Skip to main content
  • 837 Accesses

Abstract

Soil organic carbon is the third biggest carbon pool after oceanic and geological pools with estimated quantity of 1550 Pg of C. There is still a tremendous potential to further enhance the capacity of this pool for the safe storage of C in the soil. Climate change and global warming due to anthropogenic release of CO2 to the atmosphere is the biggest concern. All-out efforts to store and conserve large amounts of C as soil organic matter in the root zone of agricultural soils can help slow down the climate change impact and improve sustainability of production system and environmental safety. Conservation agricultural (CA) practices involving the retention of large amounts of crop residue on the surface and least soil disturbance through minimum tillage are the two important components which greatly help in storing more C in soil as soil organic matter. By restoring soil productivity, these practices help make food production system more sustainable by protecting the environment and making the production system more resilient to climate change. Over years of this practice, CA can ensure the stratification of organic matter near the soil surface, which increases the soil infiltration rate manyfold, resulting in the decrease in runoff losses of water and protecting the soil from erosion losses besides storing more rainwater in the soil profile. The impact of increased frequency of high-intensity rains and decrease in the number of rain days in the future can be greatly overcome with the adoption of CA practices. The importance of CA thus becomes more relevant in the changing climate. In the present chapter, we have discussed the importance of CA practice in relation to climate resilience and efficient agro-ecosystem to ensure global food security and environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla K, Chivenge P, Ciais P et al (2016) No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences 13:3619–3633

    Article  Google Scholar 

  • Acar M, Celik I, Günal H (2018) Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian J Soil Sci 7(1):51–58

    CAS  Google Scholar 

  • Al-Kaisi M (2008) Impact of tillage and crop rotation systems on soil carbon sequestration. Iowa State University, Iowa

    Google Scholar 

  • Angers DA, Eriksen-Hamel NS (2008) Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374

    Article  CAS  Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994a) Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Article  Google Scholar 

  • Beare MH, Hendrix PF, Cabrera ML et al (1994b) Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci Soc Am J 58:787–795

    Article  Google Scholar 

  • Below T, Artner A, Siebert R et al (2010) Micro-level practices to adapt to climate change for African small-scale farmers A review of Selected Literature. Environ Prod Technol Division 953

    Google Scholar 

  • Benbi DK, Brar JS (2009) A 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron Sustain Dev 29:257–265

    Article  CAS  Google Scholar 

  • Benbi DK, Brar K, Toor AS et al (2015) Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma 237–238:149–158

    Article  CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23:481–504

    Article  CAS  Google Scholar 

  • Bongiorno G, Bünemann EK, Oguejiofor CU et al (2019) Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol Indic 99:38–50

    Article  CAS  Google Scholar 

  • Bossuyt H, Six J, Hendrix PF (2002) Aggregate-protected carbon in no-tillage and conventional tillage agroecosystems using carbon-14 labeled plant residue. Soil Sci Soc Am J 66:1965–1973

    Article  CAS  Google Scholar 

  • Butler JH, Montzka SA (2018) The NOAA annual greenhouse gas index (AGGI). http://www.esrl.noaa.gov/gmd/aggi/aggi.html

  • Chivenge PP, Murwira HK, Giller KE et al (2007) Long-term impact of reduced tillage and residue management on soil carbon stabilization: implications for conservation agriculture on contrasting soils. Soil Tillage Res 94(2):328–337

    Article  Google Scholar 

  • COP22 (2016) Recommendations of a meeting on conservation agriculture, Marrakesh on the side lines of conference of participants, COP 22, 7 Nov 2016

    Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • Denef K, Six J, Merckx R et al (2004) Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy. Soil Sci Soc Am J 68:1935–1944

    Article  CAS  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A et al (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25

    Google Scholar 

  • Dimassi B, Mary B, Wylleman R et al (2014) Long-term effect of contrasted tillage and crop management on soil carbon dynamics during 41 years. Agric Ecosyst Environ 188:134–146

    Article  Google Scholar 

  • Dossou-Yovo ER, Brüggemann N, Jesse N et al (2016) Reducing soil CO2 emission and improving upland rice yield with no-tillage, straw mulch and nitrogen fertilization in northern Benin. Soil Tillage Res 156:44–53

    Article  Google Scholar 

  • Ekboir J (2002) CIMMYT 2000–2001 world wheat overview and outlook: developing no-till packages for small-scale farmers. Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), México

    Google Scholar 

  • Elliott J, Deryng D, Müller C et al (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci U S A 111(9):3239–3244

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Romero ML, Parras-Alcántara L, Lozano-García B et al (2016) Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena 137:449–458

    Article  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the south eastern United States. Soil Sci Soc Am J 74:347–357

    Article  CAS  Google Scholar 

  • Ghosh PK, Das A, Saha R et al (2010) Conservation agriculture towards achieving food security in north East India. Curr Sci 99(7):915–921

    Google Scholar 

  • Grandy AS, Robertson GP, Thelen KD (2006) Do productivity and environmental trade-offs justify periodically cultivating no-till cropping systems? Agron J 98:1377–1383

    Article  CAS  Google Scholar 

  • Gupta R, Seth A (2007) A review of resource conserving technology for rice-wheat cropping systems of the Indo-Gangetic Plains (IGP). Crop Product 26:436–447

    Google Scholar 

  • Haddaway NR, Hedlund K, Jackson LE et al (2017) How does tillage intensity affect soil organic carbon? A systematic review. Environ Evid 6:2–48

    Article  Google Scholar 

  • Halvorson DA, Wienhold BJ, Black AL (2002) Tillage, nitrogen and cropping system effects on soil carbon sequestration in conventional and no-till agroecosystems under different winter cover crop rotation. Soil Tillage Res 12:135–148

    Google Scholar 

  • Haugen-Kozyra K, Goddard T (2009) Conservation agriculture protocols for greenhouse gas offsets in a working carbon markets. Paper presented at the IV World Congress on Conservation Agriculture, New Delhi, India, 3–7 February 2009

    Google Scholar 

  • Hernanz JL, Sánchez-Girón V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 113:114–122

    Article  CAS  Google Scholar 

  • Hobbs PR, Govaerts B (2010) How conservation agriculture can contribute to buffering climate change. In: Reynolds MP (ed) Climate change and crop production. CAB International, pp 177–199

    Chapter  Google Scholar 

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus 51(B):298–313

    Article  Google Scholar 

  • Indoria AK, Rao CS, Sharma KL, Reddy KS (2017) Conservation agriculture – a panacea to improve soil physical health. Curr Sci 112(1):52–61

    Article  Google Scholar 

  • Jarecki MK, Lal R (2003) Crop management for soil carbon sequestration. Crit Rev Plant Sci 22:471–502

    Article  Google Scholar 

  • Juarez S, Nunan N, Duday AC et al (2013) Effects of different soil structures on the decomposition of native and added organic carbon. Eur J Soil Biol 58:81–90

    Article  CAS  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Kienzie J (2014) Worldwide adoption of conservation agriculture. 6th World Congress on Conservation Agriculture, 22–27 June 2014, Winnipeg, Canada

    Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2018) Global spread of conservation agriculture. In J Environ Stud. https://doi.org/10.1080/00207233.2018.1494927

  • Kertasz A, Madarasz B (2014) Conservation agriculture in Europe. Int Soil Water Conserv Res 2(1):91–96

    Article  Google Scholar 

  • Khairul MDA, Salahin N, Islam S et al (2016) Patterns of change in soil organic matter, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J Agric Sci 36:1–23

    Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield. An assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Kimball BA, Idso SB (1983) Increasing atmospheric CO2: effects on crop yield, water use and climate. Agric Water Manage 7:55–72

    Article  Google Scholar 

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog Environ Sci 1:307–326

    CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impact on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2010) Managing soils for a warming earth in a food-insecure and energy-starved world. J Plant Nutr Soil Sci 173:4–15

    Article  CAS  Google Scholar 

  • Lal M (2011) Implications of climate change in sustained agricultural productivity in South Asia. Reg Environ Chang 11(Suppl 1):S79–S94

    Article  Google Scholar 

  • Lal R (2016) Beyond COP 21: potential and challenges of the “4 per Thousand” initiative. J Soil Water Conserv 71(1):20A–25A

    Article  Google Scholar 

  • Lanckriet S, Araya T, Cornelis WM et al (2012) Impact of conservation agriculture on catchment runoff and soil loss under changing climate conditions in May Zeg-zeg (Ethiopia). J Hydrol 475:336–349

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P et al (2018) Global carbon budget 2018. Earth Syst Sci Data 10:2141–2194. https://doi.org/10.5194/essd-10-2141-2018

    Article  Google Scholar 

  • Liu LT, Hu CS, Yang PP et al (2015) Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow. Agric Forest Meteorol (207):38–47

    Google Scholar 

  • Lobb DA, Lindstrom MJ (1999) Tillage translocation and tillage erosion. Poster Presentation at Manitoba Soil Science Society Meeting, Winnipeg, Manitoba, 1–2 February 1999

    Google Scholar 

  • Lobb DA, Kachanoski RG, Miller MH (1995) Tillage translocation and tillage erosion on shoulder slope landscape positions measured using 137Cs as a tracer. Can J Soil Sci 75:211–218

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C et al (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Fando C, Pardo MT (2011) Soil carbon storage and stratification under different tillage systems in a semi-arid region. Soil Tillage Res 111:224–230

    Article  Google Scholar 

  • Luo ZK, Wang EL, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agric Ecosyst Environ 139:224–231

    Article  CAS  Google Scholar 

  • Maheswarappa HP, Srinivasan V, Lal R (2011) Carbon footprint and sustainability of agricultural production systems in India. J Crop Improv 25(4):303–322

    Article  Google Scholar 

  • Malhi S, Légère A, Vanasse A et al (2018) Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a Gleysolic soil in Québec, Canada. J Agric Sci:1–9

    Google Scholar 

  • Mangalassery S, Mooney SJ, Sparkes DL et al (2015) Impacts of zero tillage on soil enzyme activities, microbial characteristics and organic matter functional chemistry in temperate soils. Eur J Soil Biol 68:9–17

    Article  CAS  Google Scholar 

  • Mazzoncini M, Antichi D, Di Bene C et al (2016) Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur J Agron 77:156–165

    Article  CAS  Google Scholar 

  • Meurer KHE, Haddaway NR, Bolinder MA et al (2018) Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil-a systematic review using an ESM approach. Earth Sci Rev 177:613–622

    Article  CAS  Google Scholar 

  • Minsany B, Brendan P, Alex M et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Article  Google Scholar 

  • Moreno F, Murillo JM, Pelegrin F et al (2006) Long-term impact of conservation tillage on stratification ratio of soil organic carbon and loss of total and active CaCO3. Soil Tillage Res 85:86–93

    Article  Google Scholar 

  • Newton PCD (1991) Direct effects of increasing carbon dioxide on pasture plants and communities. New Zealand J Agric Res 34(1):1–24

    Article  CAS  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B et al (2008) Climate change: can wheat beat the heat. Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Pandey D, Agrawal M, Pandey JS (2011) Carbon footprints: current methods of estimation. Environ Monit Assess 178:135–160

    Article  CAS  PubMed  Google Scholar 

  • Parton WJ, Rasmussen PE (1994) Long-term effects of crop management in wheat-fallow: II CENTURY model simulations. Soil Sci Soc Am J 58:530–536

    Article  Google Scholar 

  • Pasricha NS (2017) Conservation agriculture effects on dynamics of soil C and N under climate change scenario. In: Sparks DL (ed) Advances in agronomy, vol 145, pp 270–312

    Google Scholar 

  • Paustian K, Andren O, Janzen HH et al (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–244

    Article  Google Scholar 

  • Prasad JVNS, Ch. Srinivasa R, Srinivas K et al (2016) Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi-arid tropics of southern India. Soil Tillage Res 156:131–139

    Article  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot 114(8):1571–1598

    Article  PubMed  PubMed Central  Google Scholar 

  • Reicosky DC, Lindstrom MJ, Schumacher TE et al (2005) Tillage-induced CO2 loss across an eroded landscape. Soil Tillage Res 81(2):183–194

    Article  Google Scholar 

  • Reynolds LL, Johnson BR, Pfeifer-Meister L et al (2015) Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient. Glob Change Biol 21(1):487–500

    Article  Google Scholar 

  • Rockström J, Karlberg L, Wani SP et al (2010) Managing water in rainfed agriculture-the need for a paradigm shift. Agric Water Manag 97(4):543–550

    Article  Google Scholar 

  • Russell AE, Laird DA, Parkin TB et al (2005) Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern Mollisols. Soil Sci Soc Am J 69:413–422

    Article  CAS  Google Scholar 

  • Schimel JP (1995) Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28:183–200

    Article  CAS  Google Scholar 

  • Schlaepfer DR, Bradford JB, Lauenroth WK et al (2017) Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat Commun 8:14196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: a source of atmospheric CO2. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle. Wiley, New York, pp 111–127

    Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle. Springer, New York, pp 194–220

    Chapter  Google Scholar 

  • Schwen A, Jeitler E, Böttcher J (2015) Spatial and temporal variability of soil gas diffusivity, its scaling and relevance for soil respiration under different tillage. Geoderma (259–260):323–336

    Google Scholar 

  • Shrestha BM, Singh BR, Forte C et al (2015) Long-term effects of tillage, nutrient application and crop rotation on soil organic matter quality assessed by NMR spectroscopy. Soil Use Manag 31:358–366

    Article  Google Scholar 

  • Silva B d O, Moitinho MR, Santos GA d A et al (2019) Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil Tillage Res 186:224–232

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Su Z, Zhang J, Wu W et al (2007) Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric Water Manag 87(3):307–314

    Article  Google Scholar 

  • Thierfelder C, Wall PC (2009) Effects of conservation agriculture techniques on infiltration and soil water content in Zambia and Zimbabwe. Soil Tillage Res 105(2):217–227

    Article  Google Scholar 

  • Thierfelder C, Wall PC (2010) Investigating conservation agriculture (CA) systems in Zambia and Zimbabwe to mitigate future effects of climate change. J Crop Improv 24(2):113–121

    Article  Google Scholar 

  • Thierfelder C, Matemba-Mutasa R, Rusinamhodzi L (2015) Yield response of maize (Zea mays L.) to conservation agriculture cropping system in southern Africa. Soil Tillage Res 146:230–242

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA et al (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Trenberth KE (2011) Change in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Tubiello FN (2019) Greenhouse gas emissions due to agriculture. Encyclopedia Food Sec Sustain:196–205. https://doi.org/10.1016/B978-0-08-100596-5.21996-3

  • VandenBygaart AJ, Bremer E, McConkey BG et al (2010) Soil organic carbon stocks on long-term agroecosystem experiments in Canada. Canadian J Soil Sci 90(4):543–550

    Article  CAS  Google Scholar 

  • Virto I, Barré P, Burlot A et al (2012) Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108:17–26

    Article  Google Scholar 

  • Wang Z, Zhang H, Lu X et al (2016) Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J Cleaner Product 112(1):149–157

    Article  CAS  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • White PM, Rice CW (2009) Tillage effects on microbial and carbon dynamics during plant residue decomposition. Soil Sci Soc Am J 73:138–145

    Article  CAS  Google Scholar 

  • World Meteorological Organization (2018) The state of greenhouse gases in the atmosphere based on global observations through 2017. WMO Greenhouse Gas Bulletin No. 14. https://library.wmo.int/doc_num.php?explnum_id=5455

  • Xiao D, Ye Y, Xiao S et al (2019) Effects of tillage on CO2 fluxes in a typical karst calcareous soil. Geoderma 337:191–201

    Article  CAS  Google Scholar 

  • Yadav GS, Das A, Lal R et al (2018) Energy budget and carbon footprint in a no-till and mulch based rice-mustard cropping system. J Cleaner Product 191:144–157

    Article  Google Scholar 

  • Zhang H, Yan C, Zhang Y et al (2015) Effect of no tillage on carbon sequestration and carbon balance in farming ecosystem in dryland area of northern China. Trans Chin Soc Agric Eng 31(4):240–247

    CAS  Google Scholar 

  • Zhang XQ, Pu C, Zhao X et al (2016) Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain. Ecol Indic 67:821–829

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Dheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dheri, G.S., Pasricha, N.S. (2021). Carbon Dynamics Under Conservation Agriculture. In: Jayaraman, S., Dalal, R.C., Patra, A.K., Chaudhari, S.K. (eds) Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security . Springer, Singapore. https://doi.org/10.1007/978-981-16-0827-8_15

Download citation

Publish with us

Policies and ethics