Skip to main content

Methanol Production from CO2 Via Reverse-Water–Gas-Shift Reaction

  • Conference paper
  • First Online:
CO2: A Valuable Source of Carbon

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

An innovative process scheme to produce methanol from carbon dioxide is here presented and assessed via simulation. In this configuration, the syngas stream, composed by CO, CO2, and H2 and fed to the methanol synthesis reactor, is produced by means of a reverse-water–gas-shift by which a CO2 stream is partially converted in carbon monoxide. In the chapter, the best catalyst to support the reverse reaction is selected; then a simulation model is applied to define the proper operating conditions to achieve syngas composition targets. The simulation results show that the plant configuration represents a feasible way to produce methanol using carbon dioxide, competitively with the traditional process in which the syngas is produced by a natural gas steam reforming unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.-W. Park, O.-S. Joo, K.-D. Jung, H. Kim, S.-H. Han, Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction). Appl. Catal. A General 211, 81–90 (2001)

    Article  Google Scholar 

  2. O.-S. Joo, K.-D. Jung, Eco-nano. Stability of ZnAl2O4 catalyst for reverse-water-gas-shift reaction (rWGSR). Bull. Korean Chem. Soc. 24, 86–90 (2003)

    Article  Google Scholar 

  3. H. Topsoe. MK-121 High activity methanol synthesis catalyst. http://www.topsoe.com/business_areas/methanol/~/media/PDF%20files/Methanol/Topsoe_methanol_mk%20121.ashx. Accessed 25 Jan 2013

  4. P. Talarico, G. Capetti. Design concepts for new methanol plants. Presented at “Casale group’s second symposium for customers and licensees”, 30 May–2 June, 2006

    Google Scholar 

  5. J. Skrzypek, M. Lachowska, M. Grzesik, J. Sloczyński, P. Nowak, Thermodynamics and kinetics of low pressure methanol synthesis. Chem. Eng. J. 58, 101–108 (1995)

    Google Scholar 

  6. J. Skrzypek, J. Sloczynski, S. Ledakowicz. Methanol Synthesis: Science and Engineering. Polish Scientific Publisher, (1994)

    Google Scholar 

  7. K. Petersen, C. Nielsen, L. Dybkjaer, J. Perregaard. Large scale methanol production from natural gas. http://www.topsoe.com/business_areas/methanol/~/media/PDF%20files/Methanol/Topsoe_large_scale_methanol_prod_paper.ashx. Accessed 25th Jan 2013

  8. I. Nexant Methanol, Chemsystems PERP program. Report (2008)

    Google Scholar 

  9. J. Matthey Methanol synthesis catalyst. Brochure (2005)

    Google Scholar 

  10. Lurgi. Lurgi MegaMethanol®. Brochure, (2010)

    Google Scholar 

  11. http://www.methanol.org/

  12. Domenico Sanfilippo, Giampiero Testa, Snamprogetti. “Enciclopedia degli Idrocarburi” edita da Eni-Treccani, (2007)

    Google Scholar 

  13. DPT. Methanol technology. Brochure, (2010)

    Google Scholar 

  14. Casale. Methanol Casale: distinctive technology. Brochure, (2010)

    Google Scholar 

  15. O.-S. Joo. CAMERE process for carbon dioxide hydrogenation to form methanol. Presented at 220th ACS National Meeting 2008, Fuel Division. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/45_4_WASHINGTON%20DC_08-00_0686.pdf. Accessed 25th Jan 2013

  16. J. Kim, C.A. Henao, T.A. Johnson, D.E. Dedrick, J.A. Miller, E.B. Stechel, C.T. Maravelias, Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy and Env. Sci. 4, 3122–3132 (2011)

    Article  Google Scholar 

  17. S. I. Plasynski, Z.-Y. Chen. Review of CO2 capture technologies and some improvement opportunities. Presented at 220th ACS National Meeting 2008, Fuel Division. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/45_4_WASHINGTON%20DC_08-00_0644.pdf. Accessed 25th Jan 2013

  18. L. Barbato. Internal study of KT-Kinetics Technology SpA. (2012)

    Google Scholar 

  19. S. Giansante. Eco-methanol production from recycled CO2. Master thesis. 2012. University of Campus Bio-Medico, Rome

    Google Scholar 

  20. F. Bustamante, R. Enick, K. Rothenberger, B. Howard, A. Cugini, M. Ciocco, B. Morreale. Kinetic study of the reverse water gas shift reaction in high-temperature, high pressure homogeneous system. Fuel Chemistry Division Preprints 2002, 47(2), 663. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/47_2_Boston_10-02_0274.pdf. Accessed 25th Jan 2013

  21. Y. Saito, A. Ando, H. Takagi. Syngas Production by the reverse water gas shift reaction using Perovskite-type oxide catalysts. Presented at ICC 15th (München, Germany; July 2012). http://events.dechema.de/Tagungen/15th+ICC+2012/Congress+Planer/Congress+Planer+Datei_Handler-tagung-564-file-6609.html. Accessed 25th Jan 2013

  22. J. Yoshihara, C.T. Campbell, Methanol synthesis and reverse water–gas shift kinetics over Cu(110) model catalysts: structural sensitivity. J. Catal. 161, 776–782 (1996)

    Article  Google Scholar 

  23. C. Liu, T.R. Cundari, A.K. Wilson, Reaction mechanism of the reverse water–gas shift reaction using first-row middle transition metal catalysts L’M (M = Fe, Mn, Co): a computational study. Inorg. Chem. 50, 8782–8789 (2011)

    Article  Google Scholar 

  24. Norsk Hydro. NEL hydrogen electrolyser. Brochure, (2012)

    Google Scholar 

  25. J. Ivy Summary of electrolytic hydrogen production. Milestone Completion Report, (2004)

    Google Scholar 

  26. A. Cavallini, D. Del Col. H2 as energy vector. University of Padova, Italy, (2011)

    Google Scholar 

  27. R. Bressan. CO2 transport. University of Padova, Italy, (2012)

    Google Scholar 

  28. M. Tatsumi, Y. Yagi, K. Kadono, K. Kaibara, M. Iijima, T. Ohishi, H. Tanaka, T. Hirata, R. Mitchell, New energy efficient processes and improvements for flue gas CO2 capture. Energy Procedia 4, 1347–1352 (2011)

    Article  Google Scholar 

  29. D. G. Chapel, C. L. Matiz. Recovery of CO2 from flue gases: commercial Trends. Brochure, (1999)

    Google Scholar 

  30. S.-W. Par, O.-S. Joo, K.-D. Jung, H. Kim, S.-H. Han, ZnO/Cr2O3 Catalyst for reverse-water-gas-shift reaction of camere process. Korean J. Chem. Eng. 17, 719–722 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. De Falco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this paper

Cite this paper

De Falco, M., Giansante, S., Iaquaniello, G., Barbato, L. (2013). Methanol Production from CO2 Via Reverse-Water–Gas-Shift Reaction. In: Falco, M., Iaquaniello, G., Centi, G. (eds) CO2: A Valuable Source of Carbon. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5119-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5119-7_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5118-0

  • Online ISBN: 978-1-4471-5119-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics