Skip to main content

Plant–Microbe Interactions in Attenuation of Toxic Waste in Ecosystem

  • Chapter
  • First Online:
Rhizobiont in Bioremediation of Hazardous Waste

Abstract

As a result of rapid human population growth and increased industrial activities, the world ecosystems more than ever before are perpetually inundated with anthropogenic toxic waste releases at levels and frequencies higher than natural recovery rates. To achieve sustainable development, timely, efficient, environmentally friendly, and cost-effective approaches are required for environmental pollution abatement. Phytoremediation technique involving plant–microbe synergy provides a simple plausible remediation alternative to existing intrusive and costly physicochemical and engineering-based decontamination techniques. Although plant and microorganisms can independently attenuate some toxic wastes, without microbial collaboration, this technique will not be a viable option for the remediation of most pollutants. This review examines the mutual relationship between microorganisms and plant within rhizosphere and phyllosphere and exploitation of their synergy for toxic organic and inorganic wastes attenuation in the ecosystem. Possible mechanisms and reasons for accelerated removal of pollutants within the vicinity of plants (rhizosphere and phyllosphere) are presented. The prominent role played by root-endophytes in toxic waste attenuation in soil ecosystem is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelfattah A, Li Destri Nicosia MG, Cacciola SO et al (2015) Metabarcoding analysis of fungal diversity in the phyllosphere and carposphere of olive (Olea europaea). PLoS One 10:e0131069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel up take by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889. https://doi.org/10.1016/j.soilbio.2006.04.045

    Article  CAS  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12:1365–1377. https://doi.org/10.1016/j.arabjc.2014.11.020

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Andreoni V, Zaccheo P (2010) Potential for the use rhizobacteria in the sustainable management of contaminated soil. In: Ashraf M, Ozturk M, Ahmad M (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 313–334. https://doi.org/10.1007/978-90-481-9370-7-14

    Chapter  Google Scholar 

  • Anyasi RO, Atagana HI (2016) Endophytes: an indicator for improved phytoremediation of industrial waste. In: Proceedings of the 23rd WasteCon conference 17–21 October 2016, Emperors Palace, Johannesburg, South Africa

    Google Scholar 

  • Appenroth K (2010) Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (eds) Soil heavy metals, Soil biology, vol 19. Springer, Cham, pp 19–29

    Chapter  Google Scholar 

  • Atlas RM, Bartha R (1987) Interaction between microorganisms and plants, 2nd edn. The Benjamin/Cummings Publishing Comp. Inc., San Francisco

    Google Scholar 

  • Azevedo JL, JJr M, Pereira O, Ara WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barat SP, Gupta A, Singh D, Srivastav A (2016) Production of liquid biofertilizer by using Azotobacter species and their effect on plant growth. Int J Curr Microbiol App Sci 5(7):654–659

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Barriuso J, Ramos Solano B, Gutiérrez Mañero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Becerra-Castro C, Kidd P, Prieto-Fernández A, Weyens N, Acea MJ, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant Soil 340:413–433

    Article  CAS  Google Scholar 

  • Beckett KP, Freer-Smith P, Taylor G (1998) Urban woodlands: their role in reducing the effects of particulate pollution. Environ Pollut 99:347–360

    Article  CAS  PubMed  Google Scholar 

  • Bibi A, Un-Nisa W, Qasim A, Malik TH (2019) Rhizoremediation of hexachlorocyclohexane through pesticide contaminated soil by Solanum nigrum. J Bioremed Biodegr 10:457. https://doi.org/10.4172/2155-6199.1000457

    Article  Google Scholar 

  • Bishop PL (2002) Pollution prevention: fundamentals and practice. Tsinghua University Press, Beijing, China

    Google Scholar 

  • Bisht S, Pandey P, Kaur G, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS (2014a) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. European J Soil. Biology 60:67–76

    CAS  Google Scholar 

  • Bisht S, Kumar V, Kumar M, Sharma S (2014b) Inoculant technology in Populus deltoides rhizosphere for effective bioremediation of Polyaromatic hydrocarbons (PAHs) in contaminated soil, Northern India. Emirates J Food Agric 26(9):458–470. https://doi.org/10.9755/ejfa.v26i9.18436

    Article  Google Scholar 

  • Bolan N, Kunhikrishnan A, Seshadri B, Naidu R (2016) Rhizoremediation of co-contaminants using Australian native vegetation. In: 18th international conference on heavy metals in the environment 12 to 15 September 2016, Ghent, Belgium

    Google Scholar 

  • Boyle JJ, Shann JR (1995) Biodegradation of phenol, 2,4-DCP, 2,4-D, and 2,4,5-T in field-collected rhizosphere and nonrhizosphere soils. J Environ Qual 24:782–785

    Article  CAS  Google Scholar 

  • Brahmaprakash GP, Sahu PK, Lavanya G, Nair SS, Gangaraddi VK, Gupta A (2017) Microbial functions of the rhizosphere. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-5813-4_10

    Chapter  Google Scholar 

  • Bram WG, Stone EAW, Jackson CR (2018) The role of the phyllosphere microbiome in plant health and function. Annu Plant Rev 1:1–24. https://doi.org/10.1002/9781119312994.apr0614

    Article  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringel F, Couee I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:486. https://doi.org/10.3389/fmicb.2015.00486

    Article  PubMed  PubMed Central  Google Scholar 

  • Charoenchang N, Pinphanichakarn P, Pattaragulwanit K, Thaniyavarn S, Juntongjin K (2003) Utilization of agricultural materials to enhance microbial degradation of polycyclic aromatic hydrocarbons in soil. J Sci Res 28:1–3

    Google Scholar 

  • Chaudhry Q, Bloom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    Article  CAS  PubMed  Google Scholar 

  • Chung AP, Lopes A, Nobre MF, Morais PV (2010) Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metallic sp. nov. three new species isolated from uranium mine waste water treatment system. Syst Appl Microbiol 33:436–443

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to M.L.V. Galippe. Plant Soil 356:299–301

    Article  CAS  Google Scholar 

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15(9):844–860

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 13:35–47

    Article  Google Scholar 

  • Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Ali N, Radwan S (2009) The potential of oil-utilizing bacterial consortia associated with legume root nodules for cleaning oily soils. Chemosphere 74:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • De Kempeneer L, Sercu B, Vanbrabant W, van Langenhove H, Verstraete W (2004) Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Technol 64:284–288

    Article  CAS  Google Scholar 

  • Dixon B (1996) Bioremediation is here to stay. ASM New 62:527–528

    Google Scholar 

  • Donaldson D, Kiely T, Grube A (1999) Pesticide’s industry sales and usage 1998-1999 market estimates. US Environmental Protection Agency; Washington (DC): Report No. EPA-733-R-02-OOI. Available from: http://www.epa.gov/oppbead/pesticides/99pestsales/market-estimates.pdf

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  • Euliss K, Ho CH, Schwab AP, Rock S, Banks AK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971

    Article  CAS  PubMed  Google Scholar 

  • Ezzatian R, Voussoughi M, Yaghmaei S, Abedi-Koupai J, Borghei M, Ghafoori S (2009) Effects of Puccinellia distans and Tall Fescue on modification of C/N ratios and microbial activities in crude oil-contaminated soils. Pet Sci Technol 27:452–463

    Article  CAS  Google Scholar 

  • Federal Ministry of Environment (FME) (2006) Niger delta resource damage assessment and restoration project. Conservation Foundation Lagos, WWF UK and CEESP-IUCN Commission on Environmental, Economic, and Social Policy

    Google Scholar 

  • Fletcher JS, Hegde RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    Article  CAS  Google Scholar 

  • Forczek ST, Matucha M, Uhlirova H, Albrechtova J, Fuksova K et al (2001) Biodegradation of trichloroacetic acid in Norway spruce/soil system. Biol Plant 44:317–320

    Article  CAS  Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil contaminated sites. Petroleum Technology Alliance Canada, Calgary, pp 1–88

    Google Scholar 

  • Furnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570. https://doi.org/10.1038/ismej.2008.14

    Article  CAS  PubMed  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araujo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454. https://doi.org/10.1007/s12275-008-0303-z

    Article  PubMed  Google Scholar 

  • Ganesan V (2012) Rhizoremediation: a pragmatic approach for remediation of heavy metal-contaminated soil. In: Zaidi A et al (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien

    Google Scholar 

  • Gaskin BSE (2008) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Ph.D Thesis, Flinders University of South Australia

    Google Scholar 

  • Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 63(5):1933–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh HH, Sloan J, Malinowski R, Fleming A (2013) Variable expansion expression in Arabidopsis leads to different growth responses. J Plant Physiol 171:329–339. https://doi.org/10.1016/j.jplph.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of tridax procumbens. Biotech 6(2):242

    CAS  Google Scholar 

  • Gupta A, Balomajumder C (2018) Simultaneous phytoremediation of Cr (VI) and phenol using aquatic macrophyte water hyacinth: effect of pH and concentration. Int J Sci Res Chem 3(2):60–69

    Google Scholar 

  • Hashmi MZ, Kumar V, Verma A (2017) Xenobiotics in the soil environment: monitoring, toxicity and management. Springer, New York. https://doi.org/10.1007/978-3-319-47744-2

    Book  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jussila MM (2006) Molecular biomonitoring during rhizoremediation of oil-contaminated soil. Ph.D Dissertation, University of Helsinki, Finland

    Google Scholar 

  • Karnwal A (2018) Use of bio-chemical surfactant producing endophytic bacteria isolated from rice root for heavy metal bioremediation. Pertanika J Trop Agric Sci 41(2):699–714

    Google Scholar 

  • Karthika C, Elangovana N, Kumara TS, Govindharajua S, Barathia S, Ovesc M, Padikasan Indra Arulselvia PI (2017) Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol Res 204:65–71. https://doi.org/10.1016/j.micres.2017.07.008

    Article  CAS  Google Scholar 

  • Kelley SL, Aitchison EW, Deshpande M, Schnoor JL, Alvarez PJ (2001) Biodegradation of 1,4-dioxane in planted and unplanted soil: effect of bioaugmentation with Amycolata sp. CB1190. Water Res 35:3791–3800

    Article  CAS  PubMed  Google Scholar 

  • Kembel SW, Mueller RC (2014) Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92:303–311. https://doi.org/10.1139/cjb-2013-0194

    Article  Google Scholar 

  • Kim TU, Cho SH, Han JH, Shin YM, Lee HB, Kim SB (2012) Diversity and physiological properties of root endophytic Actinobacteria in native herbaceous plants of Korea. J Microbiol 50:50–57. https://doi.org/10.1007/s12275-012-1417-x

    Article  CAS  PubMed  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190

    Article  CAS  Google Scholar 

  • Kołwzan B, Adamiak W, Grabas K, Pawełczyk A (2006) Introduction to environmental microbiology. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław

    Google Scholar 

  • Korade DL, Fulekar MH (2009) Rhizoremediation of Chlorpyrifos in mycorrhizospheric soil using rye grass. J Hazard Mater 30:1344–1350

    Article  CAS  Google Scholar 

  • Krishnaveni MS (2010) Studies on phosphate solubilizing bacteria (PSB) in rhizosphere and non-rhizosphere soils in different varieties of foxtail millet (Setaria italica). Int J Agric Food Sci Techol 1(1):23–39

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg JJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (G. hirusitum L.) and wheat (T. aestivum L). J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Kadier A, Malyan SK, Ahmad A, Bishnoi NR (2017) Phytoremediation and rhizoremediation: uptake, mobilization and sequestration of heavy metals by plants. In: Singh DP et al (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, New York. https://doi.org/10.1007/978-981-10-6593-4_15

    Chapter  Google Scholar 

  • Kumar M, Sharma S, Gupta S, Kumar V (2018) Mitigation of abiotic stresses in Lycopersicon esculentum by endophytic bacteria. Environ Sustain 1(1):71–80

    Article  CAS  Google Scholar 

  • Kuzayakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept and review. Soil Biol Chem 83:25. https://doi.org/10.1016/j.soilboio.2015.01.025

    Article  Google Scholar 

  • Leveau JHJ (2006) Microbial communities in the phyllosphere. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 334–367

    Chapter  Google Scholar 

  • Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Gadd GM (2011a) The geomicrobiology of radionuclides. Geomicrobiol J 28(5-6):383–386

    Article  CAS  Google Scholar 

  • Lloyd JR, Gadd GM (2011b) The geomicrobiology of radionuclides. Geomicrobiol J 28:383. https://doi.org/10.1080/01490451.2010.547551

    Article  CAS  Google Scholar 

  • Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260. https://doi.org/10.1016/j.copbio.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2012) Brock biology of microorganisms, 19th edn. Benjamin Cumming Publishing, San Francisco

    Google Scholar 

  • Mahaffee WF, Kloepper JW, Van Vuurde JWL, Van der Wolf JM, Van den Brink M (1997) Endophytic colonization of Phaseolus vulgaris by Pseudomonas fluorescens strain 89B-27 and Enterobacter asburiae strain JM22. In: Ryder MHR, Stevens PM, Bowen GD (eds) Improving plant productivity in rhizosphere bacteria, vol 180. CSIRO, Melbourne

    Google Scholar 

  • Marshchner P, Mario W, Lieberei R (2002) Seasonal effects on microorganisms in the rhizosphere of two tropical plants in a polyculture agroforestry system in Central Amazonia. Braz Biol Fert Soils 35:68–71

    Article  Google Scholar 

  • McNear DH (2013) The rhizosphere - roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Mishra S, Maiti A (2017) The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: a review. Environ Sci Pollut Res 24:7921–7937

    Article  CAS  Google Scholar 

  • Molina M, Araujo R, Bond JR (1995) Abstract: Dynamics of oil degradation in coastal environments: effects of bioremediation products and some environmental parameters. Symposium on Bioremediation of Hazardous Wastes: Research, Development, and Field Evaluations, August 10-12, 1995, Rye Brook, NY. EPA/600?r-95/076

    Google Scholar 

  • Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci U S A 100:15977–15982. https://doi.org/10.1073/pnas.2436560100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore F, Barac T, Borremans B, Oeyen L, Vangronsveld J, Der LD, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 179(2):318–329

    Google Scholar 

  • Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliott V (eds) Phyllosphere microbiology. APS Press, St. Paul, pp 365–375

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303. https://doi.org/10.3389/fpls.2016.00303

    Article  PubMed  PubMed Central  Google Scholar 

  • Muratova A, Hubner T, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol Res 158:151–161

    Article  CAS  PubMed  Google Scholar 

  • NABIR (2003) Bioremediation of metals and radionuclides. 2nd ed. http://www.lbl.gov/NABIR/generalinfo/primersguides.html

  • Nesterenko MA, Kirzhner F, Zimmels Y, Armon R (2012) Eichhornia crassipes ability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87:1186–1191

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: an emerging technology for remediation of pesticides. Res J Chem Environ 17(4):88–105

    CAS  Google Scholar 

  • Olson PE, Flechter JS, Philp PR (2001) Natural attenuation/phytoremediation in the vadose zone of a former industrial sludge basin. Environ Sci Pollut Res Int 8:243–249

    Article  CAS  PubMed  Google Scholar 

  • Parkinson D, Waid JS (1960) The ecology of soil fungi. Liverpool University Press, Liverpool

    Google Scholar 

  • Parmar N, Singh A (2014) Geomicrobiology and biogeochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-3-642-41837-2

    Book  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  PubMed  Google Scholar 

  • Patkowska E (2002) The role of rhizosphere antagonistic microorganisms in limiting the infection of underground parts of spring wheat. Electron J Pol Agric Univ 5:1–10

    Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2009) Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl Soil Ecol 42:9–17

    Article  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pivetz BE (2001) Phytoremediation of contaminated ground water at hazardous waste sites. In: Ground water issue. EPA/540/S-01/500

    Google Scholar 

  • Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2012) Particulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilization in waxes - a 3-year study. Int J Phytoremediation 15:245–256

    Article  CAS  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2013) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-013-9317-z

  • Quadt-Hallman A, Hallman J, Kloepper JW (1997) Bacterial endophytes in cotton: location and interaction with other plant associated bacteria. Can J Microbiol 43:254–259. https://doi.org/10.1139/m97-035

    Article  Google Scholar 

  • Rainbird B, Bentham RH, Soole KL (2018) Rhizoremediation of residual sulfonylurea herbicides in agricultural soils using Lens culinaris and a commercial supplement. Int J Phytoremediation 20(2):104–113

    Article  CAS  PubMed  Google Scholar 

  • Read DB, Bengough AG, Gregory PJ, Crawford JW, Robison D, Scrimgeour CM, Young IM, Zhang K, Zhang X (2003) Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol 157:315–326

    Article  CAS  PubMed  Google Scholar 

  • Reddy BR, Sethunathan N (1983) Mineralization of parathion in the rice rhizosphere. Appl Environ Microbiol 45(3):826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revel M, Chatel A, Mouneyrac C (2018) Micro(nano)plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Article  Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6:19. https://doi.org/10.3390/agronomy6010019

    Article  CAS  Google Scholar 

  • Romero FM, Marina M, Pieckenstain FL (2016) Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 167:222–233

    Article  CAS  PubMed  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Rougier M, Chaboud A (1989) Biological functions of mucilages secreted by roots. Symp Soc Exp Biol 43:449–454

    CAS  PubMed  Google Scholar 

  • Saleh HM (2016) Biological remediation of hazardous pollutants using water hyacinth: a review. J Biotechnol Res 2(11):80–91

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol 49:643–668

    Article  CAS  Google Scholar 

  • Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 2:383–392

    Article  CAS  Google Scholar 

  • Sandhu A, Halverson LJ, Beattie GA (2009) Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities. Microb Ecol 57:276–285

    Article  CAS  PubMed  Google Scholar 

  • Sandmann ERIC, Loos MSA (1984) Enumeration of 2,4- D degrading microorganisms in soils and crop plant rhizospheres using indicator media: high populations associated with sugarcane (Saccharum officinarum). Chemosphere 13:1073–1084

    Article  CAS  Google Scholar 

  • Sato K (1989) Interrelationships between microorganisms and plants in soil. Elsevier, New York, pp 335–342

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. https://doi.org/10.1111/j.1462-2920.2011.02556.x

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schnoor JL, Aitchison EW, Kelley SL, Alvarez PJJ (1998) Phytoremediation and bioaugmentation of 1,4-dioxane. Abstr Adv Biol Syst Rem Conf March 1998:87–91

    Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Schwitzguebel JP, Meyer J, Kidd P (2006) Pesticides removal using plants: phytodegradation versus phytostimulation. In: Mackova M et al (eds) Phytoremediation rhizoremediation. Springer, Cham, pp 179–198

    Chapter  Google Scholar 

  • Seibert K, Fuehr F, Cheng HH (1981) In theory and practical use of soil-applied herbicides symposium. European Weed Resource Society, Paris, pp 137–146

    Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: development, current practices and perspectives. Genet Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton P, Sainsbury D (2006) Dictionary of microbiology and molecular biology, 3rd edn. John Wiley and Sons Ltd., London

    Book  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbaksh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31(4):425–448

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska Z, Kuzniar A (2013) Endophytic microorganisms-promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010a) Characterization of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–3969

    Article  CAS  Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010b) Characterization of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–73969

    Article  CAS  Google Scholar 

  • Ubogu M, Akponah E, Vinking GE, Loho NG (2017) Assessment of the hydrocarbon utilizing mycoflora of the root zones of saccharum officinarum. SF J Mycol 2:1

    Google Scholar 

  • Ubogu M, Odokuma LO, Akponah A (2019) Enhanced rhizoremediation of crude oil contaminated mangrove swamp soil using two wetland plants (Phragmites australis and Eichhornia crassipes). Braz J Microbiol. https://doi.org/10.1007/s42770-019-00077-3

  • Verma VC, Gange AC (2014) Advances in endophytic research. Springer, Delhi. https://doi.org/10.1007/978-81-322-1575-2_7,

    Book  Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017a) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318. https://doi.org/10.3389/fpls.2017.01318

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017b) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318. https://doi.org/10.3389/fpls.2017.01318

    Article  PubMed  PubMed Central  Google Scholar 

  • Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604. https://doi.org/10.3390/ijms161025576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2017) Prescott’s microbiology, 10th edn. McGraw-Hill Education, New York, p 10121

    Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav D, Kumar P (2019) Phytoremediation of hazardous radioactive wastes. IntechOpen, London. https://doi.org/10.5772/intechopen.88055

    Book  Google Scholar 

  • Yang J, McBride J, Zhou J, Sun Z (2005) The urban forest in Beijing and its role in air pollution reduction. Urban For Urban Green 3:65–68

    Article  Google Scholar 

  • Zalesny JRS, Bauer EO, Hall RB, Zalesny JA, Kunzman J, Rog CJ, Riemenschhneinder DE (2005) Clonal variation in survival and growth of hybrid poplar and willow in an in-situ trial on soils heavily contaminated with petroleum hydrocarbons. Int J Phytoremediation 7:177–197

    Article  CAS  PubMed  Google Scholar 

  • Zand AD, Khodaei HR, Nabibidhendi GR, Mehrdadi N (2011) Rhizoremediation of total petroleum hydrocarbons (TPHS) under the effect of plant species in Iran. In: Proceedings of the 12th International Conference of Environmental Science and Technology. Rhodes, Greece, 8-10 September, 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ubogu, M., Akponah, E. (2021). Plant–Microbe Interactions in Attenuation of Toxic Waste in Ecosystem. In: Kumar, V., Prasad, R., Kumar, M. (eds) Rhizobiont in Bioremediation of Hazardous Waste. Springer, Singapore. https://doi.org/10.1007/978-981-16-0602-1_7

Download citation

Publish with us

Policies and ethics