Skip to main content

Plant–Microbe Interactions in Bioremediation of Toxic Wastes in Tropical Environment

  • Chapter
  • First Online:
Rhizobiont in Bioremediation of Hazardous Waste

Abstract

Pollution occurs through natural and anthropogenic activities. Toxic substances generated from different sources may accumulate in the soil and water bodies and potentially alter their physicochemical properties and ecosystem function. Although several environmental remediation methods have traditionally been tried with some success, bioremediation processes have been found eco-friendlier and cost-effective. Plant-assisted bioremediation, a remediation method that utilizes green plants and their associated microflora to eliminate contaminants from the soil or environment has been found commercially applicable because of its cost-effectiveness among other benefits. Phytoextraction, rhizofiltration, phytostabilization, and phytovolatilization among others are techniques commonly used to remove heavy metals and inorganic contaminants from polluted environments. Endophytes such as bacterial or fungal organisms that live within or between healthy plant tissues are known to portray either obligate or facultative association along with complex interaction with their host plant, which may be mutualistic and antagonistic in nature. Plant root exudates also contribute to plant–microbe interaction due to the fact that these exudates provide important nutrients and energy for associated soil microorganisms. Chemotaxis influences the movement of bacteria to plant root by the attraction of root exudates that exist between the soil and the rhizosphere. Specifically, the natural ability of most rhizospheric bacteria to tolerate environmental contaminants has lent them to phytoremediation use, especially in removing organic pollutants from food crops. Similarly, the ability of some plant species to be tolerant to specific stress in a time-dependent manner is being exploited in phytoremediation processes. For example, maintenance of high antioxidant levels that are capable of detoxifying toxic reactive oxygen species is associated with a plant’s ability to tolerate environmental stress. Therefore, information on rhizospheric microorganisms and their benefits in phytoremediation processes should continually be updated, especially in tropical environments where cost is a critical factor. Furthermore, screening of plants to identify those with phytoremediation potentials, especially in tropical regions of the world that harbor rich plant biodiversity is imperative for cost-effective bioremediation of polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmoneim TS, Moussa TAA, Almaghrabi OA, Abdelbagi I (2014) Investigation the effect of arbuscular mycorrhizal fungi on the tolerance of maize plant to heavy metals stress. Life Sci J 11(4):255–263

    CAS  Google Scholar 

  • Adeola FO (2004) Boon or bane? The environmental and health impacts of persistent organic pollutant (POPs). Hum Ecol Rev 11(1):27–35

    Google Scholar 

  • Adeyemi D, Ukpo G, Anyakora C, Unyimadu JP (2008) Organochlorine pesticide residue in fish sample from Lagos Lagoon, Nigeria. Am J Environ Sci 4(6):649–653

    Article  CAS  Google Scholar 

  • Aguilera F, Mendez J, Pasaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301

    CAS  PubMed  Google Scholar 

  • Agwu A, Kalu AU (2012) Bioremediation and environmental sustainability in Nigeria. Int J Acad Res Progr Educ Dev 1(3):26–31

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93:113–120

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Al-Taaniel AA, Batgyne TA, El-Radaideh EN, Ghrefat H, Zumlot T, Al-Rawabdeh MA, Al-Momani T, Taani A (2015) Spatial distribution and pollution assess of trace metals in surface sediments of Ziqlab Reservoir, Jordan. Environ Mount Assess 187:32

    Google Scholar 

  • Andreote FD, Durrer A (2014) Exploring interaction of plant microbiomes. Sci Agric 71:528–539

    Google Scholar 

  • Antonangelo AJ, Zhang H (2019) Heavy metal phytoavailability in a contaminated soil of northeastern Oklahoma as affected by biochar amendment. Environ Sci Pollut Res 26(1):152–168

    CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  PubMed  Google Scholar 

  • Avci H, Deveci T (2013) Assessment of trace element concentrations in soil and plants from cropland irrigated with wastewater. Ecotoxicol Environ Saf 46:322–328

    Google Scholar 

  • Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballantyne B, Marrs TC (1992) Overview of ecological and clinical aspects of organophosphate and carbamate. In: Ballantyne B, Marrs TC (eds) clinical and experimental toxicology of organo- phosphate and carbamate. Butterworth-Heinemann, Oxford, pp 3–14

    Google Scholar 

  • Banuelos GS, Lin ZQ (2010) Cultivation of the Indian Fig Opuntia in selenium-rich drainage sediments under field conditions. Soil use. Management 26:167–175

    Google Scholar 

  • Bassem SM (2020) Water pollution and aquatic biodiversity. Biodiversity Int J 4(1):10–16

    Google Scholar 

  • Batayneh AT (2010) Heavy metal in water springs of the Yarmouk Basin, North Jordan and their potentiality in health risk. Int J Phys Sci 5:997–1003

    CAS  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  PubMed  Google Scholar 

  • Benavidez MP, Gallego MS, Tomaro LM (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34

    Article  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean the environment. Wiley, New York, pp 71–78

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67

    Article  CAS  Google Scholar 

  • Bittsánszky A, Gullner G, Gyulai G (2011) A case study: uptake and accumulation of persistent organic pollutants in Cucurbitaceae species. In: Komives T (ed) Organic xenobiotics and plants. Springer, Dordrecht, pp 77–85

    Google Scholar 

  • Blas JM, Charpentic S, Pick F, Kimpe LM, Amand AS, Regnault-Roger C (2006) Mercury polybrominated diphenyl either organochlorine pesticide and polychlorinated biphenyl concentration in Fish from lakes along an elevation transect in the French pyrenees. Ecoloxicol Environ Saf 63(1):91–99

    Article  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Blokhina O, Fagerstedt R (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory system. Physiol Plant 138(4):447–462

    Article  CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brassington KI, Hough RL, Paton GI, Semple KT, Risdon GC, Gossley J (2007) Weathered hydrocarbon wastes: a risk management primer. Crit Rev Environ Sci Technol 37:199–232

    Article  CAS  Google Scholar 

  • Cartmill AD, Cartmill DL, Alarcon A (2014) Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Int J Phytoremediation 16:285–301

    Article  CAS  PubMed  Google Scholar 

  • Carvallo DRM, dos Santos JA, Silva JAS, do Prado TG, de Fonseca AF, Chaves ES, Frescura VLA (2015) Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry. Environ Monit Assess 187:535–537

    Article  CAS  Google Scholar 

  • CEHRD (2019) Environmental health human rights and gender baseline for Ogoniland clean-up centre for environment. Human Right and Development, Port Harcourt

    Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662–676

    CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198

    CAS  Google Scholar 

  • Chang S, Stone J, Demes K, Piscitelli M (2014) Consequences of oil spills: a review and framework for informing planning. Ecol Soc 19(2):26–34

    Article  Google Scholar 

  • Chen SB, Zhu YG, Hu QH (2005) Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. J Environ Radioact 82:223–236

    Article  CAS  PubMed  Google Scholar 

  • Cherian S, Weyen N, Lindberg S, Vangronsveld J (2012) Phytoremediation of trace element-contaminated environments and the potential of endophytic bacteria for improving this process. Crit Rev Environ Sci Technol 4:2215–2260

    Article  CAS  Google Scholar 

  • Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:752708. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Chiroma TM, Ebewele RD, Hymore FK (2014) Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int Ref J Eng Sci 3:1–9

    Google Scholar 

  • Choi WG, Toyota M, Kim SH, Hilleary R, Gilroy S (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Acad Sci 111:6497–6502

    Article  CAS  Google Scholar 

  • Choudhary DK, Varma A, Tuteja N (2017) Plant-microbe interaction: an approach to sustainable agriculture. Springer, New Delhi

    Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88(11):1707–1719

    Article  CAS  Google Scholar 

  • Cook RD, Ni LO (2007) Elevating soil lead: statistical modeling and apportionment of contribution from lead-based paint and leaded gasoline. Ann Appl Stat 1:130–151

    Article  Google Scholar 

  • Cramer GR (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies M (1999) Compilation of EU Dioxin exposure and health data Take 7-Ecotoxicology, European commission D.G Environment, UK Department of Environment Transport and the Region (DETR) 97/322/3040/DEB/EI

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal bios oration by brown algae. Water Res 37(18):4311–4330

    Article  CAS  PubMed  Google Scholar 

  • De Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, Bogre L, Grant M (2007) Pseudomonas syringae pv. Tomato hijicks the Arabidopsis abscisic acid-signaling pathway to cause disease. EMBO J 26:1434–1443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Zelicourt A, Colcombet J, Hirt H (2016) The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci 21:677–685

    Article  PubMed  CAS  Google Scholar 

  • Dhanya NN, Padmavanthy S (2014) Impact of endophytic microorganism on plants, environment and humans. Sci World J 2:250–693

    Google Scholar 

  • Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant OMICS 5(1):46–51

    CAS  Google Scholar 

  • Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T (2013) Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proced Nat. Acad Sci 110:8744–8749

    Article  CAS  Google Scholar 

  • Duke NC (2016) Oil spill impacts on mangroves recommendations for operational planning and action based on global review. Mar Pollut Bull 190:700–715

    Article  CAS  Google Scholar 

  • Dureja P, Rayendra ST (2012) Pesticide residues in soil invertebrates. In: Hamir SR, Nollet LML (eds) Pesticide evaluation of environmental pollution. CRC Press, Boca Raton, pp 337–360

    Google Scholar 

  • Dutta S, Mitra M, Agarwal P, Mahapatra K, De S, Sett U, Roy S (2018) Oxidative and genotoxic damages in plants response to heavy metal stress and maintenance of genome stability. Plant Signal Behav 13(8):1–17

    Article  CAS  Google Scholar 

  • Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ (2012) Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Int 46:16–22

    Article  CAS  PubMed  Google Scholar 

  • Eapen S, Suseelan KN, Tivarekar S, Kortwal SA, Mitra R (2003) Potential for rhizofilteration of uranium using hairy root cultures of Brassica Juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ebegbulam J, Ekperechi D, Adejumo TO (2013) Oil exploration and poverty in the Niger Delta region of Nigeria: a critical analysis. Int J Bus Soc Sci 4(3):279–287

    Google Scholar 

  • Ekpenyong NS, Udeme US (2015) Crude oil spill and its consequences on sea food safety in coastal area of Ibeno: Akwa Ibom state: studies. Sociol Sci 6(1):1–6

    Google Scholar 

  • ELC (2008) Bioremediation, environmental literacy council. http://www.enviroliteracy.org/625php. Accessed 20 June 2020

  • Ellenhorns MJ, Schonwald S, Ordog G, Wasserberger J (1997) Ellen’s medical toxicology Diagnosis and treatment of human poisoning, 2nd edn. Baltimore, William and Wilkins

    Google Scholar 

  • Elum ZA, Monini K, Henri-Ukoha A (2016) Oil exploitation and its socioeconomic effects on the Niger Delta region of Nigeria. Environ Sci Pollut Res 23(13):12880–12889

    Article  CAS  Google Scholar 

  • Etesami H (2018) Bacteria mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospect. Ecotoxicol Environ Saf 148:159–191

    Google Scholar 

  • Etesami H, Maheshwari DK (2018) Use of plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecotoxicol Environ Saf 156:225–246

    Article  CAS  PubMed  Google Scholar 

  • Farfel MR, Orlova AO, Chaney RL, Lees PS, Rohde C, Ashley PJ (2005) Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro® amendment and grass seeding in urban yards. Sci Total Environ 340:81–95

    Article  CAS  PubMed  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo F, Azenha M, Silva AF (2013) Copper-induced stress in Solanum nigrum L. and antioxidant defense system response. Food Energy Secur 2(1):70–80

    Article  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidat Med Cellular Long 2(4):191–206

    Article  Google Scholar 

  • Frampton GK, Jansch S, Scott-Fordsman JJ, Rombke J, vanDen BPJ (2006) Effects of pesticides on soil invertebrates in laboratory studies; a review and analysis using species sensitivity distribution. Envrion Toxicol Chem 25:2480–2489

    Article  CAS  Google Scholar 

  • François F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Vandervennet M, Garcia D, Molinier AL, Pignol D (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microbiol 78:1097–1106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514

    Article  CAS  PubMed  Google Scholar 

  • Garbisu C, Hernandez-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17(3):173–188

    Article  CAS  PubMed  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophytemediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ghulam A, Behzad M, Irshad B, Muhammad S, Nabeel KN, Muhammed IK, Mohammed A, Munawar N (2019) Arsenic uptake, toxicity, detoxification and speciation in plants; physiological, biochemical and molecular aspects. Int J Environ Res Public Health 15:59–77

    Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01836

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Bernal JM, Ruiz-Huerta EA, Hernande MAA (2017) Heavy metals and arsenic phytoavailability index in pioneer plants from a semi-permanent natural wetland. Environ Prog Sustain Energy 36(1):78–84

    Google Scholar 

  • Grennan K (2011) Metallothioneins, a diverse protein family. Plant Physiol 155(4):1750–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenhagen U, Baumgartner R, Gardiner A, Eberl L, Schulz S (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39(7):892–906

    Article  CAS  PubMed  Google Scholar 

  • Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell 27:1945–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JL, Xu LP, Su YC (2013) ScMT2-1-3, a metallothionein ngene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 1:1–12

    Google Scholar 

  • Gupta D, Nicoloso F, SchetingerM RL, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172(1):479–484

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    Article  CAS  Google Scholar 

  • Hagan D, Dobbs C, Timilsina N, Escobedo F, Toor GS, Andreu M (2012) Anthropogenic effect on the physical and chemical properties of subtropical coastal urban soil. Soil Use Manag 28:78–88

    Article  Google Scholar 

  • Hardoin P, Overbeek LS, Elsas JD (2008) Properties of bacteria endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  Google Scholar 

  • Hashem A, Abd-Allah EF, Algarawi AA, Al-Hugail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acaica gerrardii under salt stress. Front Microbiol 7:1–15

    Article  Google Scholar 

  • Hassan M (2008) Ecological studies on Zooplankton and Macrobenthos of Lake Edku Egypt

    Google Scholar 

  • Hassan TU, Bano A, Naz I (2013) Alleviation of heavy metal toxicity by the application of plant growth promoting rhizosphere and effect on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529

    Article  CAS  Google Scholar 

  • He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hediji H, Djebali W, Belkadhi A, Cabasson C, Moing A, Rolin D, Brouquisse R, Gallusci P, Chaebi W (2015) Impact of long term cadmium exposure on mineral content of Solanium Lycopersicum plants: consequences on fruit production. S Afr J Bot 7:176–181

    Article  CAS  Google Scholar 

  • Holman-Dodds JK, Bradley AA, Potter KW (2003) Evaluation of hydrologic benefits of infiltration based urban storm water management. J Am Water Resour Assoc 39:205–215

    Article  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Hua D, Wang C, He J, Liao H, Duan Y, Zhu Z, Guo Y, Chen Z, Gong Z (2012) A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide regulated stomatal movement in Arabidopsis. Plant Cell 24:2546–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Liu Z, Li S, Xu B, Gong Y, Yang Y, Sun H (2016) Isolation and engineering of plant growth promoting rhizobacteria. Pseudomonas aeruginosa for enhanced Cadmium bioremediation. J Gen Appl Microbiol 6(5):258–265

    Article  CAS  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147(3):806–816

    Article  CAS  PubMed  Google Scholar 

  • Islam E, Liu D, Li T, Yang X, Jin X, Mahmood Q, Tian S, Li J (2008) Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 154(1–3):914–926

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Parray JA (2016) Approaches to heavy metal tolerance in plants. Springer, New Delhi

    Book  Google Scholar 

  • Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jingguang C, Wenli Z, Lijun M, Xiaorong F, Guohua X, Guoyou Y (2019) Advances in the Uptake and Transport Mechanisms and QTLs Mapping of Cadmium in Rice. Int J Mol Sci 20(3417):1–17

    Google Scholar 

  • Juan Z, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144:741–751

    Article  CAS  Google Scholar 

  • Kang JW, Khan Z, Doty SL (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78:3504–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69

    Article  Google Scholar 

  • Kasozi GN, Kiremire BT, Bugenyi FWB, Kirsch NH, Nkedi-Kizza P (2005) Organochlorine residues in fish and water sample from Lake Victoria, Uganda. J Environ Qual 35(2):584–589

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017) 1132 Arsenic behavior in soil-plant system: Biogeochemical reactions and chemical speciation 1133 influences. In: Enhancing cleanup of environmental pollutants. Springer, Berlin, pp 97–140

    Google Scholar 

  • Khan RA (2003) Faunal Diversity of Zooplankton in freshwater wetlands of southeastern West Bengal Zoological Survey

    Google Scholar 

  • Khan MU, Malik RN, Muhammad S (2013) Human health risk from heavy metal via food crops consumption with waste water irrigation practices in Pakistan. Chemosphere 93:2230–2238

    Article  CAS  PubMed  Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Izzo FN, Poschenrieder C, Shilev S, Clemente R, Monterosso C (2009) Trace element behavior at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Xu ZF, Cheng XL, Zhang QF (2008) Dissolved trace element and heavy metal in the Danjiangkou Reservoir, China. Environ Geol 55(5):977–983

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009a) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TQ, Yang XE, Lu LL, Islam E, He ZL (2009b) Effect of Zn and Cd interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. J Hazard Mater 169:734–741

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Schemenauer R, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from a soil-plant system for the remediation of contaminated water and soil in the San Joaquim Valley. J Environ Qual 29:1048–1056

    Article  CAS  Google Scholar 

  • Liu J, Schnoor JL (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73:1608–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Prasad MNV, Rajkuma M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H (2015) Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. Front Plant Sci 5:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Macovei JL, Ventura L, Dona M, Fae M, Balestrazzi A, Carbonera D (2010) Effects of heavy metal treatments onmetallothionein expression profiles in white poplar (Populus albaL.) cell suspension cultures. Anal Univ Oradea-Fascicula Biol 18(2):274–279

    Google Scholar 

  • Magdziak Z, Gasecka M, Golinski P, Mleczek M, Chadzinikolau T, Drzewieeka K, Golinski P (2011) Influence of Ca/Mg ratio on phytoextraction properties of salix viminalis H, secretion of low molecular weight organic acid to the rhizosphere. Ecotox Environ Safety 74:33–40

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2012) Phytoremediation strategies for remediation of uranium-contaminated environment. A review. Crit Rev Environ Sci Technol 42:2575–2617

    Article  CAS  Google Scholar 

  • Mansour SA (2012) Pesticide residues in man in pesticides evaluation of environmental pollution Rathore HS Nollet LML. CRC Press, New York, pp 467–514

    Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Mbewe G, Mutondo M, Maseka K, Sichilongo K (2016) Assessment of heavy metal pollution in sediments and tilapia fish species in Kafue River of Zambia. Arch Environ Contain Toxicol 71:383–393

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoremediation of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes JJ (2002) The endocrine disrupters: a major medical challenge. Food Chem Toxicol 40:781–788

    Google Scholar 

  • Mino CP, Bustamante G, Sanchez ME, Leone PE (2002) Cytogenetic monitoring in a population occupationally exposed to pesticide in Ecudor. Environ Health Perspect 110(11):1077–1080

    Google Scholar 

  • Mirza N, Pervez A, Mahmood Q, Ahmad SS (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 9:1–11

    Article  CAS  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedling. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A (2013) Advances in elucidating beneficial interactions between plants, soil, and bacteria. In: Donald LS (ed) Advances in agronomy. Academic, New York, pp 381–445

    Google Scholar 

  • Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H (2011) OsHMA3, a P1B-type of ATPase aects root-to-shoot cadmium translocation in rice by mediating eux into vacuoles. New Phytol 189:190–199

    Article  CAS  PubMed  Google Scholar 

  • Mourato M, Reis R, Martins L (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. In Tech, Vienna, pp 23–44

    Google Scholar 

  • Muszynska E, Hanus-Fajerska E (2015) Why are heavy metal hyperaccumulating plants so amazing? Biotechnol J 96:265–271

    Article  CAS  Google Scholar 

  • Nabulo G, Black CR, Craigon J, Youngi SD (2012) Does consumption of leafy vegetables grown in peri-urban agriculture pose a risk to human health? Environ Pollut 162:389–398

    Article  CAS  PubMed  Google Scholar 

  • Naik MG, Duraphe MD (2012) Review paper on-parameters affecting bioremediation. Int J Life Sci Pharma Res 2(3):77–80

    Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and m trans location mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469

    Article  CAS  Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7:540–556

    Article  Google Scholar 

  • Neidhardt H, Kramar U, Tang X, Guo H, Norra S (2015) Arsenic accumulation in the roots of Helianthus annuus and Zea mays by irrigation with arsenic-rich groundwater: Insights from synchrotron X-ray fluorescence imaging. Chem Erde-Geochem 75:261–270

    Article  CAS  Google Scholar 

  • Nwilo PC Badejo OT (2008) Oil dispersion and trajectories on Nigerian open sea. In: The conference proceedings of the international conference on the Nigeria state, oil industry and the Niger Delta, pp 164–192

    Google Scholar 

  • Ogwu FA, Salihat Badamasuiy S, Joseph C (2015) Environmental risk assessment of petroleum industry in Nigeria. Int J Sci Res Innovat Technol 2(4):60–71

    Google Scholar 

  • Ojeh AO, Peter NU, Onwurah NEI, Nwodo UU (2010) Environmental pollution levels of lead and zinc in Ishiagu and Uburu communities of Ebonyi State, Nigeria. Bull Environ Contam Toxicol 85:313–317

    Article  CAS  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  PubMed Central  CAS  Google Scholar 

  • Ojumu TV, Bello OO, Sonibare JA, Solomon BO (2005) Evaluation of microbial systems for bioremediation of petroleum refinery effluents in Nigeria. Afr J Biotechnol 4(1):31–35

    CAS  Google Scholar 

  • Ontoyin J, Agyemang I (2014) Environmental and rural livelihood implication of small scale gold mining in Tolensi-Nabdam Districts in Northern Ghana. J Geog Reg Plan 7(8):150–159

    Article  Google Scholar 

  • Osuagwu ES, Olaifa E (2018) Effects of oil spill on fish production in the Niger Delta. PLoS ONE 13(10):1–14

    Article  CAS  Google Scholar 

  • Ozturk F, Duman F, Leblebici Z, Temizgul R (2010) Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ Exp Bot 69:167–174

    Article  CAS  Google Scholar 

  • Paul D, lade H (2014) Plant growth promoting rhizobacteria to improve crop growth in saline waters; a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Penuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37(8):1866–1891

    Article  CAS  PubMed  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestler C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Perveen S, Samad A, Nazif W, Shah S (2012) Impact of sewage water on vegetables quality with respect to heavy metals in Peshawar Pakistan. Pak J Bot 44:1923–1931

    Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66(3):507–513

    Article  CAS  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 65(6):571–579

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P (2011). Lead uptake, toxicity, and detoxification in plants. A reviews of environmental contamination and toxicology. Retrieved on 23/04/2020

    Google Scholar 

  • Pouyat RV, Yesilorus ID, Russell-Anelli J, Neerchal NK (2007) Soil chemical and physical properties that differentiate urban land use and cover types. Soil Sci Soc Am J 1:1010–1019

    Article  CAS  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): Formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed 46:2594–2597

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effect of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28(3):393–404

    Article  CAS  Google Scholar 

  • Rahmati R, Khara J (2011) Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turk J Biol 35(1):51–58

    Google Scholar 

  • Rajkuma M, Sandhya S, Majeti P, Freitas H (2012) Perspective of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc- and copper-transporting P1BATPase from Gouan (Aeluropus littoralis). Plant Omics J 4(7):377–383

    CAS  Google Scholar 

  • Reddy VS, Reddy MV, Lee KK, Rao KPC, Srinivas ST (1996) Response of some soil meso and macro-fauna population of soil management during crop and fallow periods on semi-arid tropical alfisol (India). Eur J Soil Biol 32(3):123–129

    Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1(8-9):708–717

    Article  CAS  PubMed  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  CAS  Google Scholar 

  • Renault SL, Nakata C, Sabra A, Davis I, Overton D (2007) Revegetation of tailing at Gunnar mine site, Manitoba (NTS 52L14) preliminary observation on plant growth in tailings amended with paper mill sludge. In: Report of activities 2006. Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, pp 161–165

    Google Scholar 

  • Riberro H, Mucha AP, Almeida CMR, Bordalo AA (2014) Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments. J Environ Manag 137:10–15

    Article  CAS  Google Scholar 

  • Roos P, Jakobsen I (2008) Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock. J Environ Radioact 99:811–819

    Article  CAS  PubMed  Google Scholar 

  • Rufyikiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156:275–281

    Article  CAS  PubMed  Google Scholar 

  • Rufyikiri G, Huysmans L, Wannijna J, Hees MV, Leyval C, Jakobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of Uranium in soil. Environ Pollut 130:427–436

    Article  CAS  PubMed  Google Scholar 

  • Saba H, Jyoti H, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Int Res J Environ Sci 2(1):74–78

    Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh-Nagasawa N, Mori M, Sakurai K, Takahashi H, Watanabe A, Akagi H (2013) Functional relationship heavy metal P-type ATPases (OsHMA2 and OsHMA3) of rice (Oryza sativa) using RNAi. Plant Biotechnol 30:511–515

    Article  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Heavy metal signaling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, pp 187–215

    Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel W, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, Ohme-Takagi N (2014) A step towards understanding plant responses to multiple environmental stresses: a genome wide study. Plant Cell Environ 37:2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA (2014) Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turk J Bot 38(5):914–926

    Article  CAS  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessaraldi M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plant under stressful conditions. J Bot 12(3):1–26

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape plant (Brassica napus) growth and cadmium uptake by cadmium resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium amended soil. J Hazard Mater 155:17–22

    Google Scholar 

  • Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK (2013) Synthetic phytochelatins complement a phytochelatin deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem Biophys Res Commun 434(3):664–669

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  PubMed  Google Scholar 

  • Sirichandra C, Gu D, Hu HC, Davanture M, Lee S, Djaoui M, Valot B, Zivy M, Leung J, Merlot S (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583:2982–2986

    Article  CAS  PubMed  Google Scholar 

  • Slatter KA (2013) Nickel accumulation and tolerance in Berkheya Codii and its application in phytoremediation. Master’s Thesis, University of Kwazulu, Natal, South Africa

    Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66(2):195–204

    Article  CAS  Google Scholar 

  • Song X, Wong MD, Kawase E, Xi R, Ding BC, McCarthy JJ, Xie T (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131(6):1353–1364

    Article  CAS  PubMed  Google Scholar 

  • Sreelal G, Jayanthi R (2017) Review on phytoremediation technology for removal of soil contaminants. Indian J Sci Res 14(1):127–130

    CAS  Google Scholar 

  • Steele MK, McDowell WH, Aitkenhead-Peterson JA (2010) Chemistry of urban, suburban, and rural surface waters. In: Aitkenhead-Peterson J, Volder A (eds) Urban ecosystem ecology, Agron. monogr. 55. ASA, CSSA, and SSSA, Madison, WI, pp 297–340

    Google Scholar 

  • Susan L, Schantz SL, Gasior DM, Polverejan E, McCaffrey RJ, Sweeneys AM, Humphery HEB, Gardiner JC (2001) Impairments of memory and learning in older adults exposed to polychlorinated biphenyls via consumption of great lake fish. Environ Health Perspect 109:605–611

    Article  Google Scholar 

  • Szabados L, Savour A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Weyens N, Vangronsveld J, Lelie D, Pirttilä AM, Frank AC (2011) Improved phytoremediation of organic contaminants through engineering of bacterial endophytes of trees. Endophytes of forest trees. Springer, Cham, pp 205–216

    Google Scholar 

  • Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJ, Wong GC, Linington RG, Yildiz FH (2015) Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nat Rev Microbiol 13:255–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Organ Cult 88(2):201–216

    Article  CAS  Google Scholar 

  • Theodorakis CW, Bickham JW, Donnelly KC, Mc Donald TJ, Willink PW (2012) DNA damage in cichlid from an oil production facility in Guatemala. Ecotoxicology 21:496–511

    Article  CAS  PubMed  Google Scholar 

  • Tomulescu IM, Radoviciu EM, Merca VV, Tuduce AD (2004) Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J Agric Sci 15:1–8

    Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance transcription reprogramming. New Phytol 186:333–339

    Google Scholar 

  • Tripathy RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazard, strategies for tolerance and remediation by plant. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Udebuani AC, Ozoh PT (2007) Aspects of the chemistry of soils and Elaine indica growing on seven years oil spill site. Int J Trop Agric Food Syst 1(2):187–192

    Google Scholar 

  • Udebuani AC, Okoli CI, Nwigwe HC, Ozoh PTE (2012) The value of animal manure in the enhancement of bioremediation processes in petroleum hydrocarbon contaminated agricultural soils. J Agric Technol 8(6):1935–1952

    Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytology 2(7):16–27

    Google Scholar 

  • Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice 5(5):1–8

    Google Scholar 

  • Uroz S, Christophe C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387

    Article  CAS  PubMed  Google Scholar 

  • Uzu G, Sobanka S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallout. Environ Sci Technol 44:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Van AB, Tehrani R, Schnoor J (2011) Endophyte-assisted phytoremediation of explosives in poplar trees by MethylobacteriumpopuliBJ001T. In: Pirttila AM, Frank AC (eds) Endophytes of forest trees. Springer, Cham, pp 217–234

    Google Scholar 

  • Vander Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: farts and fiction. Plant Soil 362:319–334

    Article  CAS  Google Scholar 

  • Venturi V, Keel C (2016a) Signaling in the rhizosphere. Trend Plant Sci 21:187–198

    Article  CAS  Google Scholar 

  • Venturi V, Keel C (2016b) Signaling in the rhizosphere. Trends Plant Sci 21(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Nizam S, Verma PK (2013) Biotic and abiotic stress signaling in plants. Stress signaling in plants. Genom Proteom Persp 1:25–49

    Google Scholar 

  • Weyens N, Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598

    Google Scholar 

  • Wu Z, Zhao X, Sun X, Tan Q, Tang Y, Nie Z, Qu C, Chen Z, Hu C (2015) Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oil seed rape cultivars (Brassica napus L), under moderate cadmium stress. Chemosphere 138:526–536

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Xu H-L (2000) Properties and application of an organic fertilizer inoculated with effective microorganisms. J Crop Prod 3(1):255–268

    Article  CAS  Google Scholar 

  • Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma JF (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Tsuchihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric acid are involved in ABA inhibition of stomata opening. Plant Cell Environ 30(10):1320–1325

    Article  CAS  PubMed  Google Scholar 

  • Yi H-S, Yang JW, Ryu C-M (2013) ISR meets SAR outside: Additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field grown pepper. Front Plant Sci 4:1–122

    Article  Google Scholar 

  • Yu M, Tsunoda H, Tsunoda M (2011) Environmental toxicology: biological and health effects of pollutants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Zhang H, Chai V, Ye Z (2011) Single factor analysis of Chongqing index method of non-point pollution water stream. Public Commun Sci Technol 10:23–231

    Google Scholar 

  • Zhang Z, Abuduwaili J, Jiang F (2013) Heavy metals in surface water in eastern, central and western Tianshan mountains, Central Asia. Asian J Chem 25(14):7883–7887

    Article  CAS  Google Scholar 

  • Zhang B, Matchinski EJ, Chen B, Ye X, Jing L, Lee K (2019) Marine oil spills - oil pollution, sources and effects. World Seas 2019:391–406

    Google Scholar 

  • Zhao F, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhaoyong Z, Abuduwaili J, Fengqing J (2015) Heavy metal contamination, source and pollution assessment of surface water in the Tianshan mountain of China. Environ Monit Assess 187:13

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetlands plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Chika Udebuani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Udebuani, A.C., Ukachukwu, C.O., Onweremadu, E.U., Okoli, I.C. (2021). Plant–Microbe Interactions in Bioremediation of Toxic Wastes in Tropical Environment. In: Kumar, V., Prasad, R., Kumar, M. (eds) Rhizobiont in Bioremediation of Hazardous Waste. Springer, Singapore. https://doi.org/10.1007/978-981-16-0602-1_9

Download citation

Publish with us

Policies and ethics