Skip to main content

Rhizosphere Metagenomics: Methods and Challenges

  • Chapter
  • First Online:
Omics Science for Rhizosphere Biology

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 686 Accesses

Abstract

“Rhizosphere” is a narrow region associated with plant roots, acting as a residing place for millions of microorganisms. The rhizosphere-associated microbes are collectively called as root microbiome or rhizobiome. These microbiomes play a vital role in plant health by manipulating their growth and development. Rhizobiomes include both beneficial communities which enhance plant growth and improve plant defense mechanisms and pathogens which are harmful to plants. Nevertheless, the beneficial communities compete with the pathogens and colonize the roots. Though the significance of rhizosphere microbial community is well acknowledged, characterization of a plenty of microbes colonizing the rhizosphere is not done. Studying the rhizobiome of a crop species is an essential factor of crop improvement. “Metagenomics” is a frontier science that deals with study of metagenomes found in an environment such as rhizosphere. In this chapter, we have reviewed the most important metagenomic approaches and attributes to study the microbial diversity in the rhizosphere. We have discussed about the methods and software programs available for metagenome assembly, binning strategies, taxonomic classification, and functional annotation of metagenomics datasets. In addition, we have briefly pointed out the bottlenecks of the metagenomics approaches in studying the rhizobiomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Alneberg J, Bjarnason BS, De Bruijn I et al (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R et al (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bonilla-Rosso G, Peimbert M, Alcaraz LD et al (2012) Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin II: community structure and composition in oligotrophic environments. Astrobiology 12:659–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady A, Salzberg SL (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6:673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    Article  PubMed  PubMed Central  Google Scholar 

  • Breitwieser FP, Lu J, Salzberg SL (2019) A review of methods and databases for metagenomic classification and assembly. Brief Bioinform 20:1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carr R, Borenstein E (2014) Comparative analysis of functional metagenomic annotation and the mappability of short reads. PLoS One 9(8):e105776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Fan B et al (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8(7):e68555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Billington R, Ferrer L et al (2016) The MetaCyc database of metabolic pathways 600 and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44:D471–D480

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1(2):e24

    Article  PubMed Central  CAS  Google Scholar 

  • Cleary B, Brito IL, Huang K et al (2015) Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol 33:1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AE, Jospin G, Lowe E et al (2014) PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2:e243

    Article  PubMed  PubMed Central  Google Scholar 

  • de Fátima Alves L, Westmann CA, Lovate GL et al (2018) Metagenomic approaches for understanding new concepts in microbial science. Int J Genomics 2018:2312987

    Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ et al (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23:673–679

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eloe-Fadrosh EA, Ivanova NN, Woyke T, Kyrpides NC (2016) Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat Microbiol 1:1–4

    Article  CAS  Google Scholar 

  • Eren AM, Esen ÖC, Quince C et al (2015) Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de Leon A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felczykowska A, Krajewska A, Zielińska S, Łoś JM (2015) Sampling, metadata and DNA extraction-important steps in metagenomic studies. Acta Biochim Pol 62(1):151–160

    Article  CAS  PubMed  Google Scholar 

  • Freitas T, Chain P, Lo C-C, Li P-E (2015) GOTTCHA database, version 1. Los Alamos National Laboratory. Nucleic Acids Res 43(10):e69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • French KE, Tkacz A, Turnbull LA (2017) Conversion of grassland to arable decreases microbial diversity and alters community composition. Appl Soil Ecol 110:43–52

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Germida J, Siciliano S (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD et al (2002) Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68:4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass EM, Wilkening J, Wilke A et al (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010(1):pdb.prot5368

    Article  PubMed  Google Scholar 

  • Glenn TC (2014) NGS field guide: overview. Mol Ecol Resour 11:759–769

    Article  CAS  Google Scholar 

  • Guazzaroni M, Morgante V, Mirete S, González-Pastor JE (2013) Novel acid resistance genes from the metagenome of the T into R iver, an extremely acidic environment. Environ Microbiol 15:1088–1102

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: Cardon Z, Whitbeck J (eds) The rhizosphere. Academic, Cambridge, pp 1–29

    Google Scholar 

  • Hayat S, Faraz A, Faizan M (2017) Root exudates: composition and impact on plant–microbe interaction. In: Biofilms in plant soil and health, pp 179–193

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(10):4725

    Article  CAS  PubMed Central  Google Scholar 

  • Ikeda S, Suzuki K, Kawahara M et al (2014) An assessment of urea-formaldehyde fertilizer on the diversity of bacterial communities in onion and sugar beet. Microbes Environ 29:231–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin T, Wang Y, Huang Y et al (2017) Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 6:gix089

    Article  Google Scholar 

  • Kanehisa M, Araki M, Goto S et al (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelley DR, Salzberg SL (2010) Clustering metagenomic sequences with interpolated Markov models. BMC Bioinformatics 11:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelley DR, Liu B, Delcher AL et al (2012) Gene prediction with glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res 40:e9–e9

    Article  CAS  PubMed  Google Scholar 

  • Kislyuk A, Bhatnagar S, Dushoff J, Weitz JS (2009) Unsupervised statistical clustering of environmental shotgun sequences. BMC Bioinformatics 10:316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krebs JE, Vaishampayan P, Probst AJ et al (2014) Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. Astrobiology 14:229–240

    Article  CAS  PubMed  Google Scholar 

  • Kultima JR, Coelho LP, Forslund K et al (2016) MOCAT2: a metagenomic assembly, annotation and profiling framework. Bioinformatics 32:2520–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Bihan M, Yooseph S, Methe BA (2012) Analyses of the microbial diversity across the human microbiome. PLoS One 7(6):e32118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-G, Ren G-D, Jia Z-J, Dong Y-H (2014) Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes. Plant Soil 380:337–347

    Article  CAS  Google Scholar 

  • Lu H, Sun J, Zhu L (2017) The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 7:7130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mäkinen V, Salmela L, Ylinen J (2012) Normalized N50 assembly metric using gap-restricted co-linear chaining. BMC Bioinformatics 13:255

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mikheenko A, Saveliev V, Gurevich A (2016) MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32:1088–1090

    Article  CAS  PubMed  Google Scholar 

  • Mirete S, De Figueras CG, González-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73:6001–6011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M et al (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammed MH, Ghosh TS, Singh NK, Mande SS (2011) SPHINX—an algorithm for taxonomic binning of metagenomic sequences. Bioinformatics 27:22–30

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL, O’Gara F (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Methods 45:155–165

    Article  Google Scholar 

  • Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16:3873

    Article  CAS  PubMed Central  Google Scholar 

  • Ounit R, Lonardi S (2016) Higher classification sensitivity of short metagenomic reads with CLARK-S. Bioinformatics 32:3823–3825

    Article  CAS  PubMed  Google Scholar 

  • Ounit R, Wanamaker S, Close TJ, Lonardi S (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK et al (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  PubMed  CAS  Google Scholar 

  • Philipson CW, Davenport K, Voegtly L et al (2017) Brief protocol for EDGE bioinformatics: analyzing microbial and metagenomic NGS data. Bioprotocol 7:e2622

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker Inc, NewYork, p 424

    Chapter  Google Scholar 

  • Qiao Q, Wang F, Zhang J et al (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranjan R, Grover A, Kapardar RK, Sharma R (2005) Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun 335:57–65

    Article  CAS  PubMed  Google Scholar 

  • Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38:e191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson EJ, Escalettes F, Fotheringham I et al (2013) Meta4: a web application for sharing and annotating metagenomic gene predictions using web services. Front Genet 4:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  PubMed  Google Scholar 

  • Roumpeka DD, Wallace RJ, Escalettes F et al (2017) A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet 8:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleem M, Law AD, Moe LA (2016) Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb Ecol 71:469–472

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz M, Ward DV, Pasolli E et al (2016) Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods 13:435–438

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Capalash N, Kaur J (2007) An improved method for single step purification of metagenomic DNA. Mol Biotechnol 36:61–63

    Article  CAS  PubMed  Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P et al (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Strous M, Kraft B, Bisdorf R, Tegetmeyer H (2012) The binning of metagenomic contigs for microbial physiology of mixed cultures. Front Microbiol 3:410

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanveer A, Yadav S, Yadav D (2016) Comparative assessment of methods for metagenomic DNA isolation from soils of different crop growing fields. 3 Biotech 6(2):220

    Article  PubMed  PubMed Central  Google Scholar 

  • Treangen TJ, Koren S, Sommer DD et al (2013) MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 14:R2

    Article  PubMed  PubMed Central  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  • Truong DT, Franzosa EA, Tickle TL et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903

    Article  CAS  PubMed  Google Scholar 

  • Vieites JM, Guazzaroni M-E, Beloqui A et al (2008) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33:236–255

    Article  PubMed  CAS  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson M (2014) Illuminating the future of DNA sequencing. Genome Biol 15:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinert N, Piceno Y, Ding G-C et al (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15:R46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-W, Tang Y-H, Tringe SG et al (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang N, Guo X et al (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12:e0178425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yooseph S, Li W, Sutton G (2008) Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering. BMC Bioinformatics 9:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the reviewer for his/her cautious evaluation of our manuscript and his/her valuable comments and suggestions. A special thanks to Dr. Ashok Kumar M, Senior Research Fellow, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, for his assistance in drawing the figures for the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moorthy, A., Balasundaram, U. (2021). Rhizosphere Metagenomics: Methods and Challenges. In: Pudake, R.N., Sahu, B.B., Kumari, M., Sharma, A.K. (eds) Omics Science for Rhizosphere Biology. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0889-6_1

Download citation

Publish with us

Policies and ethics