Skip to main content

Energy Analysis of Methanol Synthesis via Reverse Water-Gas Shift Reactor

  • Chapter
  • First Online:
Methanol

Abstract

The growing energy demand and arousing environmental concerns are some of the major issues faced all over the globe. Excessive CO2 release has always been devastating the human ecosystem but in recent years historically high emission of CO2 from the energy sector has drawn much attention towards clean and green fuel. In this regard, methanol synthesis is a pivot to the research community as a clean fuel. This book chapter also strives to highlight the methanol synthesis process by performing thermodynamic analysis. A deliberate energy analysis of methanol synthesis by reverse water-gas shift reactor (rWGSR) is performed. The thermochemical processing is utilized to convert methane and carbon dioxide to methanol. On the basis of thermodynamic modelling, concentrations of different constituents over the cycle are determined. It is verified that the optimum state of methanol synthesis is accompanied by the lowest level of CO. Moreover, the concentration of carbon dioxide doesn’t affect the methanol synthesis significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

m:

Mass flow rate

P:

Pressure

T:

Temperature

h:

Specific Enthalpy

s:

Specific Entropy

v:

Specific Volume

ΔH:

Enthalpy of reaction

References

  1. Tursunov O, Kustov L, Kustov A (2017) A brief review of carbon dioxide hydrogenation to methanol over copper and iron based catalysts. Oil & Gas Sciences and Technology-Revue d’IFP Energies nouvelles 72(5):30

    Article  Google Scholar 

  2. Ghosh S et al (2019) Biogas to methanol: A comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. J Clean Prod 217:615–626

    Article  Google Scholar 

  3. Shahbaz M, Gozgor G, Hammoudeh S (2019) Human capital and export diversification as new determinants of energy demand in the United States. Energy Econ 78:335–349

    Article  Google Scholar 

  4. Kahouli B (2019) Does static and dynamic relationship between economic growth and energy consumption exist in OECD countries? Energy Rep 5:104–116

    Article  Google Scholar 

  5. Wordometer (2020) Current world population. https://www.worldometers.info/world-population/. Accessed 24 July 2020

  6. Avtar R et al (2019) Population–urbanization–energy nexus: a review. Resources 8(3):136

    Article  Google Scholar 

  7. van Ruijven BJ, De Cian E, Wing IS (2019) Amplification of future energy demand growth due to climate change. Nature Commun 10(1):1–12

    Google Scholar 

  8. Nepal R, Paija N (2019) Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy. Energy Policy 132:771–781

    Article  Google Scholar 

  9. Mastrucci A et al (2019) Improving the SDG energy poverty targets: residential cooling needs in the Global South. Energy Build 186:405–415

    Article  Google Scholar 

  10. Council WE (2019) World Energy Scenarios 2019. Word Energy Council, London, UK, p 1

    Google Scholar 

  11. Dudley B (2020) BP statistical review of world energy. BP Statistical Review, London, UK, August 2020, p 6

    Google Scholar 

  12. Dwivedi G, Pillai S, Shukla AK (2019) Study of performance and emissions of engines fueled by biofuels and its blends. Methanol and the Alternate Fuel Economy. Springer, New York, pp 77–106

    Chapter  Google Scholar 

  13. Muradov NZ, Veziroğlu TN (2011) Carbon-neutral fuels and energy carriers. CRC Press

    Google Scholar 

  14. Pachauri RK, Reisinger A (2007) IPCC fourth assessment report. IPCC, Geneva, p 2007

    Google Scholar 

  15. Pachauri RK et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Ipcc

    Google Scholar 

  16. Energy G (2019) CO2 Status Report—the latest trends in energy and emissions in 2018. International Energy Agency

    Google Scholar 

  17. IEA (2020) Global CO2 emissions in 2019. IEA, Paris

    Google Scholar 

  18. Ritchie H, Roser M (2020) CO2 and greenhouse gas emissions 2019. Our world in data

    Google Scholar 

  19. Bose BK (2010) Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4(1):6–17

    Article  Google Scholar 

  20. Sun H, Wang W, Koo K-P (2019) The practical implementation of methanol as a clean and efficient alternative fuel for automotive vehicles. Int J Engine Res 20(3):350–358

    Article  Google Scholar 

  21. Zaidi AA et al (2018) Comparative and numerical evaluation of methanol blends in CI diesel engine. In: 2018 IEEE 5th International conference on engineering technologies and applied sciences (ICETAS). IEEE

    Google Scholar 

  22. Nestler F et al (2020) Kinetic modelling of methanol synthesis over commercial catalysts: a critical assessment. Chem Eng J:124881

    Google Scholar 

  23. Stiles AB (1977) Methanol, past, present, and speculation on the future. AIChE J 23(3):362–375

    Article  Google Scholar 

  24. Encyclopedia NW (2020) Methanol. 2020. https://www.newworldencyclopedia.org/p/index.php?title=Methanol&oldid=98494+3.#Credits. Accessed 28 May 2020

  25. MMSA (2020) Methanol price and supply/demand. https://www.methanol.org/methanol-price-supply-demand/. Accessed 28 May 2020

  26. Agarwal AK et al (2019) Introduction of methanol and alternate fuel economy. Methanol and the alternate fuel economy. Springer, New York, pp 3–6

    Chapter  Google Scholar 

  27. Valera H, Agarwal AK (2019) Methanol as an alternative fuel for diesel engines. Methanol and the alternate fuel economy. Springer, New York, pp 9–33

    Chapter  Google Scholar 

  28. Bussche KV, Froment G (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3Catalyst. J Catal 161(1):1–10

    Article  Google Scholar 

  29. Leonov V et al (1973) Kinetics of methanol synthesis on a low-temperature catalyst. Kinet Katal 14:970–975

    Google Scholar 

  30. Villa P et al (1985) Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Ind Eng Chem Process Des Dev 24(1): 12–19

    Google Scholar 

  31. Graaf G et al (1990) Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem Eng Sci 45(4):773–783

    Article  Google Scholar 

  32. Graaf G et al (1988) Kinetics of the three phase methanol synthesis. In: Tenth international symposium on chemical reaction engineering. Elsevier, New York

    Google Scholar 

  33. Graaf G, Stamhuis E, Beenackers A (1988) Kinetics of low-pressure methanol synthesis. Chem Eng Sci 43(12):3185–3195

    Article  Google Scholar 

  34. Graaf G et al (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41(11):2883–2890

    Article  Google Scholar 

  35. Pedersen KS, Thomassen P, Fredenslund A (1984) Thermodynamics of petroleum mixtures containing heavy hydrocarbons. 1. Phase envelope calculations by use of the Soave-Redlich-Kwong equation of state. Ind Eng Chem Process Des Dev 23(1):163–170

    Google Scholar 

  36. Skrzypek J, Lachowska M, Serafin D (1990) Methanol synthesis from CO2 and H2: dependence of equilibrium conversions and exit equilibrium concentrations of components on the main process variables. Chem Eng Sci 45(1):89–96

    Article  Google Scholar 

  37. Skrzypek J, Grzesik M, Szopa R (1985) Analysis of the low-temperature methanol synthesis in a single commercial isothermal Cu-Zn-Al catalyst pellet using the dusty-gas diffusion model. Chem Eng Sci 40(4):671–673

    Article  Google Scholar 

  38. Skrzypek J, Lachowska M, Moroz H (1991) Kinetics of methanol synthesis over commercial copper/zinc oxide/alumina catalysts. Chem Eng Sci 46(11):2809–2813

    Article  Google Scholar 

  39. Hain Y et al (2012) Methanol fuel as low cost alternative for emission reduction in gas turbines and utility boilers

    Google Scholar 

  40. Li C, Negnevitsky M, Wang X (2019) Review of methanol vehicle policies in China: current status and future implications. Energy Procedia 160:324–331

    Article  Google Scholar 

  41. Bozzano G, Manenti F (2016) Efficient methanol synthesis: perspectives, technologies and optimization strategies. Prog Energy Combust Sci 56:71–105

    Article  Google Scholar 

  42. Siddiqi MM et al (2019) Evaluation of municipal solid wastes based energy potential in urban Pakistan. Processes 7(11):848

    Article  Google Scholar 

  43. Zaidi AA et al (2019) Combining microwave pretreatment with iron oxide nanoparticles enhanced biogas and hydrogen yield from green algae. Processes 7(1):24

    Article  Google Scholar 

  44. Mushtaq K, Zaidi AA, Askari SJ (2016) Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustain Energy Technol Assess 14:21–25

    Google Scholar 

  45. Iaquaniello G et al (2017) Waste-to-methanol: process and economics assessment. Biores Technol 243:611–619

    Article  Google Scholar 

  46. Lam MK, Lee KT (2011) Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: a breakthrough for SO42 −/SnO2–SiO2 catalyst. Fuel Process Technol 92(8):1639–1645

    Article  Google Scholar 

  47. Tan K, Lee K, Mohamed A (2011) Potential of waste palm cooking oil for catalyst-free biodiesel production. Energy 36(4):2085–2088

    Article  Google Scholar 

  48. Hernández B, Martín M (2016) Optimal process operation for biogas reforming to methanol: effects of dry reforming and biogas composition. Ind Eng Chem Res 55(23):6677–6685

    Article  Google Scholar 

  49. dos Santos RO, de Sousa Santos L, Prata DM (2018) Simulation and optimization of a methanol synthesis process from different biogas sources. J Clean Prod 186:821–830

    Google Scholar 

  50. Bosch C, Wild W (1914) Producing hydrogen. Google Patents

    Google Scholar 

  51. Xiaoding X, Moulijn J (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energy Fuels 10(2):305–325

    Article  Google Scholar 

  52. Mallapragada DS et al (2013) Sun-to-fuel assessment of routes for fixing CO2 as liquid fuel. Ind Eng Chem Res 52(14):5136–5144

    Article  Google Scholar 

  53. Daza YA, Kuhn JN (2016) CO 2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691

    Article  Google Scholar 

  54. Marlin DS, Sarron E, Sigurbjörnsson Ó (2018) Process advantages of direct CO2 to methanol synthesis. Front Chem 6:446

    Article  Google Scholar 

  55. Dalena F et al (2018) Advances in methanol production and utilization, with particular emphasis toward hydrogen generation via membrane reactor technology. Membranes 8(4):98

    Article  Google Scholar 

  56. Dictionary CE (1995) Harper Collins Publishers. THE University

    Google Scholar 

  57. Chen I-T. Steam reforming of methane

    Google Scholar 

  58. Manenti F, Cieri S, Restelli M (2011) Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor. Chem Eng Sci 66(2):152–162

    Article  Google Scholar 

  59. Vita A et al (2018) Methanol synthesis from biogas: a thermodynamic analysis. Renew Energy 118:673–684

    Article  Google Scholar 

  60. Ahouari H et al (2013) Methanol synthesis from CO2 hydrogenation over copper based catalysts. React Kinet Mech Catal 110(1):131–145

    Article  Google Scholar 

  61. Daza YA et al (2014) Carbon dioxide conversion by reverse water–gas shift chemical looping on perovskite-type oxides. Ind Eng Chem Res 53(14):5828–5837

    Article  Google Scholar 

  62. De Falco M et al (2013) Methanol production from CO2 via reverse-water–gas-shift reaction. CO2: a valuable source of carbon. Springer, New York, pp 171–186

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad A. Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaidi, A.A., Naseer, M.N., Ratlamwala, T.A.H. (2021). Energy Analysis of Methanol Synthesis via Reverse Water-Gas Shift Reactor. In: Agarwal, A.K., Valera, H., Pexa, M., Čedík, J. (eds) Methanol. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-1224-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1224-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1223-7

  • Online ISBN: 978-981-16-1224-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics