Skip to main content

Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 1645 Accesses

Abstract

Advent of advanced analytical techniques for nanoscale characterization complemented by novel synthesis methodologies has led to a plethora of functional nanomaterials. These nanomaterials have opened avenues for application of electrochemical sensors in medical diagnostics, biotechnological, environmental monitoring, wellness monitoring and food markets. This chapter presents an overview of the accomplishments of electrochemical sensor devices based on carbon nanomaterials, noble metals, nanostructured polymers, and metal/metal oxides/composite nanostructures. Also, attempt is made to address several concerns around the selection of appropriate nanomaterials, their characterization and means to utilize the interesting chemistry they offer, especially from the point of view of electrochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179. https://doi.org/10.1002/smll.200400130

    Article  CAS  Google Scholar 

  2. Friedman RS, McAlpine MC, Ricketts DS, Ham D, Lieber CM (2005) High-speed integrated nanowire circuits. Nature 434:1085–1085. https://doi.org/10.1038/4341085a

    Article  CAS  Google Scholar 

  3. Nalwa HS (2014) A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity. J Biomed Nanotechnol 10:2421–2423

    Article  CAS  Google Scholar 

  4. Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1137–1143. https://doi.org/10.1038/nbt1003-1137

    Article  CAS  Google Scholar 

  5. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170. https://doi.org/10.1038/nbt875

    Article  CAS  Google Scholar 

  6. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  7. Thakur B, Amarnath CA, Mangoli SH, Sawant SN (2015) Polyaniline nanoparticle based colorimetric sensor for monitoring bacterial growth. Sens Actuators, B Chem 207:262–268. https://doi.org/10.1016/j.snb.2014.10.045

    Article  CAS  Google Scholar 

  8. Pandey PC, Singh S, Sawant SN (2018) Functional alkoxysilane mediated controlled synthesis of Prussian blue nanoparticles, enabling silica alginate bead development; nanomaterial for selective electrochemical sensing. Electrochim Acta 287:37–48. https://doi.org/10.1016/j.electacta.2018.05.003

    Article  CAS  Google Scholar 

  9. ChellachamyAnbalagan A, Sawant SN (2016) Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer 87:129–137. https://doi.org/10.1016/j.polymer.2016.01.049

    Article  CAS  Google Scholar 

  10. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal Chem 29:954–965. https://doi.org/10.1016/j.trac.2010.05.011

    Article  CAS  Google Scholar 

  11. Anu MP, Kaur B, Srivastava R (2019) Electrochemical sensor platforms based on nanostructured metal oxides, and zeolite-based materials. Chem Rec 19:883–907. https://doi.org/10.1002/tcr.201800068

    Article  CAS  Google Scholar 

  12. Sawant S (2017) Development of biosensors from biopolymer composites. In: Biopolymer composites in electronics, pp 353–383. https://doi.org/10.1016/B978-0-12-809261-3.00013-9

  13. Thakur B, Amarnath CA, Sawant SN (2014) Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 4:40917–40923. https://doi.org/10.1039/C4RA05264A

    Article  CAS  Google Scholar 

  14. Prathap MUA, Wei C, Sun S, Xu ZJ (2015) A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Res 8:2636–2645. https://doi.org/10.1007/s12274-015-0769-z

    Article  CAS  Google Scholar 

  15. Prathap MUA, Sun S, Wei C, Xu ZJ (2015) A novel non-enzymatic lindane sensor based on CuO–MnO2 hierarchical nano-microstructures for enhanced sensitivity. Chem Commun 51:4376–4379. https://doi.org/10.1039/C5CC00024F

    Article  CAS  Google Scholar 

  16. Prathap MUA, Gunasekaran S (2018) Rapid and scalable synthesis of zeolitic imidazole framework (ZIF-8) and its use for the detection of trace levels of nitroaromatic explosives. Adv Sustain Syst 2:1800053. https://doi.org/10.1002/adsu.201800053

    Article  CAS  Google Scholar 

  17. Prathap MUA, Srivastava R (2013) Synthesis of NiCo2O4 and its application in the electrocatalytic oxidation of methanol. Nano Energy 2:1046–1053. https://doi.org/10.1016/j.nanoen.2013.04.003

    Article  CAS  Google Scholar 

  18. Thakur B, Sawant SN (2013) Polyaniline/prussian-blue-based amperometric biosensor for detection of uric acid. ChemPlusChem 78:166–174. https://doi.org/10.1002/cplu.201200222

    Article  CAS  Google Scholar 

  19. Prathap MUA, Srivastava R (2013) Electrochemical reduction of lindane (γ-HCH) at NiCo2O4 modified electrode. Electrochim Acta 108:145–152. https://doi.org/10.1016/j.electacta.2013.06.122

    Article  CAS  Google Scholar 

  20. Prathap MUA, Thakur B, Sawant SN, Srivastava R (2012) Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloids Surf B: Biointerfaces 89:108–116. https://doi.org/10.1016/j.colsurfb.2011.09.002

    Article  CAS  Google Scholar 

  21. Prathap MUA, Rodríguez CI, Sadak O, Guan J, Setaluri V, Gunasekaran S (2018) Ultrasensitive electrochemical immunoassay for melanoma cells using mesoporous polyaniline. Chem Commun 54:710–714. https://doi.org/10.1039/C7CC09248B

    Article  CAS  Google Scholar 

  22. Prathap MUA, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295. https://doi.org/10.1016/j.electacta.2013.10.064

    Article  CAS  Google Scholar 

  23. Prathap MUA, Satpati B, Srivastava R (2014) Facile preparation of β-Ni(OH)2-NiCo2O4 hybrid nanostructure and its application in the electro-catalytic oxidation of methanol. Electrochim Acta 130:368–380. https://doi.org/10.1016/j.electacta.2014.03.043

    Article  CAS  Google Scholar 

  24. Ma Y, Li H, Bridges D, Peng P, Lawrie B, Feng Z, Hu A (2016) Zero-dimensional to three-dimensional nanojoining: current status and potential applications. RSC Adv 6:75916–75936. https://doi.org/10.1039/C6RA15897H

    Article  CAS  Google Scholar 

  25. Gaffar S, Udamas D, Hartati YW, Subroto T (2018) Gold modified screen printed carbon electrode (SPCE) with steptavidin-biotin system for detection of heart failure by using immunosensor. AIP Conf Proc 2049:030017. https://doi.org/10.1063/1.5082518

    Article  CAS  Google Scholar 

  26. Cheemalapati S, Chen S-M, Ali MA, Al-Hemaid FM (2014) Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis. Colloids Surf B, Biointerfaces 121:444–450. https://doi.org/10.1016/j.colsurfb.2014.06.035

    Article  CAS  Google Scholar 

  27. Devadas B, Sivakumar M, Chen SM, Cheemalapati S (2015) An electrochemical approach: Switching Structures of rare earth metal Praseodymium hexacyanoferrate and its application to sulfite sensor in Red Wine. Electrochim Acta 176:350–358. https://doi.org/10.1016/j.electacta.2015.07.022

    Article  CAS  Google Scholar 

  28. AnithaKumary V, Divya J, Nancy TEM, Sreevalsan K (2013) Voltammetric detection of paracetamol at cobalt ferrite nanoparticles modified glassy carbon electrode. Int J Electrochem Sci 8:6610–6619

    CAS  Google Scholar 

  29. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986. https://doi.org/10.1021/acs.chemrev.6b00073

    Article  CAS  Google Scholar 

  30. Masitas RA, Allen SL, Zamborini FP (2016) Size-dependent electrophoretic deposition of catalytic gold nanoparticles. J Am Chem Soc 138:15295–15298. https://doi.org/10.1021/jacs.6b09172

    Article  CAS  Google Scholar 

  31. Rajkumar C, Thirumalraj B, Chen S-M, Palanisamy S (2016) Novel electrochemical preparation of gold nanoparticles decorated on a reduced graphene oxide–fullerene composite for the highly sensitive electrochemical detection of nitrite. RSC Adv 6:68798–68805. https://doi.org/10.1039/C6RA10690K

    Article  CAS  Google Scholar 

  32. Niemeyer CM, Adler M, Pignataro B, Lenhert S, Gao S, Chi L, Fuchs H, Blohm D (1999) Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR. Nucleic Acids Res 27:4553–4561

    Article  CAS  Google Scholar 

  33. Cheng MS, Toh C-S (2013) Novel biosensing methodologies for ultrasensitive detection of viruses. Analyst 138:6219–6229. https://doi.org/10.1039/C3AN01394D

    Article  CAS  Google Scholar 

  34. Salaün P, van den Berg CMG (2006) Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal Chem 78:5052–5060. https://doi.org/10.1021/ac060231+

    Article  CAS  Google Scholar 

  35. Bi Z, Salaün P, van den Berg CMG (2013) Study of bare and mercury-coated vibrated carbon, gold and silver microwire electrodes for the determination of lead and cadmium in seawater by anodic stripping voltammetry. Electroanalysis 25:357–366. https://doi.org/10.1002/elan.201200446

    Article  CAS  Google Scholar 

  36. Ding Y, Kim Y-J, Erlebacher J (2004) Nanoporous gold leaf: “ancient technology”/advanced material. Adv Mater 16:1897–1900. https://doi.org/10.1002/adma.200400792

    Article  CAS  Google Scholar 

  37. Li J, Lin X (2007) Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode. Sens Actuators, B Chem 126:527–535. https://doi.org/10.1016/j.snb.2007.03.044

    Article  CAS  Google Scholar 

  38. Kaur B, Srivastava R, Satpati B (2015) A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione. RSC Adv 5:95028–95037. https://doi.org/10.1039/C5RA19249H

    Article  CAS  Google Scholar 

  39. Shen Y, Sheng Q, Zheng J (2017) A high-performance electrochemical dopamine sensor based on a platinum–nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite. Anal Methods 9:4566–4573. https://doi.org/10.1039/C7AY00717E

    Article  CAS  Google Scholar 

  40. Liu X, Chen X, Ju J, Wang X, Mei Z, Qu H, Xu Y, Zeng X (2019) Platinum-nickel bimetallic nanosphere-ionic liquid interface for electrochemical oxygen and hydrogen sensing. ACS Appl. Nano Mater. 2:2958–2968. https://doi.org/10.1021/acsanm.9b00380

    Article  CAS  Google Scholar 

  41. Huang H, Hu X, Zhang J, Su N, Cheng J (2017) Facile fabrication of platinum-cobalt alloy nanoparticles with enhanced electrocatalytic activity for a methanol oxidation reaction. Sci Rep 7:45555. https://doi.org/10.1038/srep45555

    Article  CAS  Google Scholar 

  42. McNamara K, Tofail SAM (2017) Nanoparticles in biomedical applications. Adv Phys: X 2:54–88. https://doi.org/10.1080/23746149.2016.1254570

    Article  CAS  Google Scholar 

  43. Zhu N, Chang Z, He P, Fang Y (2005) Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal Chim Acta 545:21–26. https://doi.org/10.1016/j.aca.2005.04.015

    Article  CAS  Google Scholar 

  44. Cui H-F, Ye J, Liu X, Zhang W-D, Sheu F-S (2006) Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17:2334. https://doi.org/10.1088/0957-4484/17/9/043

    Article  CAS  Google Scholar 

  45. Shim K, Kim J, Shahabuddin M, Yamauchi Y, Hossain MdSA, Kim JH (2018) Efficient wide range electrochemical bisphenol-A sensor by self-supported dendritic platinum nanoparticles on screen-printed carbon electrode. Sens Actuators, B Chem 255:2800–2808. https://doi.org/10.1016/j.snb.2017.09.096

    Article  CAS  Google Scholar 

  46. Zahed FM, Hatamluyi B, Lorestani F, Es’haghi Z (2018) Silver nanoparticles decorated polyaniline nanocomposite based electrochemical sensor for the determination of anticancer drug 5-fluorouracil. J Pharm Biomed Anal 161:12–19. https://doi.org/10.1016/j.jpba.2018.08.004

    Article  CAS  Google Scholar 

  47. Sandeep S, Santhosh AS, Swamy NK, Suresh GS, Melo JS, Chamaraja NA (2018) A biosensor based on a graphene nanoribbon/silver nanoparticle/polyphenol oxidase composite matrix on a graphite electrode: application in the analysis of catechol in green tea samples. New J Chem 42:16620–16629. https://doi.org/10.1039/C8NJ02325E

    Article  CAS  Google Scholar 

  48. Arkan E, Shamsipur M, Saber R, Karimi Z, Majnooni M (2014) A novel electrochemical sensor based on a silver nanoparticle modified carbon ionic liquid electrode for selective and sensitive determination of levetiracetam in pharmaceutical tablets and blood plasma samples. Anal Methods 6:2197–2204. https://doi.org/10.1039/C3AY42295J

    Article  CAS  Google Scholar 

  49. Prathap MUA, Sun S, Xu ZJ (2016) An electrochemical sensor highly selective for lindane determination: a comparative study using three different α-MnO2 nanostructures. RSC Adv 6:22973–22979. https://doi.org/10.1039/C5RA26771D

    Article  CAS  Google Scholar 

  50. Kaur B, Srivastava R, Satpati B (2015) Silver nanoparticle decorated polyaniline–zeolite nanocomposite material based non-enzymatic electrochemical sensor for nanomolar detection of lindane. RSC Adv 5:57657–57665. https://doi.org/10.1039/C5RA09461E

    Article  CAS  Google Scholar 

  51. Abdelwahab A, Shim Y-B (2014) Nonenzymatic H2O2 sensing based on silver nanoparticles capped polyterthiophene/MWCNT nanocomposite. Sens Actuators, B Chem 201:51–58. https://doi.org/10.1016/j.snb.2014.05.004

    Article  CAS  Google Scholar 

  52. Kaur B, Srivastava R, Satpati B (2015) Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes. New J Chem 39:5137–5149. https://doi.org/10.1039/C4NJ02369B

    Article  CAS  Google Scholar 

  53. Rahi R, Fang M, Ahmed A, Sánchez-Delgado RA (2012) Hydrogenation of quinolines, alkenes, and biodiesel by palladium nanoparticles supported on magnesium oxide. Dalton Trans 41:14490–14497. https://doi.org/10.1039/C2DT31533E

    Article  CAS  Google Scholar 

  54. Datta A, Kapri S, Bhattacharyya S (2015) Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol electro-oxidation. Green Chem 17:1572–1580. https://doi.org/10.1039/C4GC02052A

    Article  CAS  Google Scholar 

  55. Sefid-sefidehkhan Y, Nekoueian K, Amiri M, Sillanpaa M, Eskandari H (2017) Palladium nanoparticles in electrochemical sensing of trace terazosin in human serum and pharmaceutical preparations. Mater Sci Eng, C 75:368–374. https://doi.org/10.1016/j.msec.2017.02.061

    Article  CAS  Google Scholar 

  56. Rahi A, Sattarahmady N, Heli H (2016) An ultrasensitive electrochemical genosensor for brucella based on palladium nanoparticles. Anal Biochem 510:11–17. https://doi.org/10.1016/j.ab.2016.07.012

  57. Wang C-H, Yang C-H, Chang J-K (2017) High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids. Biosens Bioelectron 89:483–488. https://doi.org/10.1016/j.bios.2016.03.071

  58. Prathap MUA, Anuraj V, Satpati B, Srivastava B (2013) Facile preparation of Ni(OH)2–MnO2 hybrid material and its application in the electrocatalytic oxidation of hydrazine. J Hazard Mater 262:766–774. https://doi.org/10.1016/j.jhazmat.2013.09.050

    Article  CAS  Google Scholar 

  59. Kaur B, Satpati B, Srivastava R (2016) ZrO2 supported nano-ZSM-5 nanocomposite material for the nanomolar electrochemical detection of metol and bisphenol A. RSC Adv 6:65736–65746. https://doi.org/10.1039/C6RA08391A

    Article  CAS  Google Scholar 

  60. Yang S, Li G, Wang D, Qiao Z, Qu L (2017) Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: a three-dimensional hybrid for nonenzymatic glucose sensor. Sens Actuators, B Chem 238:588–595. https://doi.org/10.1016/j.snb.2016.07.105

    Article  CAS  Google Scholar 

  61. Li F, Li Y, Feng J, Dong Y, Wang P, Chen L, Chen Z, Liu H, Wei Q (2017) Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosens Bioelectron 87:630–637. https://doi.org/10.1016/j.bios.2016.09.018

    Article  CAS  Google Scholar 

  62. Chauhan N, Chawla S, Pundir CS, Jain U (2017) An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens Bioelectron 89:377–383. https://doi.org/10.1016/j.bios.2016.06.047

    Article  CAS  Google Scholar 

  63. Sadak O, Prathap MUA, Gunasekaran S (2019) Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon 144:756–763. https://doi.org/10.1016/j.carbon.2018.12.062

    Article  CAS  Google Scholar 

  64. Sekar M, Pandiaraj M, Bhansali S, Ponpandian N, Viswanathan C (2019) Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-018-37243-w

    Article  CAS  Google Scholar 

  65. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L, Shi G (2013) The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci Rep 3:1–7. https://doi.org/10.1038/srep02248

    Article  Google Scholar 

  66. Wang J, Musameh M (2003) Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst 128:1382–1385. https://doi.org/10.1039/B309928H

    Article  CAS  Google Scholar 

  67. Rubianes MD, Rivas GA (2005) Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis 17:73–78. https://doi.org/10.1002/elan.200403121

    Article  CAS  Google Scholar 

  68. Wang H-S, Li T-H, Jia W-L, Xu H-Y (2006) Highly selective and sensitive determination of dopamine using a nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode. Biosens Bioelectron 22:664–669. https://doi.org/10.1016/j.bios.2006.02.007

    Article  CAS  Google Scholar 

  69. Zeng B, Wei S, Xiao F, Zhao F (2006) Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens Actuators, B Chem 115:240–246. https://doi.org/10.1016/j.snb.2005.09.007

    Article  CAS  Google Scholar 

  70. Herrasti Z, Olivé-Monllau R, Muñoz-Pascual FX, Martínez F, Baldrich E (2014) Electrochemical biosensing of non-electroactive targets using ferrocene-labeled magnetic particles and CNT wiring. Analyst 139:1334–1339. https://doi.org/10.1039/C3AN02276E

    Article  CAS  Google Scholar 

  71. Saljooqi A, Shamspur T, Mostafavi A (2017) Ag-4-ATP-MWCNT electrode modified with dsDNA as label-free electrochemical sensor for the detection of daunorubicin anticancer drug. Bioelectrochemistry 118:161–167. https://doi.org/10.1016/j.bioelechem.2017.08.003

    Article  CAS  Google Scholar 

  72. Li X-M, Zhan Z-M, Ju H-Q, Zhang S-S (2008) Label-free electrochemical detection of short sequences related to the hepatitis B virus using 4,4’-diaminoazobenzene based on multiwalled carbon nanotube-modified GCE. Oligonucleotides 18:321–328. https://doi.org/10.1089/oli.2008.0143

    Article  CAS  Google Scholar 

  73. Barathi P, Thirumalraj B, Chen S-M, Subramania A (2017) One-pot electrochemical preparation of copper species immobilized poly(o-aminophenol)/MWCNT composite with excellent electrocatalytic activity for use as an H2O2 sensor. Inorg Chem Front 4:1356–1364. https://doi.org/10.1039/C7QI00259A

    Article  CAS  Google Scholar 

  74. Ortolani TS, Pereira TS, Assumpção MHMT, Vicentini FC, Gabriel de Oliveira G, Janegitz BC (2019) Electrochemical sensing of purines guanine and adenine using single-walled carbon nanohorns and nanocellulose. Electrochim Acta 298:893–900. https://doi.org/10.1016/j.electacta.2018.12.114

    Article  CAS  Google Scholar 

  75. Valentini F, Ciambella E, Conte V, Sabatini L, Ditaranto N, Cataldo F, Palleschi G, Bonchio M, Giacalone F, Syrgiannis Z, Prato M (2014) Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs). Biosens Bioelectron 59:94–98. https://doi.org/10.1016/j.bios.2014.02.065

  76. Zhu G, Sun H, Zou B, Liu Z, Sun N, Yi Y, Wong K (2018) Electrochemical sensing of 4-nitrochlorobenzene based on carbon nanohorns/graphene oxide nanohybrids. Biosens Bioelectron 106:136–141. https://doi.org/10.1016/j.bios.2018.01.058

    Article  CAS  Google Scholar 

  77. Zhu S, Li H, Niu W, Xu G (2009) Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode. Biosens Bioelectron 25:940–943. https://doi.org/10.1016/j.bios.2009.08.022

    Article  CAS  Google Scholar 

  78. Kingsford OJ, Qian J, Zhang D, Yi Y, Zhu G (2018) Electrochemical sensing for 1-chloro-4-nitrobenzene based on β-cyclodextrin/carbon nanohorn nanohybrids. Anal Methods 10:5372–5379. https://doi.org/10.1039/C8AY01892H

    Article  CAS  Google Scholar 

  79. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772. https://doi.org/10.1002/elan.200390094

    Article  CAS  Google Scholar 

  80. Das S, Presselt M (2019) Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies. J. Mater. Chem. C. 7:6194–6216. https://doi.org/10.1039/C9TC00889F

    Article  CAS  Google Scholar 

  81. Palanisamy S, Thirumalraj B, Chen S-M (2015) Electrochemical fabrication of gold nanoparticles decorated on activated fullerene C60: an enhanced sensing platform for trace level detection of toxic hydrazine in water samples. RSC Adv 5:94591–94598. https://doi.org/10.1039/C5RA17197K

    Article  CAS  Google Scholar 

  82. Sutradhar S, Patnaik A (2017) A new fullerene-C60—nanogold composite for non-enzymatic glucose sensing. Sens Actuators, B Chem 241:681–689. https://doi.org/10.1016/j.snb.2016.10.111

    Article  CAS  Google Scholar 

  83. Sheng Q, Liu R, Zheng J (2013) Fullerene-nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing. Bioelectrochemistry 94:39–46. https://doi.org/10.1016/j.bioelechem.2013.05.003

    Article  CAS  Google Scholar 

  84. Saeedfar K, Heng LY, Ling TL, Rezayi M (2013) Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors 13:16851–16866. https://doi.org/10.3390/s131216851

    Article  CAS  Google Scholar 

  85. Klunder KJ, Nilsson Z, Sambur JB, Henry CS (2017) Patternable solvent-processed thermoplastic graphite electrodes. J Am Chem Soc 139:12623–12631. https://doi.org/10.1021/jacs.7b06173

    Article  CAS  Google Scholar 

  86. Sun B-L, Cai J-Y, Li D, Gou X-D, Gou Y-Q, Li W, Hu F-D (2019) Fabrication of electrochemical sensor modified with porous graphene for determination of trace calycosin. Chin J Anal Chem 47:271–279. https://doi.org/10.1016/S1872-2040(19)61141-2

    Article  CAS  Google Scholar 

  87. Cheng C, Zhang C, Gao X, Zhuang Z, Du C, Chen W (2018) 3D Network and 2D paper of reduced graphene oxide/Cu2O composite for electrochemical sensing of hydrogen peroxide. Anal Chem 90:1983–1991. https://doi.org/10.1021/acs.analchem.7b04070

    Article  CAS  Google Scholar 

  88. Kwon OS, Song HS, Park TH, Jang J (2019) Conducting nanomaterial sensor using natural receptors. Chem Rev 119:36–93. https://doi.org/10.1021/acs.chemrev.8b00159

    Article  CAS  Google Scholar 

  89. Zamani FG, Moulahoum H, Ak M, OdaciDemirkol D, Timur S (2019) Current trends in the development of conducting polymers-based biosensors. TrAC Trends Anal Chem 118:264–276. https://doi.org/10.1016/j.trac.2019.05.031

    Article  CAS  Google Scholar 

  90. Shrestha BK, Ahmad R, Shrestha S, Park CH, Kim CS (2017) Globular shaped polypyrrole doped well-dispersed functionalized multiwall carbon nanotubes/nafion composite for enzymatic glucose biosensor application. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-16541-9

    Article  CAS  Google Scholar 

  91. Arulraj AD, Vijayan M, Vasantha VS (2015) Highly selective and sensitive simple sensor based on electrochemically treated nano polypyrrole-sodium dodecyl sulphate film for the detection of para-nitrophenol. Anal Chim Acta 899:66–74. https://doi.org/10.1016/j.aca.2015.09.055

    Article  CAS  Google Scholar 

  92. Ameen S, Akhtar MS, Seo H-K, Shin HS (2015) High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: broad range detection of m-dihydroxybenzene. Anal Chim Acta 886:165–174. https://doi.org/10.1016/j.aca.2015.05.038

    Article  CAS  Google Scholar 

  93. Bagheri H, Hajian A, Rezaei M, Shirzadmehr A (2017) Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J Hazard Mater 324:762–772. https://doi.org/10.1016/j.jhazmat.2016.11.055

    Article  CAS  Google Scholar 

  94. Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215. https://doi.org/10.1016/j.bios.2013.08.036

    Article  CAS  Google Scholar 

  95. Wang F, Li M, Wang B, Zhang J, Cheng Y, Liu L, Lv F, Wang S (2015) Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging. Sci Rep 5:7617. https://doi.org/10.1038/srep07617

    Article  CAS  Google Scholar 

  96. Liu R, Liu Z (2009) Polythiophene: synthesis in aqueous medium and controllable morphology. Chin Sci Bull 54:2028–2032. https://doi.org/10.1007/s11434-009-0217-0

    Article  CAS  Google Scholar 

  97. Nien P-C, Chen P-Y, Ho K-C (2009) Fabricating an amperometric cholesterol biosensor by a covalent linkage between poly(3-thiopheneacetic acid) and cholesterol oxidase. Sensors (Basel). 9:1794–1806. https://doi.org/10.3390/s90301794

    Article  CAS  Google Scholar 

  98. Nie G, Bai Z, Yu W, Chen J (2013) Electrochemiluminescence biosensor based on conducting poly(5-formylindole) for sensitive detection of Ramos cells. Biomacromol 14:834–840. https://doi.org/10.1021/bm3018802

    Article  CAS  Google Scholar 

  99. Prathap MUA, Satpati B, Srivastava R (2013) Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. Sens Actuators B: Chem 186:67–77. https://doi.org/10.1016/j.snb.2013.05.076

    Article  CAS  Google Scholar 

  100. Prathap MUA, Srivastava R (2013) Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. Sens Actuators B: Chem 177:239–250. https://doi.org/10.1016/j.snb.2012.10.138

    Article  CAS  Google Scholar 

  101. Prathap MUA, Srivastava R (2011) Morphological controlled synthesis of micro-/nano-polyaniline. J Polym Res 18:2455–2467. https://doi.org/10.1007/s10965-011-9662-y

    Article  CAS  Google Scholar 

  102. Lee M-H, O’Hare D, Guo H-Z, Yang C-H, Lin H-Y (2016) Electrochemical sensing of urinary progesterone with molecularly imprinted poly(aniline-co-metanilic acid)s. J Mater Chem B 4:3782–3787. https://doi.org/10.1039/C6TB00760K

    Article  CAS  Google Scholar 

  103. Prathap MUA, Chaurasia AK, Sawant SN, Apte SK (2012) Polyaniline-based highly sensitive microbial biosensor for selective detection of lindane. Anal Chem 84:6672–6678. https://doi.org/10.1021/ac301077d

    Article  CAS  Google Scholar 

  104. Anu Prathap MU, Castro-Pérez E, Jiménez-Torres JA, Setaluri V, Gunasekaran S (2019) A flow-through microfluidic system for the detection of circulating melanoma cells. Biosens Bioelectron 142:111522. https://doi.org/10.1016/j.bios.2019.111522

    Article  CAS  Google Scholar 

  105. Prabhakar PK, Raj S, Anuradha PR, Sawant SN, Doble M (2011) Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids Surf, B 86:146–153. https://doi.org/10.1016/j.colsurfb.2011.03.033

    Article  CAS  Google Scholar 

  106. Thakur B, Jayakumar S, Sawant SN (2015) Probing extracellular acidity of live cells in real time for cancer detection and monitoring anti-cancer drug activity. Chem Commun 51:7015–7018. https://doi.org/10.1039/C5CC01445J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Anu Prathap M. Udayan is grateful to Department of Biotechnology (DBT), Government of India for Ramalingaswami Re-entry Fellowship (BT/HRD/35/02/2006; BT/RLF/Re-entry/30/2017) and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa N. Sawant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udayan, A.P.M., Sawant, S.N. (2021). Synthesis of Advanced Nanomaterials for Electrochemical Sensor and Biosensor Platforms. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_2

Download citation

Publish with us

Policies and ethics