Skip to main content

Microbial Degradation of Chlorophenolic Compounds

  • Chapter
  • First Online:
Recent Advances in Microbial Degradation

Abstract

Chlorine-Based Aromatic Compounds (CBACs) and its numerous derivatives are referred to as Chlorophenols (CPs) as there consist of complex compounds of chlorine with other aromatics (benzene) and side chains such as nitrogen, amino group, alkyl group, etc. There are a group of environmental pollutants sourced from the released waste of numerous manmade activities. These compounds are recalcitrant in the environment, however, the diverse nature of microorganisms and their flexibility in metabolizing various chemicals has aided their application in the degradation of CBACs and derivatives for the generation of energy and carbon sources. This discussion emphasized on the application of various microbial groups including bacterial, fungi, actinomycetes, and yeast in the biodegradation of CBACs, the initial steps that occur before degradation of such aromatic chemicals occurs, the various mode or mechanism of action with the various enzymes required for the breakdown and the future of the application of both microbes and enzymes in the biodegradation of various recalcitrant compounds. The strategy is an implication for future environmental remediation as various chemical recalcitrant and emerging pollutants are being released from expanding human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abruscia C, Marquinaa D, Del Amob A, Catalina F (2007) Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int Biodeterior Biodegrad 60:137–114

    Article  CAS  Google Scholar 

  • Adeola AO (2018) Fate and toxicity of chlorinated phenols of environmental implications: a review. Med Anal Chem Int J 2(4):1–8. https://doi.org/10.23880/macij-16000126

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1999) Toxicological profile for chlorophenols. U.S Department of Health and Human Services, Public Health Service, Atlanta, GA

    Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1986) Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl Microbiol Biotechnol 25:62–67

    Article  CAS  Google Scholar 

  • Arensdorf JJ, Focht DD (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60(8):2884–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armenante PM, Kafkewitz D, Lewandowski GA, Jou CJ (1999) Anaerobic–aerobic treatment of halogenated phenolic compounds. Water Res 33:681–692

    Article  CAS  Google Scholar 

  • Arora PK, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Factories 13:31. http://www.microbialcellfactories.com/content/13/1/31. https://doi.org/10.1186/1475-2859-13-31

    Article  CAS  Google Scholar 

  • Arora PK, Sharma A, Mehta R, Shenoy BD, Srivastava A, Singh VP (2012) Metabolism of 4-chloro-2-nitrophenol in a gram-positive bacterium, Exiguobacterium sp. PMA. Microb Cell Fact 11:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2013) Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800. Environ Sci Pollut Res Int 21:2298. https://doi.org/10.1007/s11356-013-2167-y

    Article  CAS  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Singh V (2014) Novel degradation pathway of 2-chloro-4-aminophenol in Arthrobacter sp. SPG. PeerJ PrePrints 2:e194v1. https://doi.org/10.7287/peerj.preprints.194v1

    Article  Google Scholar 

  • ATSDR (2007) CERCLA priority list of hazardous substances. https://www.atsdr.cdc.gov/spl/previous/07list.html. Accessed 4 Dec 2017

  • Bae HS, Lee JM, Lee S-T (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145:125–129

    Article  CAS  PubMed  Google Scholar 

  • Bae H-S, Yamagishi T, Suwa Y (2002) Evidence for degradation of 2-chlorophenol by enrichment cultures under denitrifying conditions. Microbiology 148:221–227

    Article  CAS  PubMed  Google Scholar 

  • Basfar AA, Muneer M, Alsager OA (2017) Degradation and detoxification of 2-chlorophenol aqueous solutions using ionizing gamma radiation. Nukleonika 62(1):61–68. https://doi.org/10.1515/nuka-2017-0008

    Article  CAS  Google Scholar 

  • Bernats M, Juhna T (2015) Factors governing degradation of phenol in pharmaceutical wastewater by white-rot fungi: a batch study. Open Biotechnol J 9(Suppl 1-M10):93–99

    Article  Google Scholar 

  • Beveridge AJ, Ollis DL (1995) A theoretical study of substrate-induced activation of dienelactone hydrolase. Protein Eng 8:135–142

    Article  CAS  PubMed  Google Scholar 

  • Bjerketorp J, Röling WFM, Feng X et al (2018) Formulation and stabilization of an Arthrobacter strain with good storage stability and 4-chlorophenol-degradation activity for bioremediation. Appl Microbiol Biotechnol 102:2031–2040. https://doi.org/10.1007/s00253-017-8706-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanquez P, Guieysse B (2008) Continuous biogradation of 17-estradiol and 17-ethynylestradiol by Trametes versicolor. J Hazard Mater 150:459–462

    Article  CAS  PubMed  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E et al (2013) antiSMASH 2.0—A versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212

    Article  PubMed  PubMed Central  Google Scholar 

  • Boersma MG, Solyanikova IP, van Berkel WJH, Vervoort J, Golovleva LA, Rietjens IMCMFNMR (2001) Metabolomics for the elucidation of microbial degradation pathways of fluorophenols. A review of previously and newly identified resonances and intermediates. J Ind Microbiol Biotechnol 26:22–34

    Article  CAS  PubMed  Google Scholar 

  • Boyd SA, Shelton DR (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol 47:272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buitron G, Gonzalez A, Lopen-Marın LM (1998) Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Sci Technol 37:371–378

    Article  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Cameron M, Timofeevski S, Aust S (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    Article  CAS  PubMed  Google Scholar 

  • Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  PubMed  Google Scholar 

  • Cheah E, Austin C, Ashley GW, Ollis D (1993) Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. Protein Eng 6:575–583

    Article  CAS  PubMed  Google Scholar 

  • Chenprakhon P, Wongnate T, Chaiyen P (2019) Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 28:8–29

    Article  CAS  PubMed  Google Scholar 

  • Christiansen N, Hendriksen HV, Jarvinen KT, Ahring BK (1995) Degradation of chlorinated aromatic compounds in UASB reactors. Water Sci Technol 31:249–259

    Article  CAS  Google Scholar 

  • Conesa HM, Evangelou MVH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? ScientificWorldJournal 2012:173829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cos O, Ramón R, Montesinos JL et al (2006) Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microb Cell Factories 5:17. https://doi.org/10.1186/1475-2859-5-17

    Article  Google Scholar 

  • Degradation Mechanism of 2,4-Dichlorophenol by Fungi Isolated from Marine Invertebrates. International journal of molecular sciences, 21(9), 3317. https://doi.org/10.3390/ijms21093317

    Google Scholar 

  • Diez MC (2010) Biological aspects of organic pollutants degradation. Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Article  Google Scholar 

  • Dong Y, Hu X, He Y, Li L (2011a) Biodegradation of O-chlorophenol by Rhodopseudomonas Palustris PSB-1D and optimization of cometabolism substrates. In: International conference on computer distributed control and intelligent environmental monitoring, pp 408–412. https://doi.org/10.1109/CDCIEM.2011.441

  • Dong YH, Hu XM, He YD, Li L (2011b) [Biodegradation of o-chlorophenol by photosynthetic bacteria under co-metabolism]. Ying Yong Sheng Tai Xue Bao 22:1280–1286

    Google Scholar 

  • Durruty I, Okada E, González JF, Murialdo SE (2011) Degradation of chlorophenol mixtures in a fed-batch system by two soil bacteria. Water SA 37(4). https://doi.org/10.4314/wsa.v37i4.13

  • Dwyer DF, Krumme ML, Boyd SA, Tiedje JM (1986) Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Appl Environ Microbiol 52:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellouze M, Sayadi S (2016) White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. https://doi.org/10.5772/64145. Available at: https://www.intechopen.com/books/management-of-hazardous-wastes/white-rot-fungiand-theirenzymes-as-a-biotechnological-tool-forxenobiotic-bioremediation

  • Evan CS, Hedger JN (2001) Degradation of plant cell wall polymers. In: Gadd GM (ed) Fungi in bioremediation, vol 23. Cambridge Univ. Press, Cambridge, pp 1–26

    Google Scholar 

  • Farrell A, Quilty B (2002) Substrate-dependent autoaggregation of Pseudomonas putida CP1 during the degradation of mono-chlorophenols and phenol. J Ind Microbiol Biotechnol 28:316–324

    Article  CAS  PubMed  Google Scholar 

  • Fetzner S, Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol Rev 58:641–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241.

    Google Scholar 

  • Fritsche W, Hofrichter M (2005) Aerobic degradation of recalcitrant organic compounds by microorganisms. In: Jördening H-J, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. https://doi.org/10.1002/3527604286.ch7

    Chapter  Google Scholar 

  • Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegradation 64(6):434–441. https://doi.org/10.1016/j.ibiod.2010.05.001

    Article  CAS  Google Scholar 

  • Furukawa K (2006) Oxygenases and dehalogenases: molecular approaches to efficient degradation of chlorinated environmental pollutants. Biosci Biotechnol Biochem 70:2335–2348

    Article  CAS  PubMed  Google Scholar 

  • Ge T, Han J, Qi Y, Gu X, Ma L, Zhang C, Naeem S, Huang D (2017) The toxic effects of chlorophenols and associated mechanisms in fish. Aquat Toxicol 184:78–93

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W et al (2012) Bergey's manual of systematic bacteriology. In: The actinobacteria, part A and B, vol 5, 2nd edn. Springer, New York

    Google Scholar 

  • Golovleva LA, Zaborina O, Pertsova R, Baskunov B, Schurukhin Y, Kuzmin S (1992) Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208

    Article  CAS  Google Scholar 

  • Goswami M, Shivaraman N, Singh RP (2002) Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1. World J Microbiol Biotechnol 18:779–783

    Article  CAS  Google Scholar 

  • Guo R, Liang X, Chen J, Wu W, Zhang Q, Martens D, Kettrup A (2004) Prediction of soil organic carbon partition coefficients by soil column liquid chromatography. J Chromatogr A 1035:31–36

    Article  CAS  PubMed  Google Scholar 

  • Guyton KZ, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K (2016) Carcinogenicity of pentachlorophenol and some related compounds. Lancet Oncol 17:1637–1638

    Article  CAS  PubMed  Google Scholar 

  • Häggblom M (1990) Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J Basic Microbiol 30(2):115–141

    Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 103:28–72

    Article  Google Scholar 

  • Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

    Article  CAS  PubMed  Google Scholar 

  • Hayaishi O (1969) Nature and mechanism of oxygenases. Science 164:389–396

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. https://doi.org/10.1038/nrmicro2839

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Suflita JM, Tiedje JM (1983) Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl Environ Microbiol 45:1459–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Liu F, Wu N, Ju J, Yu B (2016) Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnol 14:5. https://doi.org/10.1186/s12951-016-0158-0

    Article  CAS  Google Scholar 

  • Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG (2013) Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci World J 2013:460215, 11 p. https://doi.org/10.1155/2013/460215

    Article  CAS  Google Scholar 

  • Igbinosa EO, Odjadjare EE, Chigor VN, Igbinosa IH, Emoghene AO, Ekhaise FO, Igiehon NO, Idemudia OG (2013) Toxicological profile of chlorophenols and their derivatives in the environment: the public health perspective. Sci World J 2013:460215. https://doi.org/10.1155/2013/460215. PMID: 23690744; PMCID: PMC3649668

    Article  CAS  Google Scholar 

  • Itoh K, Fujita M, Kumano K, Suyama K, Yamamoto H (2000) Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase. Soil Biol Biochem 32:85–91

    Article  CAS  Google Scholar 

  • Ivanciuc T, Ivanciuc O, Douglas JK (2006) Prediction of environmental properties for chlorophenols with posetic quantitative super-structure/property relationships (QSSPR). Int J Mol Sci 7:358–374

    Article  CAS  Google Scholar 

  • Jame SA, Rashidul Alam AKM, Fakhruddin ANM, Alam MK (2010) Degradation of phenol by mixed culture of locally isolated Pseudomonas species. J Bioremed Biodegr 1:102. https://doi.org/10.4172/2155-6199.1000102

    Article  CAS  Google Scholar 

  • Janke D, Al-Mofarji T, Schukat B (1988a) Critical steps in degradation of chloroaromatics by rhodococci. II. Whole-cell turnover of different monochloroaromatic nongrowth substrates by Rhodococcus sp. An 117 and An 213 in the absence/presence of glucose. J Basic Microbiol 28:519–528

    Article  CAS  Google Scholar 

  • Janke D, Al-Mofarji T, Straube G, Schumann P, Prauser H (1988b) Critical steps in degradation of chloroaromatics by rhodococci. I. Initial enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. An 117 and An 213. J Basic Microbiol 28:509–518

    Article  CAS  Google Scholar 

  • Jannat MAH, Lee J, Shin SG, Hwang S (2021) Long-term enrichment of anaerobic propionate-oxidizing consortia: syntrophic culture development and growth optimization. J Hazard Mater 401(2021):123230. https://doi.org/10.1016/j.jhazmat.2020.123230

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Ren NQ, Cai X, Wu D, Qiao LY, Lin S (2008) Biodegradation of phenol and 4-chlorophenol by the mutant strain CTM 2. Chin J Chem Eng 16:796

    Article  CAS  Google Scholar 

  • Kalaitzis JA, Lauro FM, Neilan BA (2009) Mining cyanobacterial genomes for genes encoding complex biosynthetic pathways. Nat Prod Rep 26:1447–1465

    Article  CAS  PubMed  Google Scholar 

  • Kaschabek SR, Kasberg T, Müller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasai D, Fujinami T, Abe T, Mase K, Katayama Y, Fukuda M et al (2009) Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol 191:6758–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama-Hirayama K, Tobita S, Hirayama K (1994) Biodegradation of phenol and monochlorophenols by yeast Rhodotorula glutinis. Water Sci Technol 30:59

    Article  CAS  Google Scholar 

  • Kennes C, Wu WM, Bhatnagar L, Zeikus JG (1996) Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Appl Microbiol Biotechnol 44(6):801–806

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Kyung-Keun O, Lee S-T, Kim S-W, Hong S-I (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem 37:1367–1373

    Article  CAS  Google Scholar 

  • Kiyohara H, Hatta T, Ogawa Y, Kakuta T, Yokoyama H, Takizava N (1992) Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol 58:1276–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knackmuss HJ, Hellwig M (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp B-13. Arch Microbiol 117:1–7

    Article  CAS  PubMed  Google Scholar 

  • Konovalova EI, Solyanikova IP, Golovleva LA (2009) Degradation of 4-chlorophenol by the bacterium Rhodococcus opacus 6a. Microbiol (Moscow, Engl Transl) 78(6):805–807

    Article  CAS  Google Scholar 

  • Kopytko M, Chalela G, Zauscher F (2002) Biodegradation of two commercial herbicides (Gramoxone and Matancha) by the bacteria Pseudomonas putida. EJB Electron J Biotechnol 5(2):182–195

    Google Scholar 

  • Kumar M, León V, De Sisto Materano A, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24(7):1047–1057

    Article  CAS  Google Scholar 

  • Kumar S, Neeraj, Mishra VK, Karn SK (2018) Biodegradation of phenol by free and immobilized Candida tropicalis NPD1401. Afr J Biotechnol 17(3):57–64. https://doi.org/10.5897/AJB2017.15906

    Article  CAS  Google Scholar 

  • Kyzeková T, Krasňan V, Rebroš M (2020) Pichia pastoris—recombinant enzyme producent for environment treatment—review. Acta Chim Slov 13(1):108–118. https://doi.org/10.2478/acs-2020-0016

    Article  CAS  Google Scholar 

  • Lamar RT, Evans JW, Glaser JA (1993) Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environ Sci Technol 27:2566–2571

    Article  CAS  Google Scholar 

  • Lamar RT, Davis MW, Dietrich DM, Glaser JA (1994) Treatment of a pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaete sordida: a field demonstration. Soil Biol Biochem 26:1603–1611

    Article  CAS  Google Scholar 

  • Lee J-Y, Xun L (1997) Purification and characterization of 2,6-dichlorop-hydroquinone chlorohydrolase from Flavobacterium sp. strain ATCC 39723. J Bacteriol 179:1521–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DY, Eberspächer J, Wagner B, Kuntzer J, Lingens F (1991) Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol 57:1920–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yang C, Qiao C (2007) Biodegradation of p-nitrophenol and 4-chlorophenol by Stenotrophomonas sp. FEMS Microbiol Lett 277:150–156

    Article  CAS  PubMed  Google Scholar 

  • Manjarrez Paba G, Baldiris Ávila R, Baena Baldiris D (2021) Application of environmental bacteria as potential methods of azo dye degradation systems. Glob J Environ Sci Manag 7(1):1–24. https://doi.org/10.22034/gjesm.2021.01.0

    Article  CAS  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke B, Rehm HJ (1992) Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7–2. Appl Microbiol Biotechnol 37:655–661

    Article  CAS  Google Scholar 

  • Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54(12):2885–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty SS, Jena HM (2017) Biodegradation of phenol by free and immobilized cells of a novel Pseudomonas sp. NBM11. Braz J Chem Eng 34(1):75–84. https://doi.org/10.1590/0104-6632.20170341s20150388

    Article  CAS  Google Scholar 

  • Muller F, Caillard L (2011) Chlorophenols. In: Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons, Inc., Weinheim. https://doi.org/10.1002/14356007.a07_001.pub2

    Chapter  Google Scholar 

  • Murialdo SE, Fenoglio R, Haure PM, González JF (2003) Degradation of phenol and chlorophenols by mixed and pure cultures. Water SA 29(4):457–464

    CAS  Google Scholar 

  • Murthy NBK, Kaufman DD, Fries GF (2008) Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soil. J Environ Sci Health B 14:1–14. https://doi.org/10.1080/03601237909372110

    Article  Google Scholar 

  • Nakagawa A, Osawa S, Hirata T, Yamagishi Y, Hosoda J, Horikoshi T (2006) 2,4-Dichlorophenol degradation by the soil fungus Mortierella sp. Biosci Biotechnol Biochem 70:525–527

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183. http://www.academicjournals.org/ajmr. https://doi.org/10.5897/AJMR10.375

    Article  Google Scholar 

  • Nikodem P, Hecht V, Schlömann M, Pieper DH (2003) New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185(23):6790–6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaivits E, Agrafiotis A, Baira E, Le Goff G, Tsafantakis N, Chavanich SA, Benayahu Y, Ouazzani J, Fokialakis N, Topakas E (2020) Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int J Mol Sci 21(9):3317. https://doi.org/10.3390/ijms21093317

    Article  CAS  PubMed Central  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71(11):6538–6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manag 215:216–229. https://doi.org/10.1016/j.jenvman.2018.03.052

    Article  CAS  Google Scholar 

  • Núñez-Gaytán AM, Vera-Avila LE, De Llasera MG, Covarrubias-Herrera R (2010) Speciation and transformation pathways of chlorophenols formed from chlorination of phenol at trace level concentration. J Environ Sci Health A Toxic Hazard Subst Environ Eng 45(10):1217–1226. https://doi.org/10.1080/10934529.2010.493785

    Article  CAS  Google Scholar 

  • Okeke BC, Paterson A, Smith JE, Watson-Craik IA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biotechnol 48:563–569

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83(10):1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009. Epub 2011 Apr 30. PMID: 21531434

    Article  CAS  PubMed  Google Scholar 

  • Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7(2):210–248. https://doi.org/10.3390/md7020210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel RN, Mazumdar S, Ornston LN (1975) Beta-ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus. J Biol Chem 250:6567

    Article  CAS  PubMed  Google Scholar 

  • Patel BP, Kumar A (2016) Multi-substrate biodegradation of chlorophenols by defined microbial consortium. 3 Biotech 6:191. https://doi.org/10.1007/s13205-016-0511-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak D, Ollis D (1990) Refined structure of dienelactone hydrolase at 18 Å. J Mol Biol 214:497–525

    Article  CAS  PubMed  Google Scholar 

  • Pera-Titus M, García-Molina V, Baños MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47(4):219–256

    Article  CAS  Google Scholar 

  • Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P (2020) Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 13(1):67–86. https://doi.org/10.1111/1751-7915.13488

    Article  PubMed  Google Scholar 

  • Pornsuwan S, Maenpuen S, Kamutira P, Watthaisong P, Thotsaporn K, Tongsook C et al (2017) 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Pseudomonas aeruginosa: an Fe(II)-containing enzyme with fast turnover. PLoS One 12:e0171135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pramila R, Padmavathy K, Ramesh KV, Mahalakshmi K (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis—potential candidates for biodegradation of low density polyethylene (LDPE). J Bacteriol Res 4(1):9–14

    Article  CAS  Google Scholar 

  • Pritchard PH, O’Neill EJ, Spain CM, Ahern DJ (1987) Physical and biological parameters that determine the fate of p-chlorophenol in laboratory test systems. Appl Environ Microbiol 53:1833–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GVB, Joshi DK, Gold MH (1997) Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichornitus squalens. Microbiology 143:2353–2360

    Article  CAS  Google Scholar 

  • Rubilar O, Tortella G, Cea M, Acevedo F, Bustamante M, Gianfreda L, Diez MC (2011) Bioremediation of a Chilean Andisol contaminated with pentachlorophenol (PCP) by solid substrate cultures of white rot fungi. Biodegradation 22:31–41

    Article  CAS  PubMed  Google Scholar 

  • Ruzgas T, Emneus J, Gorton L, Marko VG (1995) The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal Chem Acta 31:245–253

    Article  Google Scholar 

  • Sandhibigraha S, Chakraborty S, Bandyopadhyay T, Bhunia B (2019) A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask. Environ Eng Res 25(1):62–70

    Article  Google Scholar 

  • Schlömann M (1994) Evolution of chlorocatechol catabolic pathways. Biodegradation 5:301–321

    Article  PubMed  Google Scholar 

  • Seeger M, Hernández M, Méndez V, Ponce B, Córdova M, González M (2010) Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. J Soil Sci Plant Nutr 10(3):320–332

    Article  Google Scholar 

  • Seo JK, Ki-Joon J, Young-Kwon P, Sangmin J, Heon L, Sang-Chul J (2017) Improving removal of 4-chlorophenol using a TiO2 photocatalytic system with microwave and ultraviolet tradition. Catal Today 293–294:15–22

    Google Scholar 

  • Smith JA, Novak JT (1987) Biodegradation of chlorinated phenols in subsurface soils. Water Air Soil Pollut 33:29–42

    Article  CAS  Google Scholar 

  • Sofer SS, Lewandowski GA, Lodaya MP, Lakhwala FS, Yang KC, Singh M (1990) Biodegradation of 2-chlorophenol using immobilized activated sludge. Res J Water Pollut Control Fed 62:73–80

    CAS  Google Scholar 

  • Solyanikova IP, Golovleva LA (2004) Bacterial degradation of chlorophenols: pathways, biochemica, and genetic aspects. J Environ Sci Health B 39(3):333–351. https://doi.org/10.1081/PFC-120035921

    Article  CAS  PubMed  Google Scholar 

  • Solyanikova I, Golovleva L (2011) Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Mikrobiologiia 80(5):579–594

    CAS  PubMed  Google Scholar 

  • Takizawa N, Yokoyama H, Yanagihara K, Hatta T, Kiyohara H (1995) A locus of Pseudomonas pickettii DTP0602, had, that encodes 2,4,6-trichlorophenol 4-dechlorinase with hydroxylase activity, and hydroxylation of various chlorophenols by the enzyme. J Ferment Bioeng 80:318–326

    Article  CAS  Google Scholar 

  • Thwaites JM, Farrell RL, Duncan SD, Lamar RT, White RB (2006) Fungal based remediation: treatment of PCP contaminated soil in New Zealand. In: Singh SN (ed) Environmental bioremediation technologies. Springer, New York, pp 465–479

    Google Scholar 

  • Timothy GL, Suflita JM, James MT (1989) Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl Environ Microbiol 55:2773–2778

    Article  Google Scholar 

  • Tum PK, Kariuki DK (2020) Photocatalytic degradation of 4-chlorophenol by titanium dioxide: role of annealing temperature and morphology. J Appl Sci Environ Manage 24(1):5–12

    Google Scholar 

  • Vallecillo A, Garcia-Encina PA, Pena M (1999) Anaerobic biodegradability and toxicity of chlorophenols. Water Sci Technol 40:161–168

    Article  CAS  Google Scholar 

  • Valli K, Gold MH (1991) Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosponum. J Bacteriol 173:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Leeuwen JA, Nicholson BC, Hayes KP, Mulcahy DE (1997) Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, south-eastern South Australia. Environ Toxicol Water Qual 12:335–342

    Article  Google Scholar 

  • Veenagayathri K, Vasudevan N (2013) Degradation of 4-Chlorophenol by a moderately halophilic bacterial consortium under saline conditions. Br Microbiol Res J 3(4):513–524

    Article  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z, Meyer SA (1975) Petroleum-degrading achlorophyllous alga Protothecazopfi. Nature (London) 254:423–424

    Article  CAS  Google Scholar 

  • Wang CC, Lee CM, Kuan CH (2000a) Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus. Chemosphere 41(3):447–452

    Article  CAS  PubMed  Google Scholar 

  • Wang YJ, Ho YS, Jeng JH, Su HJ, Lee CC (2000b) Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chem Biol Interact 128(3):173–188

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ma X, Liu S, Sun P, Fan P, Xia C (2012) Biodegradation of phenol and 4-chlorophenol by Candida tropicalis W1. Procedia Environ Sci 16:299–303

    Article  CAS  Google Scholar 

  • Webb MD, Ewbank G, Perkins J, McCarthy AJ (2001) Metabolism of pentachlorophenol by Saccharomonospora viridis strains isolated from mushroom compost. Soil Biol Biochem 33:1903–1914

    Article  CAS  Google Scholar 

  • Weisshaar MP, Franklin FC, Reineke W (1987) Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13. J Bacteriol 169(1):394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen JP, Li HM, Bai J, Jiang Y (2006) Biodegradation of 4-chlorophenol by Candida albicans PDY-07 under anaerobic conditions. Chinese J Chem Eng 14:790–795

    Article  CAS  Google Scholar 

  • Wieser M, Wagner B, Eberspächer J, Lingens F (1997) Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1. J Bacteriol 179:202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggings BA, Jones SH, Alexander MA (1987) Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments. Appl Environ Microbiol 53:791–796

    Article  Google Scholar 

  • Westmeier F, Rehm H-J (1987) Degradation of 4-chlorophenol in municipal wastewater by adsorptive immobilized Alcaligenes sp. A7–2. Appl Microbiol Biotechnol 26:78–83

    Article  CAS  Google Scholar 

  • Wu G, Xu H, Jiang M (2004) Biodegradation of chlorophenols: a review. Chem J Internet 6(10):60–67

    Google Scholar 

  • Xun L, Topp E, Orser CS (1992) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F-X, Shen D-S (2004) Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere 54:1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Yordanova G, Godjevargova T, Nenkova R, Ivanova D (2013) Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus Awamori and Trichosporon Cutaneum. Biotechnol Biotechnol Equip 27(2):3681–3688. https://doi.org/10.5504/BBEQ.2013.0003

  • Yum KJ, Peirce JJ (1998) Biodegradation kinetics of chlorophenols in immobilized-cell reactors using a white-rot fungus on wood chips. Water Environ Res 70:205–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Oluwasun Adetunji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adetunji, C.O. et al. (2021). Microbial Degradation of Chlorophenolic Compounds. In: Inamuddin, .., Ahamed, M.I., Prasad, R. (eds) Recent Advances in Microbial Degradation. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-0518-5_12

Download citation

Publish with us

Policies and ethics