Skip to main content

Metagenomic Approach in Relation to Plant–Microbe and Microbe–Microbe Interactions

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 530 Accesses

Abstract

Metagenomics is the study of collective microbial genomes of environmental samples. Microorganisms are essential components of every part of life on the planet. Microorganisms do not exist as individuals, but they form complex communities (microbiomes) in the above-ground and below-ground parts of the plants, contributing to the plant’s growth, health, and performance in many ways. There are several factors that regulate the structure and composition of the microbes interacting with plants. However, it has been calculated that only 0.1% of the microbes found in the environment are culturable, and remaining are uncultivable and untapped. The unculturable microbial communities are referred to as “microbial dark matter” which almost covers a high percentage of the planet’s biomass and biodiversity. However, only very little is known about these microbiomes and their interactions with a host. Every microbial genome contains a unique set of genes encoding novel enzymes used for biotechnological applications. Metagenomics methods using advanced sequencing technologies enable tracking of these novel biological molecules that are available in the natural systems in a high-throughput manner. Metagenomics approach also unravels the microbial interactions between themselves and between plants and the microbes as well. This chapter describes the significance of microbial interactions and how plant–microbiome and microbe–microbe interactions are being studied by metagenomics approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abanda-Nkpwatt D, Müsch M, Tschiersch J et al (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  CAS  PubMed  Google Scholar 

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  • Alina SO, Constantinscu F, Petruţa CC (2015) Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotechnol Lett 20:10737–10750

    Google Scholar 

  • Alves LDF, Westmann CA, Lovate GL et al (2018) Metagenomic approaches for understanding new concepts in microbial science. Int J Genomics 2:1–15

    Article  CAS  Google Scholar 

  • Ambawade MS, Pathade GR (2013) Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (musa spp). Int J Sci Res 4:2319–7064

    Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T et al (2012) Screening of plant growth promoting rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264

    Article  CAS  Google Scholar 

  • Armanhi JSL, De Souza RSC, De Araújo LM et al (2016) Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci Rep 6:29543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker MG, Schlatter DC, Otto-Hanson L, Kinkel LL (2014) Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome. Mol Ecol 23:1571–1583

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 1:4516–4522

    Article  Google Scholar 

  • Cha JY, Han S, Hong HJ et al (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10:119–129

    Article  CAS  PubMed  Google Scholar 

  • Cochrane G, Karsch-Mizrachi I, Takagi T (2016) The international nucleotide sequence database collaboration. Nucleic Acids Res 44:D48–D50

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • De León KB, Gerlach R, Peyton BM, Fields MW (2013) Archaeal and bacterial communities in three alkaline hot springs in heart lake geyser basin, yellowstone national park. Front Microbiol 4:330

    Google Scholar 

  • Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 14:e0223847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán P, Thiergart T, Garrido-Oter R et al (2018) Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973–983.e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Flyvbjerg H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31:3476–3482

    Article  CAS  PubMed  Google Scholar 

  • Eichinger V, Nussbaumer T, Platzer A et al (2016) EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and type III, IV, VI secretion systems. Nucleic Acids Res 44:D669–D674

    Article  CAS  PubMed  Google Scholar 

  • Enebe MC, Babalola OO (2019) The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 103:9–25

    Article  CAS  PubMed  Google Scholar 

  • Engelbrektson A, Kunin V, Engelbrektson A et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farag MA, Zhang H, Ryu CM (2013) Dynamic chemical communication between plants and Bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felczykowska A, Krajewska A, Zielińska S, Łos JM (2015) Sampling, metadata and DNA extraction—important steps in metagenomic studies. Acta Biochim Pol 62:151–160

    Article  CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Fish JA, Chai B, Wang Q et al (2013) FunGene: the functional gene pipeline and repository. Front Microbiol 4:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density—responsive transcriptional regulators. J Bacteriol 176:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A et al (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    Article  PubMed  CAS  Google Scholar 

  • Galloway WRJD, Hodgkinson JT, Bowden SD et al (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67

    Article  CAS  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Microbiology: computational improvements reveal great bacterial diversity and high toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Garcerà M, Garcia-Etxebarria K, Coscollà M et al (2013) A new method for extracting skin microbes allows metagenomic analysis of whole-deep skin. PLoS One 8:e74914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh A, Mehta A, Khan AM (2018) Metagenomic analysis and its applications. In: Ranganathan S et al (eds) Encyclopedia of bioinformatics and computational biology. Elsevier, Amsterdam, pp 184–193

    Google Scholar 

  • Gilbert JA, Jansson JK, Knight R (2014) The earth microbiome project: successes and aspirations. BMC Biol 12:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glassing A, Dowd SE, Galandiuk S et al (2016) Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 8:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gweon HS, Oliver A, Taylor J et al (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacquard S (2016) Disentangling the factors shaping microbiota composition across the plant holobiont. New Phytol 209:454–457

    Article  PubMed  Google Scholar 

  • Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hartmann A, Rothballer M, Hense BA, Schröder P (2014) Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hennessy RC, Phippen CBW, Nielsen KF et al (2017) Biosynthesis of the antimicrobial cyclic lipopeptides nunamycin and nunapeptin by Pseudomonas fluorescens strain In5 is regulated by the LuxR-type transcriptional regulator NunF. Microbiology 6(6):e00516

    Article  CAS  Google Scholar 

  • Herbold CW, Pelikan C, Kuzyk O et al (2016) A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front Microbiol 6:870

    Google Scholar 

  • Hong S, Bunge J, Leslin C et al (2009) Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J 3:1365–1373

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Shi Y, Zeng G et al (2016) Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere 157:137–151

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Krischke M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61:361–369

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. Open Microbiol J 12:261–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson AO, Taylor CB (1996) Plant-microbe interactions: life and death at the interface. Plant Cell 8(10):1651–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy AC, Gewin VL (1997) Soil microbial diversity: present and future considerations. Soil Sci 162:605–606

    Article  Google Scholar 

  • Kennedy J, Baker P, Piper C et al (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge haliclona simulans collected from irish waters. Mar Biotechnol 11:384–396

    Article  CAS  Google Scholar 

  • Kinkel LL, Bakker MG, Schlatter DC (2011) A Coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67

    Article  CAS  PubMed  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Köberl M, Schmidt R, Ramadan EM et al (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality, and health. Front Microbiol 4:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopylova E, Navas-Molina JA, Mercier C et al (2016) Open-source sequence clustering methods improve the state of the art. mSystems 1:e00003–e00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunin V, Copeland A, Lapidus A et al (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360

    Article  CAS  Google Scholar 

  • Kwak J, Park J (2018) What we can see from very small size sample of metagenomic sequences. BMC Bioinformatics 19:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leveau JHJ (2007) The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:279–300

    Article  CAS  Google Scholar 

  • Liu Y, Zuo S, Xu L et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Hewezi T, Lebeis SL et al (2019) Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol 19:201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massalha H, Korenblum E, Malitsky S et al (2017) Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci U S A 114:4549–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavromatis K, Ivanova N, Barry K et al (2007) Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods 4:495–500

    Article  CAS  PubMed  Google Scholar 

  • Mende DR, Waller AS, Sunagawa S et al (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. PLoS One 7:e31386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Monther MT, Kamaruzaman S (2012) Arbuscular mycorrhizal fungi and plant root exudates bio-communications in the rhizosphere. African J Microbiol Res 6:7295–7301

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT et al (2008) Effects of root exudates in microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 340–365

    Google Scholar 

  • National Research Council, Division on Earth and Life Studies, Board on Life Sciences, Committee on Metagenomics: Challenges and Functional Applications (2007) Designing a successful metagenomics project: best practices and future needs. In: National Research Council et al (eds) The new science of metagenomics: revealing the secrets of our microbial planet. The National Academic Press, Washington, DC, pp 60–65

    Google Scholar 

  • Ni J, Yan Q, Yu Y (2013) How much metagenomic sequencing is enough to achieve a given goal? Sci Rep 3:1968

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M et al (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Clark FE (1988) Soil microbiology and biochemistry. In: Paul EA, Clark FE (eds) Soil microbiology and biochemistry. Academic, San Diego, pp 1–10

    Google Scholar 

  • Pester M, Rattei T, Flechl S et al (2012) AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of AmoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pester M, Maixner F, Berry D et al (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-oxidizing nitrospira. Environ Microbiol 16(10):3055–3071

    Article  CAS  PubMed  Google Scholar 

  • Pindi PK, Sultana T, Vootla PK (2014) Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech 4(3):305–315

    Article  PubMed  Google Scholar 

  • Poretsky R, Rodriguez-R LM, Luo C et al (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9(4):e93827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabausch U, Juergensen J, Ilmberger N et al (2013) Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes. Appl Environ Microbiol 79(15):4551–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Ijaz M, Mazhar K et al (2019) Metagenomic approach in relation to microbe–microbe and plant–microbiome interactions. In: Kumar V et al (eds) Microbiome in plant health and disease. Springer Nature, Singapore, pp 507–534

    Chapter  Google Scholar 

  • Reid JRW (2003) Experimental design and data analysis for biologists. Austral Ecol 28:588–589

    Article  Google Scholar 

  • Roat C, Saraf M (2017) Unravelling the interaction of plant and their Phyllosphere microbiome. In: Singh RP et al (eds) Understanding host-microbiome interactions—an omics approach: omics of host-microbiome association. Springer Nature, Singapore, pp 157–172

    Chapter  Google Scholar 

  • Rodriguez-R LM, Gunturu S, Tiedje JM et al (2018) Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3(3):e00039–e00018

    Article  PubMed  PubMed Central  Google Scholar 

  • Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagar K, Singh SP, Goutam KK, Konwar BK (2014) Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J Microbiol Methods 97:68–73

    Article  CAS  PubMed  Google Scholar 

  • Salter SJ, Cox MJ, Turek EM et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JA (2009) Introducing mothur: open source, platform-independent, community-supported software. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmieder R, Edwards R (2011a) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmieder R, Edwards R (2011b) Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One 6(3):e17288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sczyrba A, Hofmann P, Belmann P et al (2017) Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods 14(11):1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon I, Banfield JF (2013) Microbiology. Genomes from metagenomics. Science 342(6162):1057–1058

    Article  CAS  PubMed  Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharpton TJ, Riesenfeld SJ, Kembel SW et al (2011) PhyLOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 7(1):e1001061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soni R, Acahrya C, Primalatha K et al (2012) Metagenomics technology. In: Kumar A, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture principles and practice. IK International, New Delhi, p 835

    Google Scholar 

  • Spence C, Alff E, Johnson C et al (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Suddaby EC, Sourbeer MO (1990) Drawing pediatric arterial blood gases. Crit Care Nurse 10(7):28–31

    Article  CAS  PubMed  Google Scholar 

  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59(8):2657–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Větrovský T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8(2):e57923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10(12):828–840

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Müller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22(2):142–155

    Article  CAS  PubMed  Google Scholar 

  • Wallace JG, Kremling KA, Kovar LL, Buckler ES (2018) Quantitative genetics of the maize leaf microbiome. Phytobiomes J 2(4):208–224

    Article  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6(2):e1000667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wylie KM, Truty RM, Sharpton TJ et al (2012) Novel bacterial taxa in the human microbiome. PLoS One 7(6):e35294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaheer R, Noyes N, Ortega Polo R et al (2018) Impact of sequencing depth on the characterization of the microbiome and resistome. Sci Rep 8:5890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P et al (2015) The soil microbiome influences grapevine-associated microbiota. Mol Biol 6(2):e02527–e02514

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the reviewer for his/her cautious evaluation of our manuscript and his/her valuable comments and suggestions.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramadurai, S., Moorthy, A., Balasundaram, U. (2021). Metagenomic Approach in Relation to Plant–Microbe and Microbe–Microbe Interactions. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_2

Download citation

Publish with us

Policies and ethics