Skip to main content

Microbial Biopesticides Use in Insect-Pest Management: An Overview

  • Chapter
  • First Online:
Microbial Biotechnology in Crop Protection

Abstract

Insect, pathogens, weeds, and invertebrates as pests cause significant crop losses worldwide and act as a barrier in achieving the aim of global food security and reduction in poverty, as in terms of food security the annual crop losses due to pests correspond to a huge amount of food supply which can otherwise feed millions of people. The use of synthetic pesticides for crop protection plays a major role in insect-pest management but simultaneously poses various challenges; hence, for sustainable agriculture, we need to chalk out alternative methodologies to meet the need of crop protection. Integrated Pest Management (IPM) helps in Sustainable Intensification by producing more output from the same area of land while reducing the negative environmental impacts and at the same time increasing contributions to natural capital and the flow of environmental services by using various methods and techniques. Among which, one of the major methods is Microbial Control, in which pathogens are exploited for biological control of insect pests through introductory or inundate applications. Microbial pathogens of insects are intensively investigated to develop environment friendly pest management strategies in agriculture. Entomopathogenic viruses, bacteria, and fungi, as biopesticides are currently used as an alternative to traditional insecticides which overcome the harmful effect of the chemicals on non-target organism. This chapter reviews the insecticidal properties of microbes, their potential utility, recent advancement, and case studies in insect-pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Inter Discip Toxicol 2:1–12

    Article  Google Scholar 

  • Alam G (2000) A study of biopesticides and biofertilizers in Haryana, India Gatekeeper Series No. 93. IIED, London

    Google Scholar 

  • Alavanja MC (2009) Pesticides use and exposure extensive worldwide. Rev Environ Health 24:303–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali S, Zafar Y, Ali MG, Nazir F (2008) Bacillus thuringiensis and its application in agriculture. Afr J Biotechnol 9:2022–2031

    Google Scholar 

  • Amin N (2013) Teaching of biopesticide development as a technoprenuership opportunity in plant protection. J Biol Agric Healthc 3:2224–3208

    Google Scholar 

  • Anand S, Reddy J (2009) Biocontrol potential of Trichoderma sp against plant pathogens. Int J Agri Sci 2:30–39

    Google Scholar 

  • Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195:1–8

    Article  PubMed  CAS  Google Scholar 

  • Arora NK (2015) Plant microbes symbiosis: applied facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_2

    Book  Google Scholar 

  • Arora NK, Kumar V, Maheshwari DK (2001) Constraints, development and future of the inoculants with special reference to rhizobial inoculants. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Singh and Singh, Dehradun, pp 241–245

    Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe symbiosis—fundamentals and advances. Springer, New Delhi, pp 411–449

    Chapter  Google Scholar 

  • Arthurs SP, Lacey LA, Rosa FDL (2008) Evaluation of granulovirus (PoGV) and Bacillus thuringiensis subsp. Kurstaki for control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. J Econ Entomol 101:1540–1546

    Article  PubMed  Google Scholar 

  • Bailey DJ, Gilligan CA (2004) Modeling and analysis of disease induced host growth in the epidemiology of take all. Phytopathology 94:535–540

    Article  PubMed  CAS  Google Scholar 

  • Berry C, Hindley J, Oei C (1991) The Bacillus sphaericus toxins and their potential for biotechnological development. In: Maramorosch K (ed) Biotechnology for biological control of pests and vectors. CRC Press, Boca Raton, pp 35–51

    Google Scholar 

  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul Toxicol Pharmacol 32:156–173

    Article  PubMed  CAS  Google Scholar 

  • Bizzarri MF, Bishop AH (2008) The Ecology of Bacillus thuringiensis on the phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Microb Ecol 56:133–139

    Article  PubMed  CAS  Google Scholar 

  • Boettiger S, Bennett A, Bayh-Dole B (2006) If we knew then what we know now. Nat Biotechnol 24:320–323

    Article  PubMed  CAS  Google Scholar 

  • Boomathi N, Sivasubramanian P, Raguraman S, Premalatha K (2005) Safety of botanical and microbial pesticide mixtures to Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). J Biol Control 19:23–28

    Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  PubMed  CAS  Google Scholar 

  • Butt TM, Jackson CW, Magan N (2001a) Fungi as bio-control agents: progress, problems and potential. CAB International, Wallingford

    Book  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001b) Introduction—fungal biological control agents: problems and potential. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 1–9

    Chapter  Google Scholar 

  • CABI (2010) The 2010 worldwide biopesticides: market summary. CPL Business Consultants, London, p 40

    Google Scholar 

  • Cai S-F, Lu X-M, Qiu H-H, Li M-Q, Feng Z-Z (2012) Phagocytic uptake of Nosema bombycis (Microsporidia) spores by insect cell lines. J Integr Agric 11:1321–1326

    Article  Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Article  Google Scholar 

  • Central Insecticide Board (2018) Major use of pesticides. Registered under the act, 1968. http://ppqs.gov.in/divisions/cib-rc/registered-products

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves GWP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 1573:1987–1998

    Article  Google Scholar 

  • Chandrasekaran R, Revathi K, Nisha S, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2012) Physiological effect of chitinase purified from Bacillus subtilis against the tobacco cutworm Spodoptera litura Fab. Pestic Biochem Physiol 104:65–71

    Article  CAS  Google Scholar 

  • Charles J-F, Nielsen-LeRoux C, Delecluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    Article  PubMed  CAS  Google Scholar 

  • Clemson HGIC (2007) Organic pesticides and biopesticides. Clemson Extension, Home and Garden Information Center, Clemson University, Clemson

    Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Corato UD (2020) Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: a critical review. Rhizosphere 13:100192

    Article  Google Scholar 

  • Cory JS, Myers JH (2003) The ecology and evolution of insect baculoviruses. Annu Rev Ecol Evol Syst 34:239–272

    Article  Google Scholar 

  • CPL Business Consultants (2010) Agriculture/biopesticides—market studies /AZ03. Volume 3—the biopesticides market in Europe. http://www.cplsis.com/index.php?reportid=334

  • Crickmore N (2005) Using worms to better understand how Bacillus thuringiensis kills insects. Trends Microbiol 13:347–350

    Article  PubMed  CAS  Google Scholar 

  • Cuthbertson AGS, Walters KFA, Northing P (2005) The susceptibility of immature of Bemisia tabaci to the entomopathogenic fungus Lecanicillium muscarium on tomato and verbena foliage. Mycopathologia 159:23–29

    Article  PubMed  Google Scholar 

  • Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 4:945–949

    Google Scholar 

  • Damico T (2017) Biopesticides are in high demand in today’s pest management programs. CAPCA Adviser 2017:34–35

    Google Scholar 

  • Darboux I, Nielsen-LeRoux C, Charles J-F, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990

    Article  PubMed  CAS  Google Scholar 

  • Darbro JM, Thomas MB (2009) Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am J Trop Med Hyg 80:992–997

    Article  PubMed  Google Scholar 

  • DeMaagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved to colonize the insect world. Trends Genet 117:193–199

    Article  Google Scholar 

  • Doekes G, Larsen P, Sigsgaard T, Baelum J (2004) IgE sensitization to bacterial and fungal biopesticides in a cohort of Danish greenhouse workers: the BIOGART study. Am J Ind Med 46:404–407

    Article  PubMed  CAS  Google Scholar 

  • Dominguesa FC, Queiroza JA, Cabralb JMS, Fonsecab LP (2000) The influence of culture conditions on mycelial structure and cellulose production by Trichoderma reesei rut C-30. Enzyme Microb Technol 26:394–401

    Article  Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, New York, pp 79–98

    Chapter  Google Scholar 

  • Ehlers RU (2006) Einsatz der Biotechnologie im biologischen Pflanzenschuz. Schnreihe dtsch Phytomed Ges 8:17–31

    CAS  Google Scholar 

  • England LS, Vincent ML, Trevors JT, Holmes SB (2004) Extraction, detection and persistence of extracellular DNA in forest litter microcosms. Mol Cell Probes 18:313–319

    Article  PubMed  CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (2006) New biopesticide active ingredients. www.epa.gov/pesticides/biopesticides/product lists/

  • Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Inter J Microbiol 2012:326452. https://doi.org/10.1155/2012/326452

    Article  Google Scholar 

  • Gautam NK, Kumar A, Singh VK (2018) Biopesticide: a clean approach to healthy agriculture. Int J Curr Microbiol App Sci 7(3):194–197

    Article  Google Scholar 

  • Gonzalez AG (2006) Open science: open source licenses in scientific research. North Carolina J Law Technol 7:321–366

    Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI Publishing, Wallingford, p 505

    Book  Google Scholar 

  • Guerra PT, Wong LJG, Roldán HM (2001) Bioinseticidas: Su empleo, produción y commercialization en México. Ciencia UANL 4:143–152

    Google Scholar 

  • Guillon ML (2003) Regulation of biological control agents in Europe. In: Roettger U, Reinhold M (eds) International symposium on biopesticides for developing countries. CATIE, Turrialba, pp 143–147

    Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3:186–188

    Google Scholar 

  • Harman GE (2005) Overview of mechanisms and uses of Trichoderma spp. 648. Phytopathology 96:190–194

    Article  CAS  Google Scholar 

  • Harris AK (2009) http://www.farmchemicalsinternational.com/magazine/

  • Hewson I, Brown JM, Gitlin SA, Doud DF (2011) Nucleopolyhedro virus detection and distribution in terrestrial, freshwater, and marine habitats of Appledore Island, Gulf of Maine. Microb Ecol 62:48–57

    Article  PubMed  Google Scholar 

  • Hiltpold I, Baroni M, Toepfer S, Kuhlmann U, Turlings TC (2010) Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J Exp Biol 213:2417–2423

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Sen A, Janarthanan S (eds) (2001) Microbials in insect pest management. Science Publishers, Enfield, p 188

    Google Scholar 

  • IOBC (2008) International organization for biological control. IOBC Newslett 84:5–7

    Google Scholar 

  • Irigaray FJSC, Marco-Mancebon V, Perez-Moreno I (2003) The entomopathogenic fungus Beauveria bassiana and its compatibility with triflumuron: effects on the two-spotted spider mite Tetranychus urticae. Biol Control 26:168–173

    Article  Google Scholar 

  • James C (2009) Global status of commercialized biotech/GM crops. ISAAA Brief No. 41, I. ISAAA, Ithaca

    Google Scholar 

  • Jeyarani S, Karuppuchamy N, Sathaiah N, Manimegalai S (2008) Safety of UV-selected Helicoverpa armigera nucleopolyhedrovirus to non-target beneficial organisms. J Biol Control 22:107–112

    Google Scholar 

  • Kabaluk T, Gazdik K (2005) Directory of microbial pesticides for agricultural crops in OECD countries. Ottawa, Agriculture and Agri-Food Canada

    Google Scholar 

  • Kabaluk T, Gazdik K (2007) Directory of microbial biopesticides for agricultural crops in OECD countries. http://www4.agr.gc.ca/resources/prod/doc/pmc/pdf/micro.e.pdf

  • Kabaluk J T, Svircev A M, Goette M S, Woo S G (eds) (2010) The use and regulation of microbial pesticides in representative jurisdictions worldwide. IOBC Global, p 99

    Google Scholar 

  • Kaushal M (2018) Role of microbes in plant protection using intersection of nanotechnology and biology. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection, nanotechnology in the life sciences. Springer, Cham, pp 111–135

    Chapter  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Khachatourians GG (2009) Insecticides, microbials. In: Applied microbiology: agro/food. Elsevier, Amsterdam, pp 95–109

    Google Scholar 

  • Khajuria D R (2009) Predatory complex of phytophagous mites and their role in integrated pest management in apple orchard. J Biopest 2(2):141–144

    Google Scholar 

  • Khandelwal M, Datta S, Mehta J, Naruka R, Makhijani K, Sharma G, Kumar R, Chandra S (2012) Isolation, characterization and biomass production of Trichoderma viride using various agro products—a biocontrol agent. Adv Appl Sci Res 3:3950–3955

    CAS  Google Scholar 

  • Koppenhofer AM, Kaya HK (2002) Entomopathogenic nematodes and insect pest management. In: Koul O, Dhaliwal GS (eds) Microbial biopesticides. Taylor & Francis, London, pp 277–305

    Chapter  Google Scholar 

  • Koul O (2011) Microbial biopesticides: opportunities and challenges. In: CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, vol 6. CAB International, Wallingford, Oxfordshire, p 56

    Google Scholar 

  • Koul O, Cuperus GW (2007) Ecologically based integrated pest management. CAB International, Wallingford

    Book  Google Scholar 

  • Koul O, Dhaliwal GS (2002) Advances in biopesticide research. In: Microbial biopesticides, vol II. Taylor and Francis, London

    Google Scholar 

  • Koul O, Dhaliwal GS, Marwaha SS, Arora JK (2003) Future perspectives. In: Biopesticides and pest management, vol 1. Campus Books International, New Delhi, pp 386–388

    Google Scholar 

  • Koul O, Cuperus GW, Norman E (2008) Areawide pest management: theory and implications. CAB International, Wallingford

    Book  Google Scholar 

  • Kristiofferesen P, Rask AM, Grundy AC, Franken I, Kempenaar C, Raison J et al (2008) A review of pesticide policies and regulations for urban amenity areas in seven European countries. Weed Res 48:201–214

    Article  Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofert Biopest 3:1–3

    Article  CAS  Google Scholar 

  • Kumar S, Singh A (2014) Biopesticides for integrated crop management: environmental and regulatory aspects. J Biofertil Biopestici 5:e121. https://doi.org/10.4172/2155-6202.1000e121

    Article  Google Scholar 

  • Kunimi Y (2007) Current status and prospects on microbial control in Japan. J Invertebr Pathol 95:181–186

    Google Scholar 

  • Lacey LA, Headrick HL, Arthurs SP (2008) Effect of temperature on long-term storage of codling moth granulovirus formulations. J Econ Entomol 101:288–294

    Article  PubMed  CAS  Google Scholar 

  • Lasa R, Ruiz-Portero C, Alcazar MD, Belda JE, Caballero P, Williams T (2007) Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol Control 40:89–96

    Article  CAS  Google Scholar 

  • Leng P, Zhang Z, Guangtang P, Zhao M (2011) Applications and development trends in biopesticides. Afr J Biotechnol 10:19864–19873

    CAS  Google Scholar 

  • Lewis LC (2002) Protozoan control of pests. In: Pimental D (ed) Encyclopedia of pest management. Taylor & Francis, London, pp 673–676

    Google Scholar 

  • Lisansky S (1997) Microbial biopesticides. In: Evans HF (ed) Microbial insecticides, novel or necessity?. Proceedings No. 68. British Crop Protection Council, Farnham, pp 3–10

    Google Scholar 

  • Loya LJ, Hower AA Jr (2002) Population dynamics, persistence, and efficacy of the entomopathogenic nematode Heterorhabditis bacteriophora (Oswego strain) in association with the clover root curculio (Coleoptera: Curculionidae) in Pennsylvania. Environ Entomol 31:1240–1250

    Article  Google Scholar 

  • MacGregor JT (2006) Genetic toxicity assessment of microbial pesticides: needs and recommended approaches. Intern Assoc Environ Mutagen Soc 2006:1–17

    Google Scholar 

  • Marrone PG (2007) Barriers to adoption of biological control agents and biological pesticides, CAB reviews: perspectives in agriculture. CAB International, Wallingford

    Google Scholar 

  • Mazid S, Kalita JC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1:169–178

    Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2068-8_2

    Chapter  Google Scholar 

  • Mnyone LL, Koenraadt CJM, Lyimo IN, Mpingwa MW, Takken W, Russell TL (2010) Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Parasit Vectors 3:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Mocali S (2010) Bt plants and effect on soil micro-organisms. CAB reviews: perspectives in agriculture, veterinary sciences. Nutr Nat Resour 5(036):1–19

    Google Scholar 

  • Moscardi F, de Souza LM, de Castro Batista ME, Moscardi LM, Szewczyk B (2011) Baculovirus pesticides—present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel P (eds) Microbes and microbial technology. Springer, New York, pp 415–445

    Chapter  Google Scholar 

  • Nakkeeran S, Dilantha Fernando WG, Zaki A (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • National Farmers Policy (2007) Department of Agriculture and Cooperation, Ministry of Agriculture Government of India

    Google Scholar 

  • O’Brien KP, Franjevic S, Jones J (2009) Green chemistry and sustainable agriculture: the role of biopesticides, advancing green chemistry. http://advancinggre-enchemistry.org/wp-content/uploads/Green-Chem-and-Sus.-Ag.-the-Role-of-Biopesticides.pdf

  • Pandey RK, Prasad R, Mangunath VG, Goswami BK (2010) Biotechnology of biocontrol based biopesticides: core component of biological deterrents. In: Gupta VK, Tuohy M, Gaur RK (eds) Fungal biochemistry and biotechnology. LAP LAMBERT Academic Publishing AG & Co. KG, Saarbrücken, pp 214–244

    Google Scholar 

  • Park H-W, Tang M, Sakano Y, Federici BA (2009) A 1.1-kilobase region downstream of the bin operon in Bacillus sphaericus strain 2362 decreases bin yield and crystal size in strain 2297. Appl Environ Microbiol 75:878–881

    Article  PubMed  CAS  Google Scholar 

  • Pelaez V, Mizukawa G (2017) Diversification strategies in the pesticide industry: from seeds to biopesticides. Ciênc Rural 47:e20160007

    Article  CAS  Google Scholar 

  • Rabindra RJ (2001) Emerging trends in microbial control of crop pests. In: Rabindra RJ, Kennedy JS, Sathiah N, Rajasekaran B (eds) Microbial control of crop pests. Tamil Nadu Agriculture University, Coimbatore, pp 110–127

    Google Scholar 

  • Rabindra RJ (2005) Current status of production and use of microbial pesticides in India and the way forward. In: Rabindra RJ, Hussaini SS, Ramanujam B Microbial biopesticide formulations and application, technical document no. 55, Bangalore: Project Directorate of Biological Control, pp 1–12

    Google Scholar 

  • Ranga Rao GV, Rupela OP, Rameshwar Rao V, Reddy YVR (2007) Role of biopesticides in crop protection: present status and future prospects. Ind J Plant Prot 35:1–9

    Google Scholar 

  • Ranga Rao GV, Visalakshmi V, Suganthy M, Vasudeva Reddy P, Reddy YVR, Rameshwar Rao V (2008) Relative toxicity of neem on natural enemies associated with chickpea ecosystem: a case study. Int J Trop Insect Sci 27:229–235

    Google Scholar 

  • Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, Dordrecht

    Book  Google Scholar 

  • Raymond B, Hartley SE, Cory JS, Hails RS (2005) The role of food plant and pathogen-induced behavior in the persistence of a nucleopolyhedro virus. J Invertebr Pathol 88:49–57

    Article  PubMed  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    Article  PubMed  CAS  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–549

    PubMed  CAS  Google Scholar 

  • Rosskopf E, Gioia FD, Hong JC, Pisani C, Kokalis-Burelle N (2020) Organic amendments for pathogen and nematode control. Annu Rev Phytopathol 58:277–311

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Nathan S (2006) Effects of Melia azedarach on nutritional physiology and enzyme activities of the rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Pestic Biochem Physiol 84:98–108

    Article  CAS  Google Scholar 

  • Senthil-Nathan S (2013) Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol 4:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. In: Thangavel P, Sridevi G (eds) Environmental sustainability. Springer, New Delhi, p 49. https://doi.org/10.1007/978-81-322-2056-5_3

    Chapter  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Murugan K (2006) Behavioural responses and changes in biology of rice leaffolder following treatment with a combination of bacterial toxins and botanical insecticides. Chemosphere 64:1650–1658

    Article  CAS  Google Scholar 

  • Senthil-Nathan S, Choi M-Y, Paik C-H, Seo H-Y, Kalaivani K (2009) Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens StÃ¥l, the brown planthopper. Ecotoxicol Environ Saf 72:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Shannag HK, Capinera JL (2000) Interference of Steinernema carpocapsae (Nematoda: Steinernematidae) with Cardiochiles diaphaniae (Hymenoptera: Braconidae), a parasitoid of melonworm and pickleworm (Lepidoptera: Pyralidae). Environ Entomol 29:612–617

    Article  Google Scholar 

  • Shapiro DI, McCoy CW (2000) Virulence of entomo-pathogenic nematodes to Diaprepes abbreviatus (Coleoptera: Curculionidae) in the laboratory. J Econ Entomol 93:1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Patterson Fife J (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38:124–133

    Article  Google Scholar 

  • Solter LF, Becnel JJ (2000) Entomopathogenic microsporida. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology: application and evaluation of pathogens for control of insects and other invertebrate pests. Kluwer Academic, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Steinwand B (2008) Biopesticide ombudsman (personal communication). US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:192–208

    Article  Google Scholar 

  • USEPA (2008) What are biopesticides? http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm

  • Vendan SE (2016) Current scenario of biopesticides and eco-friendly insect pest management in India. South Indian J Biol Sci 2(2):268–271

    Article  Google Scholar 

  • Vimala Devi PS, Hari PP (2009) Identification of a virulent isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin, its mass multiplication and formulation for development into a mycoinsecticide for management of Helicoverpa armigera (Hübner). J Biol Control 22:137–144

    Google Scholar 

  • Ward MWD, Chung YJ, Copeland LB, Doerfler DL (2011) Allergic responses induced by a fungal biopesticide Metarhizium anisopliae and house dust mite are compared in a mouse model. J Toxicol 2011:1–13

    Article  CAS  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This book chapter contains information gathered from numerous published resources, and thus I would like to extend my gratitude to all the authors of the references used in this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Gaur, N. (2021). Microbial Biopesticides Use in Insect-Pest Management: An Overview. In: Kaushal, M., Prasad, R. (eds) Microbial Biotechnology in Crop Protection. Springer, Singapore. https://doi.org/10.1007/978-981-16-0049-4_5

Download citation

Publish with us

Policies and ethics