Skip to main content

Synthesis and Processing of Li-Based Ceramic Tritium Breeder Materials

  • Chapter
  • First Online:
Handbook on Synthesis Strategies for Advanced Materials

Abstract

Fusion energy has undisputable potential to cope with the challenges of increasing global energy demand and to protect the environment from global warming. The construction of a fusion reactor based on the D–T fuel cycle has been at the forefront of fusion energy research. Due to insufficient availability of tritium in nature and limited global inventory, the fusion reactors ought to breed their tritium. Tritium is produced in a blanket containing Li-based compounds called tritium breeding blanket surrounding the fusion reactor. Li-based ceramics are candidate materials for the fabrication of tritium breeding blankets. In order to attain tritium self-sufficiency, the blanket must produce enough tritium so as to maintain the tritium breeding ratio (TBR) greater than 1. The present chapter reviews R&D results of powder synthesis, consolidation to form shapes and sintering of Li-based ceramics. Further, this chapter summarizes the challenges and opportunities concerning the processing of Li-based ceramic tritium breeding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2020) India 2020 policy energy review. www.Iea.Org 4:1–14

  2. International renewable energy agency (IRENA) (2018) Global energy transformation: a roadmap to 2050

    Google Scholar 

  3. IEA—international energy agency (2013) Redrawing the energy-climate map: world energy outlook special report. 134

    Google Scholar 

  4. Krey V, Clarke L (2011) Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim Policy 11:1131–1158

    Article  Google Scholar 

  5. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Article  CAS  Google Scholar 

  6. Garry McCracken PS (1902) Fusion the energy of the universe. https://doi.org/10.1016/s0016-0032(02)90233-4

  7. Clery D (2013) A piece of the sun: the quest for fusion energy. Overlook Duckworth

    Google Scholar 

  8. Mohan A (2016) The future of nuclear energy in India. Obs Res Found

    Google Scholar 

  9. Bradshaw AM, Hamacher T, Fischer U (2011) Is nuclear fusion a sustainable energy form? Fusion Eng Des 86:2770–2773

    Article  CAS  Google Scholar 

  10. Toschi R (1997) Nuclear fusion, an energy source. Fusion Eng Des 36:1–8

    Article  CAS  Google Scholar 

  11. Smith CL (2005) The need for fusion. Fusion Eng Des 74:3–8

    Article  CAS  Google Scholar 

  12. Tanabe T (2016) Tritium: fuel of fusion reactors. https://doi.org/10.1007/978-4-431-56460-7

  13. Dstrozzi, Own work, CC-BY 2.5 web page: https://commons.wikimedia.org/w/index.php?curid=2351259

  14. Zarnstorff MC, Goldston RJ (2016) Magnetic fusion energy. https://doi.org/10.1142/9789814689205_0006

  15. Lawson JD (1957) Some criteria for a power producing thermonuclear reactor. Proc Phys Soc (London) B70(6)

    Google Scholar 

  16. Conceptual design of fusion reactor, figure supplied courtesy of JET-EFDA publications copyright Euratom. http://figures.euro-fusion.org/Images/JG95.113-55c1500.1500.jpg

  17. What will ITER do ? https://www.iter.org/sci/Goals

  18. Overview|ITER-India, https://www.iter-india.org/index.php/overview. Accessed June 30, 2020

  19. Aymar R (1997) Overview of the ITER project. In: Haruyama T, Mitsui T, KBT-P. of the S.I.C.E.C.C.M.C. Yamafuji K (eds) Elsevier Science, Oxford, pp 53–59. https://doi.org/10.1016/B978-008042688-4/50013-2

  20. ITER EDA documentation series no. 22 (2001) International, international thermonuclear experimental reactor (ITER), Int At energy agency

    Google Scholar 

  21. Ni M, Wang Y, Yuan B, Jiang J, Wu Y (2013) Tritium supply assessment for ITER and demonstration power plant. Fusion Eng Des 88:2422–2426. https://doi.org/10.1016/j.fusengdes.2013.05.043

    Article  CAS  Google Scholar 

  22. Pearson RJ, Antoniazzi AB, Nuttall WJ (2018) Tritium supply and use: a key issue for the development of nuclear fusion energy. Fusion Eng Des 136:1140–1148. https://doi.org/10.1016/j.fusengdes.2018.04.090

    Article  CAS  Google Scholar 

  23. Rubel M (2019) Fusion neutrons: tritium breeding and impact on wall materials and components of diagnostic systems. J Fusion Energy 38:315–329. https://doi.org/10.1007/s10894-018-0182-1

    Article  CAS  Google Scholar 

  24. Giegerich T, Day C, Knitter R, Osman N (2016) Lithium enrichment issues in the sustainable supply chain of future fusion reactors, Kit. pp 1–21. https://nucleus.iaea.org/sites/fusionportal/Technical Meeting Proceedings/1st IAEA TM on Fusion Power Plant Safety/Presentations/Giegerich.pdf

  25. Biel W (2014) Tritium breeding and blanket technology, pp 1–24. https://www.dpg-physik.de/veranstaltungen/2014/biel2.pdf

  26. Mohr SH, Mudd GM, Giurco D (2012) Lithium resources and production: critical assessment and global projections. Minerals 2:65–84. https://doi.org/10.3390/min2010065

    Article  Google Scholar 

  27. Kavanagh L, Keohane J, Cabellos GG, Lloyd A, Cleary J (2018) Global lithium sources-industrial use and future in the electric vehicle industry: a review. Resources 7. https://doi.org/10.3390/resources7030057

  28. Grosjean C, Herrera Miranda P, Perrin M, Poggi P, (2012) Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sustain Energy Rev 16:1735–1744. https://doi.org/10.1016/j.rser.2011.11.023

  29. Abdou M, Morley NB, Smolentsev S, Ying A, Malang S, Rowcliffe A, Ulrickson M (2015) Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng Des 100:2–43. https://doi.org/10.1016/j.fusengdes.2015.07.021

    Article  CAS  Google Scholar 

  30. Raffray A, Akiba M, Chuyanov V, Giancarli L, Malang S (2002) Breeding blanket concepts for fusion and materials requirements. J Nucl Mater 307–311:21–30. https://doi.org/10.1016/S0022-3115(02)01174-1

    Article  Google Scholar 

  31. Proust TKE, Anzidei L, Dalle Donne M, Fischer U (1991) Solid breeder blanket design and tritium breeding. 16:73–84

    Google Scholar 

  32. Hernández FA, Pereslavtsev P (2018) First principles review of options for tritium breeder and neutron multiplier materials for breeding blankets in fusion reactors. Fusion Eng Des 137:243–256. https://doi.org/10.1016/j.fusengdes.2018.09.014

    Article  CAS  Google Scholar 

  33. Johnson CE (1991) Ceram Breeder Materialst 17:253–258

    CAS  Google Scholar 

  34. Roux N, Hollenberg G, Johnson C, Noda K, Verrall R (1995) Fusion engineering and design summary of experimental results for ceramic breeder materials. 27:154–166

    Google Scholar 

  35. Rasneur B, Mougin J, Roux N (1994) Study of the thermomechanical and tritium release behaviour of Li2ZrO3 as tritium breeding ceramic for the European BIT blanket concept. J Nucl Mater 212–215:923–926. https://doi.org/10.1016/0022-3115(94)90970-9

    Article  Google Scholar 

  36. Ehrlich K (2001) Materials research towards a fusion reactor. Fusion Eng Des 56–57:71–82. https://doi.org/10.1016/S0920-3796(01)00236-8

    Article  Google Scholar 

  37. Rasneur B (1985) Tritium breeding material: γ LiAlO2 Fusion Technol. 8. https://doi.org/10.13182/FST85-A40040

  38. Knitter R, Chaudhuri P, Feng YJ, Hoshino T, Yu I-K (2013) Recent developments of solid breeder fabrication. J Nucl Mater 442:S420–S424. https://doi.org/10.1016/j.jnucmat.2013.02.060

    Article  CAS  Google Scholar 

  39. Li K, Yang W, Ma ZB, Li YT (2020) First-principles study of tritium diffusion in the Li3TaO4 crystal. ACS Omega 5:851–858. https://doi.org/10.1021/acsomega.9b03700

    Article  CAS  Google Scholar 

  40. Cismondi F (2010) Solid and liquid breeding blankets, presentation. https://staff.polito.it/roberto.zanino/sub1/teach_files/current_topics/lect_cismondi_2.pdf

  41. Roux N, Johnson C, Noda K (1992) Properties and performance of tritium breeding ceramics. J Nucl Mater 191–194:15–22. https://doi.org/10.1016/S0022-3115(09)80005-6

    Article  Google Scholar 

  42. Hoshino T, Kawamura H, Dokiya M, Takahashi Y, Terai T, Yamawaki M (2004) Non-stoichiometry of Li2TiO3 under hydrogen atmosphere conditions. J Nucl Mater 329–333:1300–1304. https://doi.org/10.1016/j.jnucmat.2004.04.226

    Article  CAS  Google Scholar 

  43. Roth E, Abassin JJ, Botter F, Briec M, Chenebault P, Masson M, Rasneur B, Roux N (1985) Irradiation of lithium aluminate and tritium extraction. J Nucl Mater 133–134:238–241. https://doi.org/10.1016/0022-3115(85)90142-4

  44. Briec M, Botter F, Abassin JJ, Benoit R, Chenebault P, Masson M, Rasneur B, Sciers P, Werle H, Roth E (1986) In and out-of-pile tritium extraction from samples of lithium aluminates. J Nucl Mater 141–143:357–363. https://doi.org/10.1016/S0022-3115(86)80065-4

  45. Botter F, Cherquitte D, Roux N (1986) Out of pile tritium release from various lithium materials. In: Fusion technol. Pergamon, pp 1537–1544. https://doi.org/10.1016/B978-1-4832-8376-0.50214-X

  46. Charpin J, Botter F, Briec M, Rasneur B, Roth E, Roux N, Sannier J (1989) Investigation of γ lithium aluminate as tritium breeding material for a fusion reactor blanket. Fusion Eng Des 8:407–413. https://doi.org/10.1016/S0920-3796(89)80140-1

    Article  CAS  Google Scholar 

  47. Kleykamp H (2002) Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3. Fusion Eng Des 61–62:361–366. https://doi.org/10.1016/S0920-3796(02)00120-5

    Article  Google Scholar 

  48. Izquierdo G, West AR (1980) Phase equilibria in the system Li2O–TiO2. Mater Res Bull 15:1655–1660. https://doi.org/10.1016/0025-5408(80)90248-2

    Article  CAS  Google Scholar 

  49. Skokan A (1990) Phase stability investigations in the ceramic breeder systems Li2O–Al2O3 and Li2O-ZrO2. Fusion Technol 1991:772–776. https://doi.org/10.1016/b978-0-444-88508-1.50139-0

    Article  Google Scholar 

  50. Wiedemann D, Nakhal S, Rahn J, Witt E, Islam MM, Zander S, Heitjans P, Schmidt H, Bredow T, Wilkening M, Lerch M (2016) Unravelling ultraslow lithium-ion diffusion in γ-LiAlO2: experiments with tracers, neutrons, and charge carriers. Chem Mater 28:915–924. https://doi.org/10.1021/acs.chemmater.5b04608

    Article  CAS  Google Scholar 

  51. Bianchini F, Fjellvåg H, Vajeeston P (2018) A first principle comparative study of the ionic diffusivity in LiAlO2 and NaAlO2 polymorphs for solid-state battery applications. Phys Chem Chem Phys 20:9824–9832. https://doi.org/10.1039/c8cp00715b

    Article  CAS  Google Scholar 

  52. Jia T, Zeng Z, Paudel H, Senor DJ, Duan Y (2019) First-principles study of the surface properties of γ-LiAlO2: stability and tritium adsorption. J Nucl Mater 522:1–10. https://doi.org/10.1016/j.jnucmat.2019.05.007

    Article  CAS  Google Scholar 

  53. Lei L, He D, Zou Y, Zhang W, Wang Z, Jiang M, Du M (2008) Phase transitions of LiAlO2 at high pressure and high temperature. J Solid State Chem 181:1810–1815. https://doi.org/10.1016/j.jssc.2008.04.006

    Article  CAS  Google Scholar 

  54. Singh B, Gupta MK, Mittal R, Chaplot SL (2018) Phonons, phase transitions and thermal expansion in LiAlO2: an: ab initio density functional study. Phys Chem Chem Phys 20:12248–12259. https://doi.org/10.1039/c8cp01474d

    Article  CAS  Google Scholar 

  55. Khacek FC (1930) The binary system Li2O–SiO2. J Phys Chem 34:2641–2650

    Article  Google Scholar 

  56. Wedemeyer H, Ritzhaupt-Kleissl H-J, Günther E, Werle H (1990) Fabrication of grain-size controlled lithium Orthosilicate. Fusion Technol 1991:877–880. https://doi.org/10.1016/b978-0-444-88508-1.50160-2

    Article  Google Scholar 

  57. Soares PC, Zanotto ED, Fokin VM, Jain H (2003) TEM and XRD study of early crystallization of lithium disilicate glasses. J Non Cryst Solids 331:217–227. https://doi.org/10.1016/j.jnoncrysol.2003.08.075

    Article  CAS  Google Scholar 

  58. Hong M, Zhang Y, Mi Y, Xiang M, Zhang Y (2014) Fabrication and characterization of Li2TiO3 core–shell pebbles with enhanced lithium density. J Nucl Mater 445:111–116. https://doi.org/10.1016/j.jnucmat.2013.10.055

    Article  CAS  Google Scholar 

  59. Ramaraghavulu R, Buddhudu S, Bhaskar Kumar G (2011) Analysis of structural and thermal properties of Li2TiO3 ceramic powders. Ceram Int 37:1245–1249. https://doi.org/10.1016/j.ceramint.2010.12.007

  60. Mandal D, Sathiyamoorthy D, Rao VG (2012) Preparation and characterization of lithium–titanate pebbles by solid-state reaction extrusion and spherodization techniques for fusion reactor. Fusion Eng Des 87:7–12. https://doi.org/10.1016/j.fusengdes.2011.08.006

    Article  CAS  Google Scholar 

  61. Mandal D, Shenoi MRK, Ghosh SK (2010) Synthesis and fabrication of lithium-titanate pebbles for ITER breeding blanket by solid state reaction and spherodization. Fusion Eng Des 85:819–823. https://doi.org/10.1016/j.fusengdes.2010.06.018

    Article  CAS  Google Scholar 

  62. Sonak S, Jain U, Sahu AK, Kumar S, Krishnamurthy N (2015) Thermogravimetric analysis and kinetic study of formation of lithium titanate by solid state route. J Nucl Mater 457:88–93. https://doi.org/10.1016/j.jnucmat.2014.11.016

    Article  CAS  Google Scholar 

  63. Sathiyamoorthy D, Ghanwat SJ, Tripathi BM, Danani C (2011) Novel mixed-oxide ceramic for neutron multiplication and tritium generation. J Nucl Mater 417:775–779. https://doi.org/10.1016/j.jnucmat.2010.12.138

    Article  CAS  Google Scholar 

  64. Castellanos M, West AR (1979) Order-disorder phenomena in oxides with rock salt structures: the system Li2TiO3–MgO. J Mater Sci 14:450–454. https://doi.org/10.1007/BF00589838

    Article  CAS  Google Scholar 

  65. Aguas MD, Coombe GC, Parkin IP (1998) New solid state routes to lithium transition metal oxides via reactions with lithium oxide. Polyhedron 17:49–53. https://doi.org/10.1016/S0277-5387(97)00257-X

    Article  CAS  Google Scholar 

  66. Kumar S, Mukherjee A, Sonak S, Krishnamurthy N (2013) Studies on the interaction of hydrogen with Li2TiO3 pebbles and pellets. J Nucl Mater 443:207–211. https://doi.org/10.1016/j.jnucmat.2013.07.045

    Article  CAS  Google Scholar 

  67. Tripathi BM, Mohanty T, Prakash D, Tyagi AK, Sinha PK (2017) Monoclinic β-Li2TiO3 nanocrystalline particles employing novel urea assisted solid state route: synthesis, characterization and sintering behavior. J Nucl Mater 490:167–173. https://doi.org/10.1016/j.jnucmat.2017.04.022

    Article  CAS  Google Scholar 

  68. Miller JM, Hamilton HB, Sullivan JD (1994) Testing of lithium titanate as an alternate blanket material. J Nucl Mater 212:877–880. https://doi.org/10.1016/0022-3115(94)90961-X

    Article  Google Scholar 

  69. Van Der Laan JG, Kawamura H, Roux N, Yamaki D (2000) Ceramic breeder research and development: progress and focus. J Nucl Mater 283:99–109. https://doi.org/10.1016/S0022-3115(00)00352-4

    Article  Google Scholar 

  70. Roux N, Mougin J, Rasneur B, Proust E, Giancarli L, Salavy JF (1994) Current material and design studies for the utilization of Li2ZrO3 in the BIT blanket concept. J Nucl Mater 212–215:862–867. https://doi.org/10.1016/0022-3115(94)90958-X

    Article  Google Scholar 

  71. Rasneur B, Thevenot G, Bouilloux Y (1992) Irradiation behavior of LiAlO2 and Li2ZrO3 ceramics in the ALICE 3 experiment. J Nucl Mater 191–194:243–247. https://doi.org/10.1016/S0022-3115(09)80043-3

    Article  Google Scholar 

  72. Taddia M, Modesti P, Albertazzi A (2005) Determination of macro-constituents in lithium zirconate for tritium-breeding applications. J Nucl Mater 336:173–176. https://doi.org/10.1016/j.jnucmat.2004.09.011

    Article  CAS  Google Scholar 

  73. Roth E, Charpin J, Roux N (1989) Prospects of ceramic tritium breeder materials. Fusion Eng Des 11:219–229. https://doi.org/10.1016/0920-3796(89)90020-3

    Article  CAS  Google Scholar 

  74. Ichi-Ida J, Xiong R, Lin YS (2004) Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purif Technol 36:41–51. https://doi.org/10.1016/S1383-5866(03)00151-5

  75. Pfeiffer H (2004) Reaction mechanisms and kinetics of the synthesis and decomposition of lithium metazirconate through solid-state reaction. J Eur Ceram Soc 24:2433–2443. https://doi.org/10.1016/S0955-2219(03)00630-7

    Article  CAS  Google Scholar 

  76. Wen Z, Wu X, Xu X, Lin J, Gu Z (2010) Research on the preparation of ceramic tritium breeders in SICCAS. Fusion Eng Des 85:1551–1555. https://doi.org/10.1016/j.fusengdes.2010.04.037

    Article  CAS  Google Scholar 

  77. Tanaka S, Kawamoto A, Yamawaki M, Terai T, Takahashi Y, Kawamura H, Saito M (1989) In-situ tritium release experiments from solid breeding materials (TTTEx)—tritium diffusion coefficients and surface reaction on lithium aluminate. Fusion Eng Des 8:155–160. https://doi.org/10.1016/S0920-3796(89)80100-0

  78. Rakshit SK, Naik YP, Parida SC, Dash S, Singh Z, Sen BK, Venugopal V (2008) Synergistic use of Knudsen effusion quadrupole mass spectrometry, solid-state galvanic cell and differential scanning calorimetry for thermodynamic studies on lithium aluminates. J Solid State Chem 181:1402–1412. https://doi.org/10.1016/j.jssc.2008.03.003

    Article  CAS  Google Scholar 

  79. Asou M, Terai T, Takahashi Y (1990) Enthalpy and heat capacity of Lialo2 and Li2SnO3 from 300 to 1000 K. J Nucl Mater 175:42–46. https://doi.org/10.1016/0022-3115(90)90267-Q

    Article  CAS  Google Scholar 

  80. Lin J, Wen Z, Xu X, Gu Z (2010) Processing and microstructure of γ-LiAlO2 ceramics. Ceram Int 36:2221–2225. https://doi.org/10.1016/j.ceramint.2010.03.032

    Article  CAS  Google Scholar 

  81. Kinoshita K, Sim JW, Ackerman JP (1978) Preparation and characterization of lithium aluminate. Mater Res Bull 13:445–455. https://doi.org/10.1016/0025-5408(78)90152-6

    Article  CAS  Google Scholar 

  82. Jimenez-Becerril J, Bosch P, Bulbulian S (1991) Synthesis and characterization of γ-LiAlO2. J Nucl Mater 185:304–307. https://doi.org/10.1016/0022-3115(91)90520-H

    Article  CAS  Google Scholar 

  83. Isupov VP, Eremina NV (2012) Effect of mechanical activation of Al(OH)3 on its reaction with Li2CO3. Inorg Mater 48:918–924. https://doi.org/10.1134/S0020168512080055

    Article  CAS  Google Scholar 

  84. Schulz B, Wedemeyer H (1986) Preparation, characterization and thermal diffusivity of γ-LiAlO2. J Nucl Mater 139:35–41. https://doi.org/10.1016/0022-3115(86)90161-3

    Article  CAS  Google Scholar 

  85. Chatterjee M, Naskar MK (2003) Novel technique for the synthesis of lithium aluminate (LiAlO2) powders from water-based sols. J Mater Sci Lett 22:1747–1749. https://doi.org/10.1023/B:JMSL.0000005411.77240.9b

    Article  CAS  Google Scholar 

  86. Gao J, Shi S, Xiao R, Li H (2016) Synthesis and ionic transport mechanisms of α-LiAlO2. Solid State Ionics 286:122–134. https://doi.org/10.1016/j.ssi.2015.12.028

    Article  CAS  Google Scholar 

  87. Wen Z, Gu Z, Xu X, Zhu X (2004) Research on the preparation, electrical and mechanical properties of γ-LiAlO2 ceramics. J Nucl Mater 329–333:1283–1286. https://doi.org/10.1016/j.jnucmat.2004.04.230

    Article  CAS  Google Scholar 

  88. Jiménez-Becerril J, García-Sosa I (2011) Synthesis of lithium aluminate by thermal decomposition of a lithium dawsonite-type precursor. J Ceram Process Res 12:52–56

    Google Scholar 

  89. Tang T, Zhang Z, Meng J-B, Luo D-L (2009) Synthesis and characterization of lithium silicate powders. Fusion Eng Des 84:2124–2130. https://doi.org/10.1016/j.fusengdes.2009.02.017

    Article  CAS  Google Scholar 

  90. Löbbecke B, Knitter R, Rohde M, Reimann J (2009) Thermal conductivity of sintered lithium orthosilicate compacts. J Nucl Mater 386–388:1068–1070. https://doi.org/10.1016/j.jnucmat.2008.12.281

    Article  CAS  Google Scholar 

  91. Smaihi M, Boilot JP, Botter F, Mougin J, Boncoeur MJ (1991) Out-of-pile tritium extraction from lithium orthosilicate-based ceramics. J Nucl Mater 185:19–28. https://doi.org/10.1016/0022-3115(91)90361-A

    Article  CAS  Google Scholar 

  92. Carella E, Hernandez MT (2014) High lithium content silicates: a comparative study between four routes of synthesis. Ceram Int 40:9499–9508. https://doi.org/10.1016/j.ceramint.2014.02.023

    Article  CAS  Google Scholar 

  93. Hollenberg GW, Knight RC, Densley PJ, Pember LA, Johnson CE, Poeppel RB, Yang L (1986) The FUBR-1B experiment—irradiation of lithium ceramics to high burnups under large temperature gradients. J Nucl Mater 141–143:271–274. https://doi.org/10.1016/S0022-3115(86)80049-6

    Article  Google Scholar 

  94. Kurasawa T (1994) The VOM/JRR-2 experiments; performance of in-situ tritium release from the lithium ceramics. J Nucl Mater 212–215:937–941. https://doi.org/10.1016/0022-3115(94)90973-3

    Article  Google Scholar 

  95. Wu X, Wen Z, Lin B, Xu X (2008) Sol–gel synthesis and sintering of nano-size Li2TiO3 powder. Mater Lett 62:837–839. https://doi.org/10.1016/j.matlet.2007.06.073

    Article  CAS  Google Scholar 

  96. Hong M, Zhang Y, Mi Y, Jiang Y, Xiang M (2014) Synthesis of Li2TiO3 by sol–gel combustion method and its gel-casting formation. J Nucl Mater 455:311–315. https://doi.org/10.1016/j.jnucmat.2014.06.054

    Article  CAS  Google Scholar 

  97. Tsuchiya K, Kawamura H, Fuchinoue K, Sawada H, Watarumi K (1998) Fabrication development and preliminary characterization of Li2TiO3 pebbles by wet process. J Nucl Mater 258–263:1985–1990. https://doi.org/10.1016/S0022-3115(98)00229-3

    Article  Google Scholar 

  98. Xu C, Li Y, Li L, Wang X, Han Q, Ren M, Ye W (2014) Effect of Cl on the properties of Li2TiO3 ceramic powders synthesized by in-situ hydrolysis. Ceram Int 40:7213–7218. https://doi.org/10.1016/j.ceramint.2013.12.060

    Article  CAS  Google Scholar 

  99. Abbasian MR, Rahimipour M, Hamnabard Z (2019) Sintering behavior of lithium meta titanate nanocrystallites. Iran J Mater Sci Eng 16:43–52. https://doi.org/10.22068/ijmse.16.4.43

  100. Zhang DR, Liu HL, Jin RH, Zhang NZ, Liu YX, Kang YS (2007) Synthesis and characterization of nanocrystalline LiTiO2 using a one-step hydrothermal method. 13:92–96

    Google Scholar 

  101. Zhang W, Zhou Q, Xue L, Yan Y (2015) Fabrication of Li2TiO3 pebbles with small grain size via hydrothermal and improved dry-rolling methods. J Nucl Mater 464:389–393. https://doi.org/10.1016/j.jnucmat.2015.01.044

    Article  CAS  Google Scholar 

  102. Laumann A, Fehr KT, Wachsmann M, Holzapfel M, Iversen BB (2010) Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—its stability and structural properties. Solid State Ionics 181:1525–1529. https://doi.org/10.1016/j.ssi.2010.08.017

    Article  CAS  Google Scholar 

  103. Jung C, Jin S, Kriven WM, Park J, Ryu W (2008) A polymer solution technique for the synthesis of nano-sized Li2TiO3 ceramic breeder powders. 373:194–198. https://doi.org/10.1016/j.jnucmat.2007.05.050

  104. Jung CH (1998) Synthesis of Li2TiO3 ceramic breeder powders by the combustion process

    Google Scholar 

  105. Kim D, Cho K, Park JY, Kim YS (1999) Combustion synthesis of gamma-lithium aluminate. Key Eng Mater 161–163:87–90. www.scientific.net/kem.161-163.87

  106. Renoult O, Boilot JP, Korb JP, Petit D, Boncoeur M (1995) Sol-gel lithium aluminate ceramics and tritium extraction mechanisms. J Nucl Mater 219:233–239. https://doi.org/10.1016/0022-3115(94)00399-8

    Article  CAS  Google Scholar 

  107. Jung C-H, Park J-Y, Kim W-J, Ryu W-S, Lee S-J (2006) Characterizations of Li2TiO3 prepared by a solution combustion synthesis and fabrication of spherical particles by dry-rolling granulation process. Fusion Eng Des 81:1039–1044. https://doi.org/10.1016/j.fusengdes.2005.08.085

    Article  CAS  Google Scholar 

  108. Jung C-H (2005) Sintering characterization of Li2TiO3 ceramic breeder powders prepared by the solution combustion synthesis process. J Nucl Mater 341:148–152. https://doi.org/10.1016/j.jnucmat.2005.01.022

    Article  CAS  Google Scholar 

  109. Zhou Q, Mou Y, Ma X, Xue L, Yan Y (2014) Effect of fuel-to-oxidizer ratios on combustion mode and microstructure of Li2TiO3 nanoscale powders. J Eur Ceram Soc 34:801–807. https://doi.org/10.1016/j.jeurceramsoc.2013.10.004

    Article  CAS  Google Scholar 

  110. Zhou Q, Tao L, Gao Y, Xue L, Yan Y (2014) Flash synthesis of Li2TiO3 powder by microwave-induced solution combustion. J Nucl Mater 455:101–105. https://doi.org/10.1016/j.jnucmat.2014.05.019

    Article  CAS  Google Scholar 

  111. Sinha A, Nair SR, Sinha PK (2010) Single step synthesis of Li2TiO3 powder. J Nucl Mater 399:162–166. https://doi.org/10.1016/j.jnucmat.2010.01.013

    Article  CAS  Google Scholar 

  112. Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2013) Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Front Chem Sci Eng 7:297–302. https://doi.org/10.1007/s11705-013-1346-1

    Article  CAS  Google Scholar 

  113. Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2011) Citrate route to prepare K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Chem Eng J 174:231–235. https://doi.org/10.1016/j.cej.2011.09.005

    Article  CAS  Google Scholar 

  114. Xiao Q, Liu Y, Zhong Y, Zhu W (2011) A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. J Mater Chem 21:3838–3842. https://doi.org/10.1039/c0jm03243c

    Article  CAS  Google Scholar 

  115. Xiao Q, Liu Y, Zhong Y, Zhu W (2011) A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. J Mater Chem 21:3838. https://doi.org/10.1039/c0jm03243c

    Article  CAS  Google Scholar 

  116. Tripathi BM, Mohanty T, Prakash D, Tyagi AK, Sinha PK (2020) Glycine-nitrate solution combustion synthesis of lithium zirconate: effect of fuel-to oxidant ratio on phase, microstructure and sintering. J Eur Ceram Soc 40:136–144. https://doi.org/10.1016/j.jeurceramsoc.2019.09.008

    Article  CAS  Google Scholar 

  117. Li F, Hu K, Li J, Zhang D, Chen G (2002) Combustion synthesis of γ-lithium aluminate by using various fuels. J Nucl Mater 300:82–88. https://doi.org/10.1016/S0022-3115(01)00710-3

    Article  CAS  Google Scholar 

  118. Choudhary A, Mazumder R, Bhattacharyya S, Chaudhuri P (2014) Synthesis and characterization of Li4SiO4 ceramics from rice husk ash by a solution-combustion method. Fusion Sci Technol 65:273–281. https://doi.org/10.13182/FST13-666

  119. Choudhary A, Sahu BS, Mazumder R, Bhattacharyya S, Chaudhuri P (2014) Synthesis and sintering of Li4SiO4 powder from rice husk ash by solution combustion method and its comparison with solid state method. J Alloys Compd 590:440–445. https://doi.org/10.1016/j.jallcom.2013.12.084

  120. Yu C-L, Yanagisawa K, Kamiya S, Kozawa T, Ueda T (2014) Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: processing and structure. Ceram Int 40:1901–1908. https://doi.org/10.1016/j.ceramint.2013.07.097

    Article  CAS  Google Scholar 

  121. Jakhar S, Abhangi M, Rao CVS, Basu TK, Bhade SPD, Reddy PJ (2012) Measurement of tritium production rate distribution in natural lialo 2/HDPE assembly irradiated by D–T neutrons. Fusion Eng Des 87:184–187. https://doi.org/10.1016/j.fusengdes.2011.12.017

    Article  CAS  Google Scholar 

  122. Tanaka S, Kawamoto A, Yamaki D, Yamaguchi K, Yamawaki M (1991) In situ tritium release experiments from solid breeding materials (TTTEx)—surface reaction on Li2O and LiAlO2 for sweep gases of He+ H2 and He+ H2O. J Nucl Mater 179–181:867–870. https://doi.org/10.1016/0022-3115(91)90226-W

    Article  Google Scholar 

  123. Lulewicz JD, Roux N (1998) First results of the investigation of Li2ZrO3 and Li2TiO3 pebbles. Fusion Eng Des 39–40:745–750. https://doi.org/10.1016/S0920-3796(98)00328-7

    Article  Google Scholar 

  124. Lulewicz JD, Roux N, Piazza G, Reimann J, van der Laan J (2000) Behaviour of Li2ZrO3 and Li2TiO3 pebbles relevant to their utilization as ceramic breeder for the HCPB blanket. J Nucl Mater 283–287:1361–1365. https://doi.org/10.1016/S0022-3115(00)00298-1

  125. Hoshino T, Yasumoto M, Tsuchiya K, Hayashi K (2006) Vapor species evolved from Li2TiO3 heated at high temperature under various conditions. Fusion Eng Des 81:555–559. https://doi.org/10.1016/j.fusengdes.2005.10.004

    Article  CAS  Google Scholar 

  126. Kapychev V, Tebus V, Frolov V (2002) Influence of neutron irradiation on the strength characteristics of lithium ceramic pellets for fusion reactor blankets. J Nucl Mater 307–311:823–826. https://doi.org/10.1016/S0022-3115(02)01299-0

    Article  Google Scholar 

  127. Kolb MHH, Knitter R, Kaufmann U, Mundt D (2011) Enhanced fabrication process for lithium orthosilicate pebbles as breeding material. Fusion Eng Des 86:2148–2151. https://doi.org/10.1016/j.fusengdes.2011.01.104

    Article  CAS  Google Scholar 

  128. Wu X, Wen Z, Xu X, Liu Y (2010) Fabrication of Li4SiO4 pebbles by a sol-gel technique. Fusion Eng Des 85:222–226. https://doi.org/10.1016/j.fusengdes.2010.01.018

    Article  CAS  Google Scholar 

  129. Wu X, Wen Z, Han J, Xu X, Lin B (2008) Fabrication of Li2TiO3 pebbles by water-based sol-gel method. Fusion Eng Des 83:112–116. https://doi.org/10.1016/j.fusengdes.2007.09.005

    Article  CAS  Google Scholar 

  130. Vittal Rao TV, Bamankar YR, Mukerjee SK, Aggarwal SK (2012) Preparation and characterization of Li2TiO3 pebbles by internal gelation sol–gel process. J Nucl Mater 426:102–108. https://doi.org/10.1016/j.jnucmat.2012.03.003

    Article  CAS  Google Scholar 

  131. Deptuła A, Brykała M, Łada W, Olczak T, Sartowska B, Chmielewski AG, Wawszczak D, Alvani C (2009) Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol-gel process. Fusion Eng Des 84:681–684. https://doi.org/10.1016/j.fusengdes.2008.12.077

    Article  CAS  Google Scholar 

  132. Hoshino T (2013) Development of fabrication technologies for advanced tritium breeder pebbles by the sol–gel method. Fusion Eng Des 88:2264–2267. https://doi.org/10.1016/j.fusengdes.2013.05.025

    Article  CAS  Google Scholar 

  133. Yu X, Yang M, Lu T, Wei N, Wei J, Shi Y, Huang Z, Xiang X, Zhang Q, Zhang W (2015) Fabrication of Li4SiO4 pebbles by wet method with modified powders synthesized via sol–gel process. J Nucl Mater 456:455–460. https://doi.org/10.1016/j.jnucmat.2014.10.030

    Article  CAS  Google Scholar 

  134. Tsuchiya K, Kawamura H, Uchida M, Casadio S, Alvani C, Ito Y (2003) Improvement of sintered density of Li2TiO3 pebbles fabricated by direct-wet process. Fusion Eng Des 69:449–453. https://doi.org/10.1016/S0920-3796(03)00097-8

    Article  CAS  Google Scholar 

  135. Lulewicz JD, Roux N, Piazza G, Reimann J, van der Laan J (2000) Section 12. Blanket materials and engineering behaviour of Li2ZrO3 and Li2TiO3 pebbles relevant to their utilization as ceramic breeder for the HCPB blanket. 287:1361–1365. www.elsevier.nl/locate/jnucmat

  136. Hong M, Zhang Y, Mi Y, Fu B (2013) Characterization of Li2TiO3 pebbles by graphite bed process. J Nucl Mater 441:390–394. https://doi.org/10.1016/j.jnucmat.2013.06.024

    Article  CAS  Google Scholar 

  137. Hong M, Zhang Y, Xiang M, Liu Z (2015) Preparation and characterization of Li4SiO4 ceramic pebbles by graphite bed method. Fusion Eng Des 95:72–78. https://doi.org/10.1016/j.fusengdes.2015.04.039

    Article  CAS  Google Scholar 

  138. Xiang M, Zhang Y, Zhang Y, Wang C, Yu Y (2015) Effect of the fabrication process of ceramic pebbles on the porosity of Li2TiO3 tritium breeder. J Fusion Energy 34:1423–1432. https://doi.org/10.1007/s10894-015-9991-7

    Article  CAS  Google Scholar 

  139. Xu X, Wen Z, Wu X, Lin J (2009) Preparation of γ-LiAlO2 green bodies through the gel-casting process. Ceram Int 35:1429–1434. https://doi.org/10.1016/j.ceramint.2008.07.012

    Article  CAS  Google Scholar 

  140. Xu X, Wen Z, Wu X, Lin J, Wang X (2009) Rheology and chemorheology of aqueous γ-LiAlO2 slurries for gel-casting. Ceram Int 35:2191–2195. https://doi.org/10.1016/j.ceramint.2008.11.033

    Article  CAS  Google Scholar 

  141. Xu X, Wen Z, Lin J, Li N, Wu X (2010) An aqueous gel-casting process for γ-LiAlO2 ceramics. Ceram Int 36:187–191. https://doi.org/10.1016/j.ceramint.2009.07.017

    Article  CAS  Google Scholar 

  142. German R (2014) Sintering: from empirical observations to scientific principles. https://doi.org/10.1016/C2012-0-00717-X

  143. Kang S-JL s(n.d.) Sintering densification, grain growth, and microstructure

    Google Scholar 

  144. Rahaman MN (1996) Ceramic processing and sintering. Int Mater Rev 41:36–37. https://doi.org/10.1179/095066096790151286

    Article  Google Scholar 

  145. Federici G, Raffray AR, Abdou MA (1990) Mistral: a comprehensive model for tritium transport in lithium-base ceramics. Part I: theory and description of model capabilities. J Nucl Mater 173:185–213. https://doi.org/10.1016/0022-3115(90)90257-N

  146. Kinjyo T, Nishikawa M, Yamashita N, Koyama T, Tanifuji T, Enoeda M (2007) Chemical form of released tritium from solid breeder materials under the various purge gas conditions. Fusion Eng Des 82:2147–2151. https://doi.org/10.1016/j.fusengdes.2007.07.002

    Article  CAS  Google Scholar 

  147. Nishikawa M, Kinjyo T, Nishida Y (2004) Chemical form of tritium released from solid breeder materials. J Nucl Mater 325:87–93. https://doi.org/10.1016/j.jnucmat.2003.11.001

    Article  CAS  Google Scholar 

  148. Nishikawa M, Kinjyo T, Ishizaka T, Beloglazov S, Takeishi T, Enoeda M, Tanifuji T (2004) Release behavior of bred tritium from LiAlO2. J Nucl Mater 335:70–76. https://doi.org/10.1016/j.jnucmat.2004.07.032

    Article  CAS  Google Scholar 

  149. Abdou M, Morley NB, Smolentsev S, Ying A, Malang S, Rowcliffe A, Ulrickson M (2015) Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng Des 100:2–43. https://doi.org/10.1016/j.fusengdes.2015.07.021

  150. Tanifuji T, Yamaki D, Nasu S, Noda K (1998) Tritium release behavior from neutron-irradiated Li2TiO3 single crystal. J Nucl Mater 258–263:543–548. https://doi.org/10.1016/S0022-3115(98)00103-2

  151. Briec M, Abassin JJ, Masson M, Roth E, Sciers P, Werle H (1988) In-pile tritium extraction from ample of lithium aluminate. J Nucl Mater 155:549–552. https://doi.org/10.1016/0022-3115(88)90308-X

    Article  Google Scholar 

  152. Botter F, Tistchenko S, Briec M, Kopasz JP (1991) Progress in the knowledge of the mechanism of tritium release from lithium ceramics. Fusion Eng Des 17:49–54. https://doi.org/10.1016/0920-3796(91)90035-O

    Article  CAS  Google Scholar 

  153. Debarberis L, Moretto P (1993) In-pile tritium release rate limiting process study. Fusion Eng Des 23:43–48. https://doi.org/10.1016/0920-3796(93)90109-U

    Article  CAS  Google Scholar 

  154. Carella E, Hernández T (2015) The effect of γ-radiation in Li4SiO4 ceramic breeder blankets. Fusion Eng Des 90:73–78. https://doi.org/10.1016/j.fusengdes.2014.11.010

    Article  CAS  Google Scholar 

  155. Hollenberg GW (1984) Fast neutron irradiation results on Li2O, Li4SiO4, Li2ZrO3 and LiAlO2. J Nucl Mater 123:896–900. https://doi.org/10.1016/0022-3115(84)90189-2

    Article  CAS  Google Scholar 

  156. Miller JM, Verrall RA (1994) Performance of a Li2ZrO3 sphere-pac assembly in the CRITIC-II irradiation experiment. J Nucl Mater 212–215:897–901. https://doi.org/10.1016/0022-3115(94)90965-2

    Article  Google Scholar 

  157. Mandal D, Jadeja MC, Ghuge NS, Sen D, Mazumder S (2016) Effect of excess lithium on sintering behaviour of lithium-titanate pebbles: modifications of microstructure and pore morphology. Fusion Eng Des 112:520–526. https://doi.org/10.1016/j.fusengdes.2016.05.041

    Article  CAS  Google Scholar 

  158. Shin-mura K, Otani Y, Ogawa S, Hoshino T, Sasaki K (2017) Li vaporization properties of candidate materials for tritium breeder with high Li density. Fusion Eng Des 124:762–766. https://doi.org/10.1016/j.fusengdes.2017.04.053

    Article  CAS  Google Scholar 

  159. Hoshino T, Yasumoto M, Tsuchiya K, Hayashi K, Nishimura H, Suzuki A, Terai T (2007) Non-stoichiometory and vaporization characteristic of Li2.1TiO3.05 in hydrogen atmosphere. Fusion Eng Des 82:2269–2273. https://doi.org/10.1016/j.fusengdes.2007.07.005

    Article  CAS  Google Scholar 

  160. Ogawa S, Masuko Y, Kato H, Yuyama H, Sakai Y, Niwa E, Hashimoto T, Mukai K, Hosino T, Sasaki K (2015) Li vaporization property of two-phase material of Li2TiO3 and Li2SiO3 for tritium breeder. Fusion Eng Des 98–99:1859–1863. https://doi.org/10.1016/j.fusengdes.2015.01.042

  161. Asano M, Kato Y, Harada T, Mizutani Y (1996) Vaporization and thermochemical properties of Li8ZrO6 and comparison with other lithium-containing complex oxides. J Nucl Mater 230:110–115. https://doi.org/10.1016/0022-3115(96)00171-7

    Article  CAS  Google Scholar 

  162. Yamawaki M (1996) Sweep gas chemistry effect on vaporization of LiAlO2. J Nucl Mater 233–237:1452–1456. https://doi.org/10.1016/s0022-3115(96)00252-8

    Article  Google Scholar 

  163. Mayo MJ (1996) Processing of nanocrystalline ceramics from ultrafine particles. Int Mater Rev 41:85–115. https://doi.org/10.1179/imr.1996.41.3.85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biranchi M. Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, B.M., Tyagi, A.K., Prakash, D. (2021). Synthesis and Processing of Li-Based Ceramic Tritium Breeder Materials. In: Tyagi, A.K., Ningthoujam, R.S. (eds) Handbook on Synthesis Strategies for Advanced Materials. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-16-1892-5_18

Download citation

Publish with us

Policies and ethics