Skip to main content

Bio-plastic Polyhydroxyalkanoate (PHA): Applications in Modern Medicine

  • Chapter
  • First Online:
Bioplastics for Sustainable Development

Abstract

Bioplastics are in medical use since time immemorial and continuously gaining interest in diverse arenas of science. This includes a class of bioplastic polyhydroxyalkanoates (PHAs) that naturally exhibit a wide range of properties such as thermoplasticity, elastomer behavior, simple tunability, and immunotolerance. Although PHAs possess many advantages, simultaneously it also suffers from fundamental deficiencies such as fragility, low flexibility, and limited surface functionalities. In recent years, several studies have focused on the enhancement of the properties of PHA, particularly for biomedical applications by the incorporation of nanomaterials. The structure and physiochemical properties of PHA allow it to blend with various biomaterials and bioactive substances, and many interested composites can be designed based on various biomedical applications. The blended PHA can improve various functionalities such as mechanical properties, hydrophilicity, and time bound degradation under precise physiological environment. Modified PHA perhaps may address many biomedical problems and provide sustainable solution to various problems such as load bearing cartilage, heart chambers, wound grafts, and artificial membranes for kidneys. The enhanced immunotolerance, sustained biodegradability, and low toxicity of PHA fascinated various researchers, including tissue engineering, which have demonstrated many medical advances like bioabsorbable sutures (FDA approved 2007), 3D structures, and various medical devices. In future, intelligent auto controllable PHA products like microsphere may perhaps take more responsibilities rather than just a drug delivery system. This chapter provides a comprehensive study of cutting-edge approaches to biomedical applications and potential future strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80(1):183–194

    Article  CAS  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  • Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144

    Article  CAS  Google Scholar 

  • Barham P, Keller A, Otun E, Holmes P (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794

    Article  CAS  Google Scholar 

  • Bhubalan K, Chuah JA, Shozui F, Brigham CJ, Taguchi S, Sinskey AJ, Rha C, Sudesh K (2011) Characterization of the highly active polyhydroxyalkanoate synthase of Chromobacterium sp. strain USM2. Appl Environ Microbiol 77(9):2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian YZ, Wang Y, Aibaidoula G, Chen GQ, Wu Q (2009) Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Bidone J, Melo APP, Bazzo GC, Carmignan F, Soldi MS, Pires AT, Lemos-Senna E (2009) Preparation and characterization of ibuprofen-loaded microspheres consisting of poly (3-hydroxybutyrate) and methoxy poly (ethylene glycol)-b-poly (D, L-lactide) blends or poly (3-hydroxybutyrate) and gelatin composites for controlled drug release. Mater Sci Eng C 29(2):588–593

    Article  CAS  Google Scholar 

  • Bonartsev A, Myshkina V, Nikolaeva D, Furina E, Makhina T, Livshits V, Boskhomdzhiev A, Ivanov E, Iordanskii A, Bonartseva G (2007) Biosynthesis, biodegradation, and application of poly (3-hydroxybutyrate) and its copolymers-natural polyesters produced by diazotrophic bacteria. Commun Curr Res Edu Topic Trend Appl Microbiol 1:295–307

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Brigham CJ, Kurosawa K, Rha C, Sinskey AJ (2011) Bacterial carbon storage to value added products. J Appl Microbiol Biotechnol:3. https://doi.org/10.4172/1948-5948.S3-002

  • Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77(9):2847–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Exp Polym Lett 8(11):791–808

    Article  CAS  Google Scholar 

  • Cammas S, Bear M-M, Moine L, Escalup R, Ponchel G, Kataoka K, Guérin P (1999) Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. Int J Biol Macromol 25(1):273–282

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Wang Z, Luo H, Xu M, Ren X, Zheng G, Wu B, Zhang X, Lu X, Chen F (2014) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Biol Res 47(7):533–539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaturvedi K, Kulkarni AR, Aminabhavi TM (2011) Blend microspheres of poly (3-hydroxybutyrate) and cellulose acetate phthalate for colon delivery of 5-fluorouracil. Ind Eng Chem Res 50(18):10414–10423

    Article  CAS  Google Scholar 

  • Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38(8):2434–2446

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Plastics from bacteria. Springer, Berlin, pp 17–37. https://doi.org/10.1007/978-3-642-03287-5-2

    Chapter  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Zhang G, Park S, Lee S (2001) Industrial scale production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57(1–2):50–55

    CAS  PubMed  Google Scholar 

  • Chen X, Wo F, Jin Y, Tan J, Lai Y, Wu J (2017) Drug-porous silicon dual luminescent system for monitoring and inhibition of wound infection. ACS Nano 11(8):7938–7949

    Article  CAS  PubMed  Google Scholar 

  • Dai ZW, Zou XH, Chen GQ (2009) Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30(17):3075–3083

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhao K, Zhang Xf HP, Chen GQ (2002) Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23(20):4049–4056

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Lin XS, Zheng Z, Deng JG, Chen JC, Ma H, Chen GQ (2003) Poly (hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials 24(23):4273–4281

    Article  CAS  PubMed  Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. https://doi.org/10.1155/2011/290602

  • Doi Y, Kanesawa Y, Kunioka M, Saito T (1990) Biodegradation of microbial copolyesters: poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 23(1):26–31

    Article  CAS  Google Scholar 

  • Doyle C, Tanner E, Bonfield W (1991) In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12(9):841–847

    Article  CAS  PubMed  Google Scholar 

  • Errico C, Bartoli C, Chiellini F, Chiellini E (2009) Poly (hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. Biomed Res Int. https://doi.org/10.1155/2009/571702

  • Farooqui MF, Shamim A (2016) Low cost inkjet printed smart bandage for wireless monitoring of chronic wounds. Sci Rep. https://doi.org/10.1038/srep28949

  • Francis L, Meng D, Knowles J, Keshavarz T, Boccaccini AR, Roy I (2011) Controlled delivery of gentamicin using poly (3-hydroxybutyrate) microspheres. Int J Mol Sci 12(7):4294–4314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freier T, Kunze C, Nischan C, Kramer S, Sternberg K, Saß M, Hopt UT, Schmitz K-P (2002) In vitro and in vivo degradation studies for development of a biodegradable patch based on poly (3-hydroxybutyrate). Biomaterials 23(13):2649–2657

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Sodian R, Lüders C, Lemke T, Kraemer L, Hübler M, Weng Y, Hoerstrup SP, Meyer R, Hetzer R (2004) Effects of basic fibroblast growth factor and transforming growth factor-β on maturation of human pediatric aortic cell culture for tissue engineering of cardiovascular structures. ASAIO J 50(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Gangrade N, Price JC (1991) Poly (hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8(2):185–202

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Kong L, Zhang L, Gong Y, Chen G, Zhao N, Zhang X (2006) Improvement of mechanical properties of poly (DL-lactide) films by blending of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur Polym J 42(4):764–775

    Article  CAS  Google Scholar 

  • Generali M, Dijkman PE, Hoerstrup SP (2014) Bioresorbable scaffolds for cardiovascular tissue engineering. Eur Med J Interv Cardiol 1:91–99

    Google Scholar 

  • Gholami A, Mohkam M, Rasoul-Amini S, Ghasemi Y (2016) Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotechnol 28(1):59–74

    Google Scholar 

  • Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10(4):660–669

    Article  CAS  PubMed  Google Scholar 

  • Green PR, Kemper J, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbüchel A, Rehm BH (2002) Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3(1):208–213

    Article  CAS  PubMed  Google Scholar 

  • Griebel R, Smith Z, Merrick J (1968) Metabolism of poly (β-hydroxybutyrate). I. Purification, composition, and properties of native poly (β-hydroxybutyrate) granules from Bacillus megaterium. Biochemistry 7(10):3676–3681

    Article  CAS  PubMed  Google Scholar 

  • Gumel AM, Razaif-Mazinah MRM, Anis SNS, Annuar MSM (2015) Poly (3-hydroxyalkanoates)-co-(6-hydroxyhexanoate) hydrogel promotes angiogenesis and collagen deposition during cutaneous wound healing in rats. Biomed Mater 10(4):045001

    Article  PubMed  CAS  Google Scholar 

  • Hawa A, Sudesh K, Sagadevan S, Mukheem A, Sridewi N (2020) Physicochemical characteristics of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) electrospun nanofibres for the adsorption of phenol. J Exp Nanosci 15(1):26–53

    Article  CAS  Google Scholar 

  • Hazari A, Johansson-Ruden G, Junemo-Bostrom K, Ljungberg C, Terenghi G, Green C, Wiberg M (1999) A new resorbable wrap-around implant as an alternative nerve repair technique. J Hand Surg 24(3):291–295

    Article  CAS  Google Scholar 

  • Hazer B (2010) Amphiphilic poly (3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:423460. https://doi.org/10.1155/2010/423460

    Article  CAS  Google Scholar 

  • He W, Zhang Z, Hu P, Chen C (1999) Microbial synthesis and characterization of polyhydroxyalkanoates by DG17 from glucose. Acta Polym Sin 6:010

    Google Scholar 

  • Hocking PJ, Timmins MR, Scherer TM, Fuller RC, Lenz RW, Marchessault RH (1995) Enzymatic degradability of poly (β-hydroxybutyrate) as a function of tacticity. J Macromol Sci Part A Pure Appl Chem 32(4):889–894

    Article  Google Scholar 

  • Hoekstra M, Hermans M, Richters C, Dutrieux R (2002) A histological comparison of acute inflammatory responses with a hydrofibre or tulle gauze dressing. J Wound Care 11(3):113–117

    Article  CAS  PubMed  Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(Suppl 3):44–49

    Google Scholar 

  • Holmes P (1988) Biologically produced (R)-3-hydroxy-alkanoate polymers and copolymers. In: Developments in crystalline polymers. Springer, Dordrecht, pp 1–65. https://doi.org/10.1007/978-94-009-1341-7_1

    Chapter  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji GZ, Wei X, Chen GQ (2009) Growth of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on the terpolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 20(3):325–339

    Article  CAS  PubMed  Google Scholar 

  • Jones VJ (2006) The use of gauze: will it ever change? Int Wound J 3(2):79–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Tran HT, Shi DJ, Akashi M (2006) Environmentally degradable, high-performance thermoplastics from phenolic phytomonomers. Nat Mater 5(12):966

    Article  CAS  PubMed  Google Scholar 

  • Kassal P, Kim J, Kumar R, de Araujo WR, Steinberg IM, Steinberg MD, Wang J (2015) Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem Commun 56:6–10. https://doi.org/10.1016/j.elecom.2015.03.018

    Article  CAS  Google Scholar 

  • Kawano J, Arora R (2009) The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr 4(1):44–49

    Article  PubMed  Google Scholar 

  • Kehail AA, Boominathan V, Fodor K, Chalivendra V, Ferreira T, Brigham CJ (2017) In vivo and in vitro degradation studies for poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) biopolymer. J Polym Environ 25(2):296–307

    Article  CAS  Google Scholar 

  • Kim G, Bang K, Kim Y, Rhee Y (2000) Preparation and characterization of native poly (3-hydroxybutyrate) microspheres from Ralstonia eutropha. Biotechnol Lett 22(18):1487–1492

    Article  CAS  Google Scholar 

  • Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28(14):4822–4828

    Article  Google Scholar 

  • Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly (3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65(2):540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R (2006) Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A 77(2):351–361

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos L, Karring T (1994) Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implant Res 5(2):66–74

    Article  CAS  Google Scholar 

  • Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Exp Polym Lett 5(7):620–634

    Article  Google Scholar 

  • Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S (2011) Development of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12(9):3156–3165

    Article  CAS  PubMed  Google Scholar 

  • Kurobe H, Maxfield M, Naito Y, Breuer C, Shinoka T (2014) Stem cells in tissue-engineered blood vessels for cardiac repair. In: Cardiac regeneration repair, vol 2. Biomaterials and tissue engineering 72, pp 389–409. https://www.sciencedirect.com/science/article/pii/B9780857096593500153

  • Lee SY (1996a) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14(11):431–438

    Article  CAS  Google Scholar 

  • Lee SY, Chang HN (1995) Production of poly (3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies. Can J Microbiol 41(13):207–215

    Article  CAS  PubMed  Google Scholar 

  • Leenstra T, Kuijpers-Jagtman A, Maltha J (1998) The healing process of palatal tissues after palatal surgery with and without implantation of membranes: an experimental study in dogs. J Mater Sci Mater Med 9(5):249–255

    Article  CAS  PubMed  Google Scholar 

  • Li XT, Zhang Y, Chen GQ (2008) Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 29(27):3720–3728

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yang J, Loh XJ (2016) Polyhydroxyalkanoates: opening doors for a sustainable future. NPG Asia Mater 8:e265

    Article  CAS  Google Scholar 

  • Lionzo MI, Ré MI, Guterres SS, Pohlmann AR (2007) Microparticles prepared with poly (hydroxybutyrate-co-hydroxyvalerate) and poly (ε-caprolactone) blends to control the release of a drug model. J Microencapsul 24(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Löbler M, Saß M, Kunze C, Schmitz KP, Hopt UT (2002) Biomaterial implants induce the inflammation marker CRP at the site of implantation. J Biomed Mater Res A 61(1):165–167

    Article  CAS  Google Scholar 

  • Lorrungruang C, Martthong J, Sasaki K, Noparatnaraporn N (2006) Selection of photosynthetic bacterium Rhodobacter sphaeroides 14F for polyhydroxyalkanoate production with two-stage aerobic dark cultivation. J Biosci Bioeng 102(2):128–131

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Zhang Y, Wang L (2010) Preparation and in vitro drug release behavior of 5 fluorouracil loaded poly (hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and microparticles. J Appl Polym Sci 116(5):2944–2950

    CAS  Google Scholar 

  • Lu X-Y, Ciraolo E, Stefenia R, Chen GQ, Zhang Y, Hirsch E (2011) Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl Microbiol Biotechnol 89(5):1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Luckachan GE, Pillai C (2011) Biodegradable polymers-a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  CAS  Google Scholar 

  • Macrae R, Wilkinson J (1958) Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. Microbiology 19(1):210–222

    CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malm T, Bowald S, Bylock A, Busch C (1992) Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J Thorac Cardiovasc Surg 104(3):600–607

    Article  CAS  PubMed  Google Scholar 

  • Malm T, Bowald S, Bylock A, Busch C, Saldeen T (1994) Enlargement of the right ventricular outflow tract and the pulmonary artery with a new biodegradable patch in transannular position. Eur Surg Res 26(5):298–308

    Article  CAS  PubMed  Google Scholar 

  • Martin DP, Badhwar A, Shah DV, Rizk S, Eldridge SN, Gagne DH, Ganatra A, Darois RE, Williams SF, Tai H-C (2013) Characterization of poly-4-hydroxybutyrate mesh for hernia repair applications. J Surg Res 184(2):766–773

    Article  CAS  PubMed  Google Scholar 

  • Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L (2013) Fabrication, characterization and cellular compatibility of poly (hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS One 8(2):e57157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masood F, Yasin T, Hameed A (2015) Polyhydroxyalkanoates–what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35(4):514–521

    Article  PubMed  CAS  Google Scholar 

  • McLister A, McHugh J, Cundell J, Davis J (2016) New developments in smart bandage technologies for wound diagnostics. Adv Mater 28:5732–5737. https://doi.org/10.1002/adma.201504829

    Article  CAS  PubMed  Google Scholar 

  • Mehmood N, Hariz A, Fitridge R, Voelcker NH (2014) Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res B Appl Biomater 102(4):885–895

    Article  PubMed  CAS  Google Scholar 

  • Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7(8):2249–2258

    Article  CAS  PubMed  Google Scholar 

  • Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR (2010) Poly (3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 31(10):2806–2815

    Article  CAS  PubMed  Google Scholar 

  • Mol A, Rutten MC, Driessen NJ, Bouten CV, Zünd G, Baaijens FP, Hoerstrup SP (2006) Autologous human tissue-engineered heart valves. Circulation 114(1 suppl):152–158

    Google Scholar 

  • Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neuro 173(2):213–223

    Article  CAS  Google Scholar 

  • Mukai K, Doi Y, Sema Y, Tomita K (1993) Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett 15(6):601–604

    Article  CAS  Google Scholar 

  • Mukheem A (2019) Antibacterial and cytocompatible properties of developed polyhydroxyalmanoate based nanocomposites. PhD Thesis, NDUM, National Defence University of Malaysia, Malaysia

    Google Scholar 

  • Mukheem A, Muthoosamy K, Manickam S, Sudesh K, Shahabuddin S, Saidur R, Akbar N, Sridewi N (2018) Fabrication and characterization of an electrospun PHA/graphene silver nanocomposite scaffold for antibacterial applications. Materials 11(9):1673

    Article  PubMed Central  CAS  Google Scholar 

  • Mukheem A, Shahabuddin S, Akbar N, Miskon A, Muhamad Sarih N, Sudesh K, Ahmed Khan N, Saidur R, Sridewi N (2019) Boron nitride doped polyhydroxyalkanoate/chitosan nanocomposite for antibacterial and biological applications. Nanomaterials 9(4):645

    Article  CAS  PubMed Central  Google Scholar 

  • Mukheem A, Shahabuddin S, Akbar N, Anwar A, Sarih NM, Sudesh K, Khan NA, Sridewi N (2020) Fabrication of biopolymer polyhydroxyalkanoate/chitosan and 2D molybdenum disulfide–doped scaffolds for antibacterial and biomedical applications. Appl Microbiol Biotechnol 104(7):3121–3131

    Article  CAS  PubMed  Google Scholar 

  • Nelson T, Kaufman E, Kline J, Sokoloff L (1981) The extraneural distribution of γ-hydroxybutyrate. J Neurochem 37(5):1345–1348

    Article  CAS  PubMed  Google Scholar 

  • Nobes G, Maysinger D, Marchessault R (1998) Polyhydroxyalkanoates: materials for delivery systems. Drug Deliv 5(3):167–177

    Article  CAS  PubMed  Google Scholar 

  • Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth J-O (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16):3369–3376

    Article  CAS  PubMed  Google Scholar 

  • Odermatt EK, Funk L, Bargon R, Martin DP, Rizk S, Williams SF (2012) MonoMax suture: a new long-term absorbable monofilament suture made from poly-4-hydroxybutyrate. Int J Polym Sci. https://doi.org/10.1155/2012/216137

  • Opitz F, Schenke-Layland K, Cohnert TU, Starcher B, Halbhuber KJ, Martin DP, Stock UA (2004) Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc Res 63(4):719–730

    Article  CAS  PubMed  Google Scholar 

  • Orts WJ, Nobes GA, Kawada J, Nguyen S, Yu G-e, Ravenelle F (2008) Poly (hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 86(6):628–640

    Article  CAS  Google Scholar 

  • Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8(8):2504–2511

    Article  CAS  PubMed  Google Scholar 

  • Ozdil D, Aydin HM (2014) Polymers for medical and tissue engineering applications. J Chem Technol Biotechnol 89(12):1793–1810

    Article  CAS  Google Scholar 

  • Panaitescu DM, Lupescu I, Frone AN, Chiulan I, Nicolae CA, Tofan V, Stefaniu A, Somoghi R, Trusca R (2017) Medium chain-length polyhydroxyalkanoate copolymer modified by bacterial cellulose for medical devices. Biomacromolecules 18(10):3222–3232

    Article  CAS  PubMed  Google Scholar 

  • Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloids Surf B Biointerfaces 74(1):266–273

    Article  CAS  Google Scholar 

  • Peng SW, Guo XY, Shang GG, Li J, Xu XY, You ML, Li P, Chen GQ (2011) An assessment of the risks of carcinogenicity associated with polyhydroxyalkanoates through an analysis of DNA aneuploid and telomerase activity. Biomaterials 32(10):2546–2555

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247

    Article  CAS  Google Scholar 

  • Poletto FS, Jäger E, Ré MI, Guterres SS, Pohlmann AR (2007) Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs. Int J Pharm 345(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110(10):2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Pramanik N, Mitra T, Khamrai M, Bhattacharyya A, Mukhopadhyay P, Gnanamani A, Basu RK, Kundu PP (2015) Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Adv 5(78):63489–63501

    Article  CAS  Google Scholar 

  • Qin LF, Gao X, Liu Q, Wu Q, Chen G-Q (2007) Biosynthesis of polyhydroxyalkanoate copolyesters by Aeromonas hydrophila mutant expressing a low-substrate-specificity PHA synthase PhaC2 Ps. Biochem Eng J 37(2):144–150

    Article  CAS  Google Scholar 

  • Qu XH, Wu Q, Chen GQ (2006a) In vitro study on hemocompatibility and cytocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17(10):1107–1121

    Article  CAS  Google Scholar 

  • Qu XH, Wu Q, Zhang KY, Chen G (2006b) In vivo studies of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27(19):3540–3548

    CAS  PubMed  Google Scholar 

  • Rai R, Roy I (2011) Polyhydroxyalkanoates: the emerging new green polymers of choice. In: A handbook of applied biopolymer technology. pp 79–101

    Google Scholar 

  • Rathbone S, Furrer P, Lübben J, Zinn M, Cartmell S (2010) Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material. J Biomed Mater Res A 93(4):1391–1403

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Ind J Microbiol 57(3):261–269

    Article  CAS  Google Scholar 

  • Reusch RN, Sparrow AW, Gardiner J (1992) Transport of poly-β-hydroxybutyrate in human plasma. Biochim Biophys Acta Lipid Lipid Metabol 1123(1):33–40

    Article  CAS  Google Scholar 

  • Rossi S, Azghani AO, Omri A (2004) Antimicrobial efficacy of a new antibiotic-loaded poly (hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54(6):1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Sankhla IS, Bhati R, Singh AK, Mallick N (2010) Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Bioresour Technol 101(6):1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Sendil D, Gürsel I, Wise DL, Hasırcı V (1999) Antibiotic release from biodegradable PHBV microparticles. J Control Release 59(2):207–217

    Article  CAS  PubMed  Google Scholar 

  • Shangguan Y-Y, Wang Y-W, Wu Q, Chen G-Q (2006) The mechanical properties and in vitro biodegradation and biocompatibility of UV-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials 27(11):2349–2357

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Report for European polysaccharide network of excellence (EPNOE), European Bioplastics 243

    Google Scholar 

  • Shishatskaya E, Volova T (2004) A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J Mater Sci Mater Med 15(8):915–923

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG (2008) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19(6):2493–2502

    Article  CAS  PubMed  Google Scholar 

  • Shrivastav A, Kim H-Y, Kim Y-R (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed Res Int. https://doi.org/10.1155/2013/581684

  • Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68(6):2298–2304

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46(3):350–357

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JE (2000a) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102(suppl 3):Iii-22–Iii-29

    CAS  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer JE (2000b) Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70(1):140–144

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Sperling JS, Martin DP, Egozy A, Stock U, Mayer JE Jr, Vacanti JP (2000c) Technical report: fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng 6(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16(2):81–96

    Article  CAS  Google Scholar 

  • Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 9(2-4):217–230

    Article  PubMed  Google Scholar 

  • Stock UA, Nagashima M, Khalil PN, Nollert GD, Herdena T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ (2000a) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119(4):732–740

    Article  CAS  PubMed  Google Scholar 

  • Stock UA, Sakamoto T, Hatsuoka S, Martin DP, Nagashima M, Moran AM, Moses MA, Khalil PN, Schoen FJ, Vacanti JP (2000b) Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J Thorac Cardiovasc Surg 120(6):1158–1167

    Article  CAS  PubMed  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  • Tan GY, Chen CL, Li L, Ge L, Wang L, Razaad I, Li Y, Zhao L, Mo Y, Wang JY (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6(3):706

    Article  CAS  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Türesin F, Gürsel I, Hasirci V (2001) Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed 12(2):195–207

    Article  PubMed  Google Scholar 

  • Unverdorben M, Spielberger A, Schywalsky M, Labahn D, Hartwig S, Schneider M, Lootz D, Behrend D, Schmitz K, Degenhardt R (2002) A polyhydroxybutyrate biodegradable stent: preliminary experience in the rabbit. Cardiovasc Intervent Radiol 25(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868

    Article  CAS  PubMed  Google Scholar 

  • Vandi LJ, Chan C, Werker A, Richardson D, Laycock B, Pratt S (2018) Wood-PHA composites: mapping opportunities. Polymers 10(7):751

    Article  PubMed Central  CAS  Google Scholar 

  • Volova T, Shishatskaya E, Sevastianov V, Efremov S, Mogilnaya O (2003) Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J 16(2):125–133

    Article  CAS  Google Scholar 

  • Wang YW, Mo W, Yao H, Wu Q, Chen J, Chen GQ (2004) Biodegradation studies of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Degrad Stab 85(2):815–821

    Article  CAS  Google Scholar 

  • Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang ZH, Shen C-Y, You ML, Xiao JF, Chen GQ (2010) Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 31(7):1691–1698

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Hu YJ, Xie WP, Lin RL, Chen GQ (2009) Influence of poly (3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Biomed Mater Res A 90(3):894–905

    Article  PubMed  CAS  Google Scholar 

  • Williams SF, Rizk S, Martin DP (2013) Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Eng 58(5):439–452

    Article  CAS  Google Scholar 

  • Xu XY, Li XT, Peng SW, Xiao JF, Liu C, Fang G, Chen KC, Chen GQ (2010) The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds. Biomaterials 31(14):3967–3975

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Sun Y, Ruan L, Chen J, Yu PHF (2005) Biosynthesis of short-chain-length-polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha. World J Microbiol Biotechnol 21(1):17–21

    Article  CAS  Google Scholar 

  • Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH, Xiong YC, Chen J, Chen GQ (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29(36):4823–4830

    Article  CAS  PubMed  Google Scholar 

  • You M, Peng G, Li J, Ma P, Wang Z, Shu W, Peng S, Chen GQ (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99(17):8042–8048

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Bei F-F, Tian HL, Chen G-Q (2005) Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials 26(17):3537–3548

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Zonari A, Martins TM, Paula ACC, Boeloni JN, Novikoff S, Marques AP, Correlo VM, Reis RL, Goes AM (2015) Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomater 17:170–181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukheem, A., Shahabuddin, S., Khan, A.A., Hossain, M.M., Jasni, A.H., Sridewi, N. (2021). Bio-plastic Polyhydroxyalkanoate (PHA): Applications in Modern Medicine. In: Kuddus, M., Roohi (eds) Bioplastics for Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-16-1823-9_8

Download citation

Publish with us

Policies and ethics