Skip to main content

Processing-Mediated Changes in the Antinutritional, Phenolic, and Antioxidant Contents of Millet

  • Chapter
  • First Online:
Millets and Millet Technology

Abstract

Millet grains are the treasure trove of essential micronutrients, resistant starch, and gluten-free proteins making them ideal food for people suffering from hidden hunger, chronic health disorders such as diabetes, obesity, and celiac allergy. Further, the presence of rich quantities of various antioxidant compounds vitamin E, proteins and peptides, carotenoids, flavonoids, and others across various varieties of millets enhance their utility as functional food. However, millets also contain certain phenolic substances such as phytates, tannins along with some protease inhibitors that can severely hamper the availability of these nutrients by acting as anti-nutritional factors. Fortunately, the presence of such anti-nutritional compounds can be reduced by some conventional and modern processing methods that make them more edible with better nutritional and sensory properties. For instance, fermentation mediated by microorganisms including yeasts, lactic, and acetic acid bacteria can modulate the anti-nutritional factors along with enrichment in health-promoting compounds that increase their demand from the nutrition point of view. Therefore, this chapter is aimed to highlight the various intentional and nonintentional food processing techniques that could modulate the nutritional aspects of millets with a special focus on antioxidant compounds, anti-nutritional factors as well as phenolic substances in millet-based food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adu-Gyamfi C, Tse EK, Axala E, Djidjor EK (2019) Production and consumers’ acceptability of meat turnovers produced from wheat and millet flour blends. J Food Technol Food Chem 2:106

    Google Scholar 

  • Agrawal A, Verma A, Shiekh S (2016) Evaluation of sensory accessibility and nutritive values of multigrain flour mixture products. Int J Health Sci Res 6:459–465

    Google Scholar 

  • Akbar N, Gupta S, Tiwari A, Singh KP, Kumar (2018) Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation. Gene 649:40–49

    Article  CAS  PubMed  Google Scholar 

  • Anand R (2017) Effect of germination and fermentation on the antioxidant activity of millet koozh prepared using sorghum bicolour (Monech. L), pearl millet (Pennisetum glaucum) and finger millet (Eleusine coracana). Int J Multidiscip Res Dev 4:155–157

    Google Scholar 

  • Anbalagan S, Nazni P (2020) Comparative study on physico-chemical characteristics of different periods of soaked minor millets flour-based diarrheal replacement fluids. Int J Res Pharm Sci 11:2189–2197

    Article  CAS  Google Scholar 

  • Arora S, Jood S, Khetarpaul N (2011) Effect of germination and probiotic fermentation on nutrient profile of pearl millet based food blends. Br Food J 113:470–481

    Article  Google Scholar 

  • Balli D, Bellumori M, Pucci L, Gabriele M, Longo V, Paoli P, Melani F, Mulinacci N, Innocenti M (2020) Does fermentation really increase the phenolic content in cereals? A study on millet. Foods 9:303

    Article  CAS  PubMed Central  Google Scholar 

  • Boncompagni E, Orozco-Arroyo G, Cominelli E, Gangashetty PI, Grando S, Kwaku Zu TT, Daminati MG, Nielsen E, Sparvoli F (2018) Anti-nutritional factors in pearl millet grains: phytate and goitrogens content variability and molecular characterization of genes involved in their pathways. PLoS One 13:0198394

    Article  CAS  Google Scholar 

  • Budhwar S, Sethi K, Chakraborty M (2020) Efficacy of germination and probiotic fermentation on underutilized cereal and millet grains. Food Prod Process Nutr 2:1–7

    Article  Google Scholar 

  • Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, Fasano A (2019) Celiac disease: a comprehensive current review. BMC Med 17:1–20

    Article  CAS  Google Scholar 

  • Chandrasekara A, Shahidi F (2010) Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. J Agric Food Chem 58:6706–6714

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, Verma K, Saharan BS (2020) A GC-MS based metabolic profiling of probiotic lactic acid bacteria isolated from traditional food products. J Pure Appl Microbiol 14:657–672

    Article  CAS  Google Scholar 

  • Chauhan ES (2018a) Effects of processing (germination and popping) on the nutritional and anti-nutritional properties of finger millet (Eleusine Coracana). Curr Res Nutr Food Sci 6:566–572

    Article  Google Scholar 

  • Chauhan ES (2018b) Exploration of gluten-free baked food products incorporated by germinated finger (Eleusine coracana) and pearl (Pennisetum glaucum) millets: a therapeutic approach. Int J Health Sci Res 8:232–243

    Google Scholar 

  • Chauhan ES, Sarita (2018) Development of gluten-free food products incorporated by germinated and popped finger and pearl millets. Indian J Nutr Diet 55:291–307

    Article  Google Scholar 

  • Chauhan M, Sonawane SK, Arya SS (2018) Nutritional and nutraceutical properties of millets: a review. Clin J Nutr Diet 1:1–10

    Google Scholar 

  • Chowdhury S, Punia D (1997) Nutrient and antinutrient composition of pearl millet grains as affected by milling and baking. Food Nahrung 41:105–107

    Article  Google Scholar 

  • Cirkovic Velickovic TD, Stanic-Vucinic DJ (2018) The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr Rev Food Sci Food Saf 17:82–103

    Article  CAS  PubMed  Google Scholar 

  • Cocolin L, Rantsiou K (2012) Meat fermentation. In: Handbook of meat and meat processing, 2nd edn. CRC Press, Boca Raton, FL, pp 557–572

    Google Scholar 

  • Di Stefano E, White J, Seney S, Hekmat S, McDowell T, Sumarah M, Reid G (2017) A novel millet-based probiotic fermented food for the developing world. Nutrients 9:529

    Article  PubMed Central  CAS  Google Scholar 

  • FAO (2018) Anti-nutritional factors within feed ingredients. Aquaculture Feed and Fertilizer Resources Information System, Food and Agriculture Organizations of the United Nations, Rome. http://www.fao.org/fishery/affris/feed-resources-database.anti-nutritional-factors-within-feedingredients/en/. Accessed 28 Nov 2018

    Google Scholar 

  • Fenwick S, Vanga SK, DiNardo A, Wang J, Raghavan V, Singh A (2019) Computational evaluation of the effect of processing on the trypsin and alpha-amylase inhibitor from Ragi (Eleusine coracana) seed. Eng Rep 1:12064

    Google Scholar 

  • Fontana C, Fadda S, Cocconcelli PS, Vignolo G (2012) Lactic acid bacteria in meat fermentations. In: Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Taylor & Francis, Boca Raton, FL, pp 247–264

    Google Scholar 

  • Gabaza M, Shumoy H, Muchuweti M, Vandamme P, Raes K (2016) Effect of fermentation and cooking on soluble and bound phenolic profiles of finger millet sour porridge. J Agric Food Chem 64:7615–7621

    Article  CAS  PubMed  Google Scholar 

  • Gadir WA, Adam S (2000) Effects of pearl millet (Pennisetum typhoides), and fermented and processed fermented millet on Nubian goats. Vet Hum Toxicol 2:133–136

    Google Scholar 

  • Grober U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7:8199–8226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handa V, Kumar V, Panghal A, Suri S, Kaur J (2017) Effect of soaking and germination on physicochemical and functional attributes of horsegram flour. J Food Sci Technol 54:4229–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hithamani G, Srinivasan K (2014) Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Chem 164:55–62

    Article  CAS  PubMed  Google Scholar 

  • Hosoda A, Okai Y, Kasahara E, Inoue M, Shimizu M, Usui Y, Sekiyama A, Higashi-Okai K (2012) Potent immunomodulating effects of bran extracts of traditional Japanese millets on nitric oxide and cytokine production of macrophages (RAW264.7) induced by lipopolysaccharide. J UOEH 34:285–296

    Article  CAS  PubMed  Google Scholar 

  • Inmaculada NG, Álvaro SF, Francisco GC (2013) Overexpression, purification, and biochemical characterization of the esterase Est0796 from Lactobacillus plantarum WCFS1. Mol Biotechnol 54:651–660

    Article  PubMed  CAS  Google Scholar 

  • Inyang CU, Zakari UM (2008) Effect of germination and fermentation of pearl millet on proximate, chemical and sensory properties of instant “Fura”-a Nigerian cereal food. Pak J Nutr 7:9–12

    Article  CAS  Google Scholar 

  • Karas M, Jakubczyk A, Szymanowska U, Jęderka K, Lewicki S, Złotek U (2019) Different temperature treatments of millet grains affect the biological activity of protein hydrolyzates and peptide fractions. Nutrients 11:550

    Article  CAS  PubMed Central  Google Scholar 

  • Krupa-Kozak U (2014) Pathologic bone alterations in celiac disease: etiology, epidemiology, and treatment. Nutrition 30:16–24

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Metwal M, Kaur S, Gupta AK, Puranik S, Singh S, Singh M, Gupta S, Babu BK, Sood S, Yadav R (2016) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front Plant Sci 7:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundgol NG, Kasturiba B, Math KK, Kamatar MY, Usha M (2013) Impact of decortication on chemical composition, antioxidant content and antioxidant activity of little millet landraces. Int J Adv Res Technol 2:1705–1720

    Google Scholar 

  • Lee SH, Chung IM, Cha YS, Park Y (2010) Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr Res 30:290–296

    Article  CAS  PubMed  Google Scholar 

  • Lei V, Friis H, Michaelsen KF (2006) Spontaneously fermented millet product as a natural probiotic treatment for diarrhoea in young children: an intervention study in northern Ghana. Int J Food Microbiol 110:246–253

    Article  PubMed  Google Scholar 

  • Li X, Hui Y, Ren J, Song Y, Liu S, Che L, Peng X, Dai X (2019) Millet-based supplement restored microbiota diversity of acute undernourished pigs. BioRxiv. https://doi.org/10.1101/2019.12.13.875013

  • Liang S, Liang K (2019) Millet grain as a candidate antioxidant food resource: a review. Int J Food Prop 22:1652–1661

    Article  CAS  Google Scholar 

  • Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligne B, Gsanzle M, Kort R, Pasin G, Pihlanto A, Smid EJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102

    Article  CAS  PubMed  Google Scholar 

  • Moreno Amador MD, Comino Montilla IM, Sousa Martin C (2014) Alternative grains as potential raw material for gluten-free food development in the diet of celiac and gluten-sensitive patients. Austin J Nutr Food Sci 2:9

    Google Scholar 

  • Mukherjee G, Singh RK, Mitra A, Sen SK (2007) Ferulic acid esterase production by Streptomyces sp. Bioresour Technol 98:211–213

    Article  CAS  PubMed  Google Scholar 

  • Murtaza N, Baboota RK, Jagtap S, Singh DP, Khare P, Sarma SM, Podili K, Alagesan S, Chandra TS, Bhutani KK, Boparai RK (2014) Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. Br J Nutr 112:1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Nambiar VS, Dhaduk JJ, Sareen N, Shahu T, Desai R (2011) Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharm 1:62

    Google Scholar 

  • Nefale FE, Mashau ME (2018) Effect of germination period on the physicochemical, functional and sensory properties of finger millet flour and porridge. Asian J Appl Sci Eng 6:360–367

    Google Scholar 

  • Niro S, D’Agostino A, Fratianni A, Cinquanta L, Panfili G (2019) Gluten-free alternative grains: nutritional evaluation and bioactive compounds. Foods 8:208

    Article  CAS  PubMed Central  Google Scholar 

  • Nkhata SG, Ayua E, Kamau EH, Shingiro JB (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norhaizan ME, Nor Faizadatul Ain AW (2009) Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in Malaysia. Malays J Nutr 15:213–222

    PubMed  Google Scholar 

  • Ofosu FK, Elahi F, Daliri EB, Chelliah R, Ham HJ, Kim JH, Han SI, Hur JH, Oh DH (2020) Phenolic profile, antioxidant, and antidiabetic potential exerted by millet grain varieties. Antioxidants 9:254

    Article  CAS  PubMed Central  Google Scholar 

  • Oh BT, Jeong SY, Velmurugan P, Park JH, Jeong DY (2017) Probiotic-mediated blueberry (Vaccinium corymbosum L.) fruit fermentation to yield functionalized products for augmented antibacterial and antioxidant activity. J Biosci Bioeng 124:542–550

    Article  CAS  PubMed  Google Scholar 

  • Osamwonyi UO, Wakil SM (2012) Isolation of fungal species from fermentating pearl millet gruel and determination of their antagonistic activities against indicator bacterial species. Niger Food J 30:35–42

    Article  Google Scholar 

  • Osman MA (2011) Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J Saudi Soc Agric Sci 10:1–6

    CAS  Google Scholar 

  • Owheruo JO, Ifesan BO, Kolawole AO (2019) Physicochemical properties of malted finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum). Food Sci Nutr 7:476–482

    Article  CAS  PubMed  Google Scholar 

  • Palacios JJ (2008) Multinational corporations and the emerging network economy in Asia and the Pacific. Routledge, Oxon

    Book  Google Scholar 

  • Palaniswamy SK, Govindaswamy V (2017) Inhibition of metal catalyzed H2O2 and peroxyl-AAPH mediated protein, DNA and human erythrocytes lipid oxidation using millet phenolics. J Plant Biochem Biotechnol 26:406–414

    Article  CAS  Google Scholar 

  • Pampangouda P, Munishamanna KB, Gurumurthy H (2015) Effect of Saccharomyces boulardii and Lactobacillus acidophilus fermentation on little millet (Panicum sumatrense). J Appl Nat Sci 7:260–264

    Article  CAS  Google Scholar 

  • Pawar VD, Machewad GM (2006) Processing of foxtail millet for improved nutrient availability. J Food Process Preserv 30:269–279

    Article  CAS  Google Scholar 

  • Peerajan S, Chaiyasut C, Sirilun S, Chaiyasut K, Kesika P, Sivamaruthi BS (2016) Enrichment of nutritional value of Phyllanthus emblica fruit juice using the probiotic bacterium, Lactobacillus paracasei HII01 mediated fermentation. Food Sci Technol 36:116–123

    Article  Google Scholar 

  • Pradeep SR, Guha M (2011) Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem 126:1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Pradeep PM, Sreerama YN (2015) Impact of processing on the phenolic profiles of small millets: evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem 169:455–463

    Article  CAS  PubMed  Google Scholar 

  • Prashanth MS, Shruthi RR, Muralikrishna G (2015) Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana v. Indaf 15) bran. J Food Sci Technol 52:6049–6054

    Article  CAS  Google Scholar 

  • Ramashia SE, Anyasi TA, Gwata ET, Meddows-Taylor S, Jideani AI (2019) Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa. Food Sci Technol 39:253–266

    Article  Google Scholar 

  • Ranasalva N, Visvanathan R (2014) Development of bread from fermented pearl millet flour. J Food Process Technol 5:1–5

    Google Scholar 

  • Rezac S, Kok CR, Heermann M, Hutkins R (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Salar RK, Purewal SS, Sandhu KS (2017) Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Res Int 100:204–210

    Article  CAS  PubMed  Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Prod Process Nutr 2:1–4

    Article  Google Scholar 

  • Sarita ES, Singh E (2016) Potential of millets: nutrients composition and health benefits. J Sci Innov Res 5:46–50

    Article  Google Scholar 

  • Shahidi F, Chandrasekara A (2013) Millet grain phenolics and their role in disease risk reduction and health promotion: a review. J Funct Foods 5:570–581

    Article  CAS  Google Scholar 

  • Sharma S, Saxena DC, Riar CS (2015) Antioxidant activity, total phenolics, flavonoids and antinutritional characteristics of germinated foxtail millet (Setaria italica). Cogent Food Agric 1:1081728

    Article  CAS  Google Scholar 

  • Sharma S, Saxena DC, Riar CS (2016) Analysing the effect of germination on phenolics, dietary fibres, minerals and γ-amino butyric acid contents of barnyard millet (Echinochloa frumentaceae). Food Biosci 13:60–80

    Article  CAS  Google Scholar 

  • Shobana S, Harsha MR, Platel K, Srinivasan K, Malleshi NG (2010) Amelioration of hyperglycaemia and its associated complications by finger millet (Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats. Br J Nutr 104:1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Sireesha Y, Kasetti RB, Nabi SA, Swapna S, Apparao C (2011) Antihyperglycemic and hypolipidemic activities of Setaria italica seeds in STZ diabetic rats. Pathophysiology 18:159–164

    Article  PubMed  Google Scholar 

  • Srivastava RK (2018) Enhanced shelf life with improved food quality from fermentation processes. J Food Technol Preserv 2:8–14

    CAS  Google Scholar 

  • Srivastava U, Saini P, Singh A (2020) Effect of natural fermentation on antioxidant activity of pearl millet (Pennisetum glaucum). Curr Nutr Food Sci 16:306–313

    Article  CAS  Google Scholar 

  • Tatala S, Ndossi G, Ash D, Mamiro P (2007) Effect of germination of finger millet on nutritional value of foods and effect of food supplement on nutrition and anaemia status in Tanzania children. Tanzan J Health Res 9:77–86

    CAS  Google Scholar 

  • Teixeira JA, Vicente AA (eds) (2013) Engineering aspects of food biotechnology. CRC Press, New York

    Google Scholar 

  • Tou EH, Guyot JP, Mouquet-Rivier C, Rochette I, Counil E, Traoré AS, Trèche S (2006) Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso. Int J Food Microbiol 106:52–60

    Article  CAS  PubMed  Google Scholar 

  • Weaver CM, Kannan S (2002) Phytate and mineral bioavailability. In: Reddy NR, Sathe SK (eds) Food phytates. CRC Press, Boca Raton, FL, pp 211–223

    Google Scholar 

  • Zhang L, Li J, Han F, Ding Z, Fan L (2017) Effects of different processing methods on the antioxidant activity of 6 cultivars of foxtail millet. J Food Qual. https://doi.org/10.1155/2017/8372854

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, M.I., Kapila, R., Kapila, S. (2021). Processing-Mediated Changes in the Antinutritional, Phenolic, and Antioxidant Contents of Millet. In: Kumar, A., Tripathi, M.K., Joshi, D., Kumar, V. (eds) Millets and Millet Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0676-2_13

Download citation

Publish with us

Policies and ethics