L, Zhang Y (2016) Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biol Technol 119:41–48

    Article  CAS  Google Scholar 

  • Soriano Melgar LAA, López-Guerrero AG, Cortéz-Mazatan G, Mendoza-Mendoza E, Peralta-Rodríguez RD (2018) Nanopartículas de óxido de zinc y óxido de zinc/grafeno empleadas en soluciones florero durante la vida poscosecha de lisianthus (Eustoma grandiflorum). Agroproductividad 11(8)

    Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A (2020) Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ Chem Lett 9:1–21

    Google Scholar 

  • Suravajhala R, Bhagat M, Malik B (2020) Emerging toxicity aspects of silver nanoparticles: an overview. Cure Nanomater 5(2):158–164

    Article  CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 4(3):71–78

    Article  Google Scholar 

  • Trafton A (2012) Comparing apples and oranges–new sensor can accurately measure fruits ripeness, helping prevent loss of produce from spoilage. Sens Rev

    Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomedicine 8:4467

    PubMed  PubMed Central  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Vidic J, Stankic S, Haque F, Ciric D, Le Goffic R, Vidy A, Delmas B (2013) Selective antibacterial effects of mixed ZnMgO nanoparticles. J Nanopart Res 15(5):1–10

    Article  Google Scholar 

  • Vozga I, Kacani J (2020) Application of inert gas condensation, review Article. World J Engg Res Tech 6(2):11–22. ISSN 2454-695X. https://www.wjert.org/download/article/37022020/1582957855.pdf

    Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wang L, Shao S, Madebo MP, Hou Y, Zheng Y, Jin P (2020) Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem 315:126295

    Article  CAS  PubMed  Google Scholar 

  • Weisany W, Amini J, Samadi S, Hossaini S, Yousefi S, Struik PC (2019) Nano silver-encapsulation of Thymus daenensis and Anethumgraveolens essential oils enhances antifungal potential against strawberry anthracnose. Ind Crop Prod 141:111808

    Article  CAS  Google Scholar 

  • Xing Y, Xu Q, Li X, Chen C, Ma L, Li S, Lin H (2016) Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polymer Sci

    Google Scholar 

  • Xing Y, Yang H, Guo X, Bi X, Liu X, Xu Q, Zheng Y (2020) Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Sci Hortic 263:109135

    Article  CAS  Google Scholar 

  • Yadollahi A, Arzani K, Khoshghalb H (2009) The role of nanotechnology in horticultural crops postharvest management. Insoutheast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875:49–56

    Google Scholar 

  • Yam KL, Takhistov PT, Joseph M (2005) Intelligent packaging: concepts and applications. J Food Sci 70(1):1–10

    Article  Google Scholar 

  • Yamamoto D, Watanabe S, Miyahara MT (2010) Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles. Langmuir 26(4):2339–2345

    Article  CAS  PubMed  Google Scholar 

  • Yevale R, Khan N, Bhadane S (2019) An overview on nanoparticles. J Drug Del Therap 9(5):181–184

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    Article  CAS  PubMed  Google Scholar 

  • Zarei M, Jamnejad A, Khajehali E (2014) Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J Microbiol 7(1):8720

    Article  Google Scholar 

  • Zhang L, Petersen EJ, Habteselassie MY, Mao L, Huang Q (2013) Degradation of multiwall carbon nanotubes by Bacteria. Environ Pollut 181:335–339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanumesh Gowda, T.S., Pal, P., Vijay Rakesh Reddy, S., Ashwija, B.N., Rudra, S.G. (2022). Nanosized Additives for Enhancing Storage Quality of Horticultural Produce. In: Poonia, A., Dhewa, T. (eds) Edible Food Packaging . Springer, Singapore. https://doi.org/10.1007/978-981-16-2383-7_16

Download citation

Publish with us

Policies and ethics