Skip to main content

Role of Biochar on Greenhouse Gas Emissions and Carbon Sequestration in Soil: Opportunities for Mitigating Climate Change

  • Chapter
  • First Online:
Soil Science: Fundamentals to Recent Advances

Abstract

Biochar, a pyrolyzed product of biomass, is richer in aromatic carbon (C) and poorer in oxygen which provides structural recalcitrance to it against microbial decomposition in soil. Biochar, being a stable source of C when applied to soil, remains there for longer period of time imparting long-term soil C sequestration. This sequestering effect of biochar has another advantage to mitigate climate change by reducing emission of greenhouse gases (GHGs) from soil. Both the interconnected processes imparted by biochar have its prominent role in climate resilience and environmental sustainability. Researchers around the world have been focusing on this aspect; thus revealing new facts and findings on managing biochar in agriculture. In this chapter, an attempt has been made to describe the biochar-governed mechanisms on emission of GHGs from soil, how the structural and functional properties of biochar regulates that, and the other associated factors like feedstock type and pyrolysis temperature during biochar preparation and soil inherent properties controlling various processes. Similarly, highlights of C sequestration potential of biochar made up of different crop/animal residues and other regulating factors have been described. Increase in pyrolysis temperature and switching over from manure to wood as a feedstock for biochar production increase the stability of biochar and reduce emission of GHGs from soil. The soils low in organic matter trigger C mineralization than that with high organic matter content. Biochar in presence of N fertilizer is reported to enhance CH4 sink/decrease source strength of soil. The strongest effect of biochar on enhancing C sequestration and reducing GHGs emission is evident when it is applied in acid soils than alkaline soils. Both the concurrent processes of C sequestration and GHGs emission bring sanity to soil by physically more stable, enriching soil fertility, biologically more active and resulting to enhanced soil quality and lowering the C-footprint in agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K (2018) Framing and context. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5 °C. an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate poverty, IPCC, Geneva (In press)

    Google Scholar 

  • Almendros G, Knicker H, González-Vila FJ (2003) Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid– state 13C and 15N-NMR spectroscopy. Org Geochem 34:1559–1568

    Article  CAS  Google Scholar 

  • Baldock J, Smernik R (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Org Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Bationo A, Kihara J, Vanlauwe B, Waswa B, Kimetu J (2007) Soil organic carbon dynamics, functions and management in west African agro-ecosystems. Agric Syst 94:13–25

    Article  Google Scholar 

  • Blasing TJ (2013) Current greenhouse gas concentrations. https://doi.org/10.3334/CDIAC/atg.032

    Book  Google Scholar 

  • Bourke J, Manley-Harris M, Fushimi C, Dowaki K, Nonoura T, Anta MJ (2007) Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind Eng Chem Res 46:5954–5967

    Article  CAS  Google Scholar 

  • Brassard P, Godbouta S, Palaciosa JH, Jeanne T, Hogue R, Dubé P, Limousy L, Raghavan V (2018) Effect of six engineered biochars on GHG emissions from two agricultural soils: a short-term incubation study. Geoderma 327:73–84

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  • Bruun S, El-Zahery T, Clauson-Kaas S (2010) Progressing from Terra Preta de Indios to the whole world: factors affecting stability of biochar and effect of biochar on stability of soil organic matter. In: 3rd International biochar conference

    Google Scholar 

  • Butnan S, Deenik JL, Toomsan B, Vityakona P (2017) Biochar properties affecting carbon stability in soils contrasting in texture and mineralogy. J Agric Nat Resour Sci 51:492–498

    Google Scholar 

  • Castro MS, Melillo JM, Steudler PA, Chapman JW (1994) Soil moisture as a predictor of methane uptake by temperate forest soils. Can J For Res 24:1805–l810

    Article  CAS  Google Scholar 

  • Cayuela ML, Jeffery S, van Zwieten L (2015) The molar H: corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agric Ecosyst Environ 202:135–138

    Article  CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Lehman J, Joseph S (eds) Biochar for environmental management, science and technology. Earthscan, London, pp 67–84

    Google Scholar 

  • Chen X, Zhang L, Shen J, Wei W, He J (2011) Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biol Fertil Soils 47:323–331

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black carbon by biotic and abiotic processes. Org Geochem 37:1477–1488

    Google Scholar 

  • Cohen-Ofri I, Popovitz-Niro R, Weiner S (2007) Structural characterization of modern and fossilized charcoal produced in natural fires as determined by using electron energy loss spectroscopy. Chem Eur J 13:2306–2310

    Article  CAS  PubMed  Google Scholar 

  • Criscuoli I, Ventura M, Sperotto A, Panzacchi P, Tonon G (2019) Effect of woodchips biochar on sensitivity to temperature of soil greenhouse gases emissions. Forests 10(7):594

    Article  Google Scholar 

  • Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Global Biogeochem Cycles 21:3005

    Article  CAS  Google Scholar 

  • Dong D, Yang M, Wang C, Wang H, Li Y, Luo J, Wu W (2013) Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J Soils Sediments 13:1450–1460

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2012) Physical properties of biochar. In: Lehman J, Joseph S (eds) Biochar for environmental management. Earthscan, London

    Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25(3):321–326

    Article  CAS  Google Scholar 

  • Edwards JD, Pittelkow CM, Kent AD, Yang WH (2018) Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol Biochem 122:81–90

    Article  CAS  Google Scholar 

  • Fang Y, Singh B, Singh BP, Krull E (2014) Biochar carbon stability in four con-trasting soils. Eur J Soil Sci 65:60–71

    Article  CAS  Google Scholar 

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46:88–88

    Article  CAS  Google Scholar 

  • French E, Kozlowski JA, Mukherjee M, Bullerjahn G, Bollmann A (2012) Ecophysiological characterization of ammonia-oxidizing archaea and bacteria from freshwater. Appl Environ Microbiol 78:5773–5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haefele SM, Konboon Y, Wongboon W, Amarante S, Maarifat AA, Pfeiffer EM, Knoblauch C (2011) Effects and fate of biochar from rice residues in rice-based systems. Field Crops Res 121:430–440

    Article  Google Scholar 

  • Harris PJF (2005) New perspectives on the structure of graphitic carbons. Critical Rev Solid State Mater Sci 30:235–253

    Article  CAS  Google Scholar 

  • Hata T, Imamura Y, Kobayashi E, Yamane K, Kikuchi K (2000) Onion-like graphitic particles observed in wood charcoal. J Wood Sci 46:89–92

    Article  CAS  Google Scholar 

  • He Y, Zhou X, Jiang L, Li M, Du Z, Zhou G, Shao J, Wang X, Xu Z, Bai SH, Wallace H, Xu G, Wallace H (2017) Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. Glob Change Biol Bioenerg 9:743–755

    Article  CAS  Google Scholar 

  • Hilscher A, Heister K, Siewert C, Knicker H (2009) Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org Geochem 40:332–342

    Article  CAS  Google Scholar 

  • IPCC (1996) Houghton JT, Meira Filho LG, Lim B, Treanton K, Mamaty I, Bonduki Y, Griggs DJ, Callender BA (eds) Revised 1996 IPCC guidelines for national greenhouse gas inventories, greenhouse gas inventory reference manual, vol 3. IPCC/OECD/IEA, Bracknell

    Google Scholar 

  • Jeffery S, Verheijen FGA, Kammann C, Abalos D (2016) Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem 101:251–258

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ayanaba A (1977) Decomposition of carbon-14 labeled plant material under tropical conditions. Soil Sci Soc Am J 41:912–915

    Article  CAS  Google Scholar 

  • Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731

    Article  CAS  Google Scholar 

  • Kammann C, Ratering S, Eckhard C, Muller C (2012) Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide and methane) fluxes from soil. J Environ Qual 41:1052–1066

    Article  CAS  PubMed  Google Scholar 

  • Karhu K, Mattila T, Bergstrom I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-result from a short term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Kasozi GN, Zimmerman AR, Nkedi-Kizza P, Gao B (2010) Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environ Sci Technol 44:6189–6195

    Article  CAS  PubMed  Google Scholar 

  • Kauffman N, Dumortier J, Hayes DJ, Brown RC, Laird DA (2014) Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 63:167–176

    Article  CAS  Google Scholar 

  • Kelly L (2018) New global CO2 emissions numbers are. In: They’re not good. World Resource Institute. https://www.wri.org/blog/2018/12/

  • Kercher AK, Nagle DC (2003) Microstructural evolution during charcoal carbonization by X-ray diffraction analysis. Carbon 41:15–27

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178

    Article  Google Scholar 

  • Laird DA, Fleming PD, Karlen DL, Wang B, Horton R (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442

    Article  CAS  Google Scholar 

  • Lal R (2011) Sequestering carbon in soils of agro ecosystems. Food Policy 36:33–39

    Article  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management. Science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Lehmann J, Liang B, Solomon D, Lerotic M, Luizão F, Kinyangi J, Schäfer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Global Biogeochem Cycles 19:1013

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems-a review. Mitig Adapt Strateg Glob Chang 11:403–427

    Article  Google Scholar 

  • Lehmann J, Kuzyakov Y, Pan G, Ok YS (2015) Biochars and the plant-soil interface. Plant Soil 395:1–5

    Google Scholar 

  • Li Y, Hu S, Chen J, Müller K, Li Y, Fu W, Lin Z, Wang H (2018) Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soils Sediments 18(2):546–563

    Article  CAS  Google Scholar 

  • Liang B, Lehman J, Solomon D, Kinyangi J, Grossman J, OíNeill B, Skjemstad, JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6078–6096

    Article  Google Scholar 

  • Lin Y, Ding W, Liu D, He T, Yoo G, Yuan J, Chen Z, Fan J (2017) Wheat straw-derived biochar amendment stimulated N2O emissions from rice paddy soils by regulating the amoA genes of ammonia-oxidizing bacteria. Soil Biol Biochem 113:89–98

    Article  CAS  Google Scholar 

  • Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11:930–939

    Article  CAS  Google Scholar 

  • Liu J, Shen J, Li Y, Su Y, Ge T, Jones DI, Wu W (2014) Effects of biochar amendment on the net greenhouse gas intensity in a Chinese double rice cropping system. Eur J Soil Biol 65:30–39

    Article  CAS  Google Scholar 

  • Liua X, Zhoua Z, Chi Z, Zhenga J, Li L, Zhanga X, Cheng K et al (2019) Biochar provide limited benefits for rice yield and greenhouse gas mitigation six year following an amendment in a fertile rice paddy. Catena 179:20–28

    Article  CAS  Google Scholar 

  • Mastrandrea MD, Field CB, Stocker TF et al (2010) Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC), Geneva, p 4

    Google Scholar 

  • McBeath AV, Smernik RJ (2009) Variation in the degree of aromatic condensation of chars. Organic Geochem 40:1161–1168

    Article  CAS  Google Scholar 

  • Minasny B, Malone BP, McBratney AB et al (2017) Soil carbon 4 per mille. Geoderma 292: 59–86

    Google Scholar 

  • Mukherjee A, Lal R (2013) Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2):313–339

    Article  Google Scholar 

  • Muñoz C, Ginebra M, Zagal E (2019) Variation of greenhouse gases fluxes and soil properties with addition of biochar from farm-wastes in volcanic and non-volcanic soils. Sustainability 11(7):1831

    Google Scholar 

  • Nelissen V, Saha BK, Ruysschaert G, Boeckx P (2014) Effect of different biochar and fertilizer types on N2O and NO emissions. Soil Biol Biochem 70:244–255

    Article  CAS  Google Scholar 

  • Neves EG, Petersen JB, Bartone RN, Heckenberger MJ (2004) The timing of terra preta formation in the central Amazon: archaeological data from three sites. In: Glaser B, Woods WI (eds) Amazonian dark earths: explorations in space and time. Springer, London, pp 125–134

    Chapter  Google Scholar 

  • Nguyen B, Lehmann J, Kinyangi J, Smernik R, Engelhard MH (2008) Long-term black carbon dynamics in cultivated soil. Biogeochem 89:295–308

    Article  CAS  Google Scholar 

  • Nigussie A, Kissi E, Misganaw M, Ambaw G (2012) Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian J Agric Environ Sci 12:369–376

    CAS  Google Scholar 

  • Paris O, Zollfrank C, Zickler GA (2005) Decomposition and carbonisation of wood biopolymers – a microstructural study of softwood pyrolysis. Carbon 43:53–66

    Article  CAS  Google Scholar 

  • Palviainen M, Berninger F, Bruckman VJ, Köster K, de Assumpção CR, Aaltonen H, Makita N, Mishra A, Kulmala L, Adamczyk B, Zhou X (2018) Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant Soil 425(1):71–85

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49–57

    Article  CAS  PubMed  Google Scholar 

  • Prayogo C, Jones JE, Baeyens J, Gary D (2014) Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure bending. Biol Fertil Soils 50:695–702

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Kumari S, Pathak H (2015) Characterizations, stability and microbial effects of four biochars produced from crop residues. Geoderma 239-240:293–303

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Bera T, Kumari S, Pathak H (2016a) Effect of pyrolysis temperature and feedstock on characteristics and stability of biochar in three different soils. In: Proc. fourth international agronomy congress, pp 949–950

    Google Scholar 

  • Purakayastha TJ, Das KC, Gaskin J, Harris K, Smith JL, Kumari S (2016b) Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil Tillage Res 155:107–115

    Article  Google Scholar 

  • Purakayastha TJ, Bera T, Bhaduri D, Sarkar B, Mandal S, Wade P et al (2019) A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere 227:345–365

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Yargicoglu E, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in land fill cover soil amended with biochar. J Geotech Geoenviron Eng 140:1–11

    Article  CAS  Google Scholar 

  • Rittle TF, Butterbach-Bahl K, Basile CM, Pereira LA, Alms V, Dannenmann M, Couto EG, Cerri CE (2018) Greenhouse gas emissions from soil amended with agricultural residue biochars: effects of feedstock type, production temperature and soil moisture. Biomass Bioenergy 117:1–9

    Article  CAS  Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2010) Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  PubMed  Google Scholar 

  • Rogelj J, Shindell D, Jiang K et al (2018) Mitigation pathways compatible with 1.5 °C in the context of sustainable development. In: Masson-Delmotte V et al (eds) Global warming of 1.5 °C. an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate poverty. IPCC, Geneva (In press)

    Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. In: Proc. 3rd USDA symposium on greenhouse gases and carbon sequestration in agriculture and forestry, Baltimore, USA

    Google Scholar 

  • Sancez-Garcia M, Alburquerque JA, Sanchez-Monedero MA, Roig A (2015) Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresour Tech 192:272–279

    Article  CAS  Google Scholar 

  • Scheer C, Grace PR, Rowling DW, Kimber S, Van Zwieten L (2011) Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant Soil 345:47–58

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications and current challenges. Global Biogeochem Cycles 14:777–793

    Article  CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Jäger C (2002) Carbon isotope geochemistry and nanomorphology of soil black carbon: black chernozemic soils in central Europe originate from ancient biomass burning. Global Biogeochem Cycles 16:1123

    Article  CAS  Google Scholar 

  • Shackley S, Sohi S (2010) An assessment of the benefits and issues associated with the application of biochar to soil. A report commissioned by the United Kingdom Department for Environment, Food and Rural Affairs and Department of Energy and Climate Change

    Google Scholar 

  • Shen J, Tang H, Liu J, Wang C, Li Y, Ge T, Jones DI, Wu J (2014) Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric Ecosyst Environ 188:264–274

    Article  CAS  Google Scholar 

  • Shibuya M, Kato M, Ozawa M, Fang PH, Osawa E (1999) Detection of buckminsterfullerene in usual soots and commercial charcoals. Fuller Sci Tech 7:181–193

    Article  CAS  Google Scholar 

  • Shindo H (1991) Elementary composition, humus composition and decomposition in soil of charred grassland plants. Soil Sci Plant Nutr 37:651–657

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL (2014) Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep 4:3687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci Rep Ser 5(9):17–31

    Google Scholar 

  • Spokas KA, Bogner JE (2011) Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag 31:823–832

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77(4):574–581

    Article  CAS  PubMed  Google Scholar 

  • Steiner C, Das K, Melear N, Lakly D (2010) Reducing nitrogen loss during poultry litter composting using biochar. J Environ Qual 39:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Stewart CE, Zheng J, Botte J, Cotrufo MF (2013) Co‐generated fast pyrolysis biochar mitigates green‐house gas emissions and increases carbon sequestration in temperate soils. Gcb Bioenergy 5(2):153–164

    Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar. In: Lehman J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 183–205

    Google Scholar 

  • US-EPA (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 19902020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC

    Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from ferrosol. Aust J Soil Res 48:555–568

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde, MDiafas F (2010) Biochar application to soils: A critical scientific review of effects on soil properties, processes, and functions. Luxembourg, European Commission, 149p

    Google Scholar 

  • Waite R, Vennard D (2018) Without changing diets, agriculture alone could produce enough emissions to surpass 1.5 °C of global warming. World Resource Institute. https://www.wri.org/blog/2018/10/

  • Wang J, Pan X, Liu Y, Zhang X, Xiong Z (2012) Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 360:287–298

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Wu D, Senbayram M, Zang H, Ugurlar F, Aydemir S, Brüggemann N, Kuzyakov Y, Bol R, Blagodatskaya E (2018) Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Appl Soil Ecol 129:121–127

    Article  Google Scholar 

  • Yadav RK, Yadav MR, Rakesh K, Parihar CM, Yadav N, Bajiya R, Ram H, Meena RK, Yadav DK, Yadav B (2017) Role of biochar in mitigation of climate change through carbon sequestration. Int J Curr Microbiol App Sci 6(4):859–866

    Article  CAS  Google Scholar 

  • Yaghoubi P, Yargicoglu E, Reddy K (2014) Effects of biochar amendment to land fill cover soil on microbial methane oxidation: initial results. Geo-congress 2014 technical papers. American Society of Civil Engineers, Reston, VA, pp 1849–1858

    Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Yuan Y, Chen H, Yuan W, Williams D, Walker JT, Shi W (2017) Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biol Biochem 113:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Cui L, Pan G, Li I, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zimmerman AR, Gao B, Ahn MY (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Purakayastha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purakayastha, T.J., Bhaduri, D., Singh, P. (2021). Role of Biochar on Greenhouse Gas Emissions and Carbon Sequestration in Soil: Opportunities for Mitigating Climate Change. In: Rakshit, A., Singh, S., Abhilash, P., Biswas, A. (eds) Soil Science: Fundamentals to Recent Advances. Springer, Singapore. https://doi.org/10.1007/978-981-16-0917-6_11

Download citation

Publish with us

Policies and ethics